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Abstract- The analytical closed form solution of the equations 
of motion of a missile tracking a non-maneuvering target using 
the Pure Proportional Navigation (PPN) law based on an 
estimate of line-of-sight (LOS) rate is presented. The solution is 
obtained in the form of a uniformly convergent series of 
functions in polar coordinates for navigation constants 2N ≥ . 
The effect of error bounds of the estimator on the closed loop 
solution is presented, in line with the approach of Becker [1].  
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I. INTRODUCTION 

The Proportional Navigation (PN) guidance law has been 
widely reported in the literature [1-5, 12]. Closed form 
solutions of two variants of the PN guidance law have been 
reported in literature for an ideal missile pursuing a non-
maneuvering target. The closed form solution of the True 
Proportional Navigation (TPN) law for an ideal missile has 
been derived by Guelman [2] and then generalized by Yang 
et al [3] for an arbitrary angle between missile acceleration 
and LOS. The corresponding solution for PPN has been 
derived for particular cases by Wang et al [4] and in more 
generalized form by Becker [1]. Most of the works reported 
in the literature focus on the capturability aspect of the PN 
law and the corresponding derivations from the equations of 
motion [2, 5].  
          Interception of aerospace targets using Proportional 
Navigation (PN) guidance law needs line-of-sight (LOS) rate 
and closing velocity information between the target and the 
interceptor [1-7, 12]. Interestingly, all of them assume a 
perfect feedback of the LOS rate and closing velocity to the 
guidance law, free of lag and noise. The onboard seeker 
which acts as the guidance sensor is known to give accurate 
information of the closing velocity from the Doppler 
measurements. But the LOS rate measurements are highly 
noisy due to noise components caused by RCS, Glint, 
eclipsing in the onboard seeker [6, 7]. So LOS rates have to 
be estimated from the noisy measurements, typically using 
some variant of the Kalman Filter. It is well known that the 

Kalman Filter adjusts its time lag depending on the SNR 
provided to it through the Q and R matrices [8, 9]. The lower 
the SNR, the higher the filter lag. Thus for a noisy sensor the 
time lag can be considerable. Such a filter introduces a 
significant time lag in the guidance loop. Inclusion of the 
dynamics of the estimator is therefore important for 
obtaining realistic solution.  
         In this study we determine the solution of the set of 
differential equations describing the trajectories of a missile 
guided according to PPN law with an estimator in the loop. 
The effects of the error bounds of the estimator on the closed 
loop solution is illustrated and discussed in line with the 
approach of Becker [1]. The uniformly convergent infinite 
product series has been derived for case of a PPN guidance 
loop with an estimator. The closed loop solution provides 
interesting insight into PPN guidance behavior. 

 

II. EQUATIONS OF MOTION 

A non-maneuvering target T and a missile M have been 
considered to be point masses in a plane with velocities 

TV and MV respectively. The interception geometry of PPN is 
shown in Fig.1. The system can be described in a relative 
system of coordinates with axis of reference on the missile as 
shown.  

 
Fig 1. Engagement Geometry of PPN 
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Fig 2. Schematic Block Diagram of Guidance Loop 
  
In PPN [1, 4], it is assumed that the commanded missile 
acceleration Ma  is applied normal to 

M
V .The equations of 

motion of the missile are derived in the following form. 
Letting a dot over a symbol denote differentiation with 
respect to time, the components of the relative velocity from 
the missile to target, in polar coordinates: 
                     cos cos( )r T MV r V Vθ θ γ= =  − −�                  (1) 

                      sin sin( )T MV r V Vθ θ θ θ γ= = −  + −�              (2) 

                                 M M M ea V NVγ θ= = ��                            (3) 
Fig 2 illustrates the schematic block diagram of a guidance 
loop. Here the autopilot, airframe subsystems are considered 
to be ideal. Eq. (3) is the PPN law and N, the navigation 
constant. Let  us assume 
                                         eθ θ θ =  + ∆� � �                                 (4) 

where θ∆ � represents the error in the estimator’s measured 
LOS rateθ�  with respect to the kinematic LOS rate. 
If (3) is integrated with initial values 0 0,γ θ  

                         
0 0 0

t
N N dtγ γ θ θ θ−  =  ( − ) + ∆  ∫ �                    (5) 

This may be rearranged as 
                                 0 kθ γ ϕ θ ε− =  −  −                             (6) 
where  
                                      0 0 0 ,Nϕ θ γ= −                               (7) 
                                           1k N= −                                   (8) 
 
Substituting (6) into (1) and (2), the polar components of the 
relative velocity are: 
               0cos cos( )r T MV r V V kθ ϕ θ ε= =  − − − �               (9) 

               0sin sin( )T MV r V V kθ θ θ ϕ θ ε= = −  + − − �          (10) 
This is the set of nonlinear differential equations which 
completely defines PPN law. The solution of these equations 
will provide the missile coordinates during flight. 

III. CLOSED FORM SOLUTION 

The solutions of the system (9), (10) have been obtained for 
N = 1 and N = 2, for ideal dynamics case and without an 
estimator in loop [1]. For N = 1, the solution of r and θ over  
 
time has been reported in [2]. For N = 2, a partial solution of 
r as a function of θ  has been reported in [2].  
 
 From (9) and (10), eliminating time t , 

                                 
( )1

( )
rVdr

r d Vθ

θ

θ θ
 =                                    (11) 

 
Integration of (11) provides r as a function of θ  
                               0

( )( ) Ir r e θθ  =                                      (12) 
where 

                          
0

( )

( )
rV

I d
Vθ

θ

θ

θ
θ θ

θ
( ) =  ∫                                (13) 

Thus, we observe that the integral is an explicit function of 
θ , if ε is assumed constant or a function of θ . Then 

( )F θ may be defined as 

0

0

cos cos( )( )
( )

( ) sin sin( )
T M

T M

r V V kV
F

V V V kθ

θ ϕ θ εθ
θ

θ θ ϕ θ ε

 − − − 
 =  = 

−  + − − 
 

                     0

0

cos cos( )

sin sin( )

p k

p k

θ ϕ θ ε

θ ϕ θ ε

 − − − 
= 

−  + − − 
                      (14) 

where  

                                       M

T

V
p

V
=                                       (15) 

In the study, it is assumed that 1p > . 
A closed form expression of ( )r θ will require a closed-form 
solution of the integral in (13). Note that the integration is 
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complicated by the simultaneous presence of θ and kθ  in 
the harmonic functions.  
     From the Theory of Complex Analysis [10, and 11] and 
that of PPN guidance law [1], the integral (13) can be 
represented as a uniformly convergent infinite series of 
rational functions. This is due to the Mittag-Leffler’s 
expansion theorem for partial fraction expansion for 
meromorphic functions [10]. 
 
The extension of (14) to the complex plane z i yθ =  +  yields: 

    0 0

0 0

cos [cos( ) sin( )]
( )

sin [sin( ) cos( )]

z p kz kz
F z

z p kz kz

ϕ ε ϕ

ϕ ε ϕ

 − − + −
 =  

−  + − − −
        (16) 

 
The singularities of ( )F z are the zeros of the denominator 

          0 0( ) [sin( ) cos( )] sinH z p kz kz zϕ ε ϕ = − − − −        (17) 

Let the zeros of ( )H z be denoted as zν , 1, 2, ...,ν =  ∞ . It can 
be shown, following the approach in [1] that ( )H z has 

infinite isolated simple and real zeros at zν . A detailed proof 
of the same is given in Appendix I. 
 
Thus, ( )F z is a meromorphic function with infinite simple 

and real poles at vθ . The residue of ( )F z at vθ is given by 

 ( )lim ( )
z

A z F z
ν

ν νθ
θ

→
 =   −   

       0 0

0 0

{cos( ) sin( )} cos

{cos( ) sin( )} cos

p k k

kp k k
ν ν ν

ν ν

ϕ θ ε ϕ θ θ

ϕ θ ε ϕ θ θ

−   +  −  − 

−  +  − +  
=         (18) 

From Appendix I, it may be concluded that Aν  > 0    
 
Cauchy’s Integral Formula requires evaluation of the 
function (16) over a closed loop contour [10]. We consider 
the contour nC  as a square with vertices at 

                 0 1 1
2 2

2 2nz n i n
k k k

ϕ π π
 =  ±  +  ±   + ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

             (19) 

It is shown in Appendix II that nC does not pass through 

poles at vθ  and on all nC , ( )F z M  ≤  . This proof lies in 
line with that shown in [1].  
 
Assume further without loss of generalization that the poles 

vθ are arranged in order of increasing values: 

1 2 nθ θ θ <  < ... .  

Then lim νν
θ

→∞
∞ = . If 0 nϕ π = , 1 0θ  = ; else 1 0θ  ≠ . 

 
For 1 0θ  ≠ , a series representation of ( )F z is given by 

                  ( ) ( )0
A A

F z F
z

ν ν

ν ν νθ θ

∞

=1
 =  +  + 

 − 

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑                 (20) 

where  

                   ( ) 0 0

0 0

1 {cos( sin( )}
0

{sin( ) cos( )}

p
F

p

ϕ ε ϕ

ϕ ε ϕ

− )  +  
 = 

 +  
               (21) 

The 1 0θ  =  case can be reduced to the case 1 0θ  ≠ by 

considering the function 1( ) ( ) /G z F z A z =  − . Except at  

1 0θ  = , ( )G z and ( )F z  are identical as ( )G z has removable 

singularity at 1 0θ  =  . Hence, for 1 0θ  = , 

                      ( ) 1 A AA
F z

z z
ν ν

ν ν νθ θ

∞

=2
 =  +  + 

 − 

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑                  (22) 

Integrating term by term one has: 

00

00

1

0

0
1 0

0
2

( ) /(0)( )
1

( ) /
1

0

( ) (23)

0

A
AF

A A
A

r

r

r

e e for

e forν

ν

ν

ν ν

ν

ν
ν ν

ν
ν ν

θ θ θθ θ

θ θ θ

θ θ

θ θ

θ θ

θ θ

θ
θ

θ

θ

θ

∞

=

∞

=

−−

−

−

−

−

−

⎧
  ≠⎪

⎪ =  ⎨
⎪        =⎪
⎩

∏

∏

 
This is the closed form solution of ( )r θ of PPN law 

for 1p > . Once the solution of ( )r θ is obtained, θ�  may be 
obtained from (10), or  

                                 ( )
T

r
H

V

θ
θ  = 

�
                                       (24) 

The complex analysis of (24) is the function (17) with simple 
and real zeros at z νν θ=  . Then, according to Weierstrass’ 
factor theorem, ( )H z may be represented by a convergent 
infinite product. Considering the Rouche’s Theorem [11],  

                            
( )

ln ( )
( )

d H z
H z

dz H z

′
  =                               (25) 

 
This form of the meromorphic function, with simple real 
poles at v vz θ = , has residue = 1 [11, pp 148].  

From the Mittag-Leffler expansion theorem for 1 0θ  ≠ : 

                 
( ) (0) 1 1

( ) (0)

H z H

H z H zν ν νθ θ

∞

=1

′ ′
 =  +  + 

 − 

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑                 (26) 

where        0 0

0 0

(cos sin ) 1(0)

(0) sin cos

pkH

H p p

ϕ ε ϕ

ϕ ε ϕ

′  +  +
 = −

 −
                (27) 

For 1 0θ  = , let ( ) ( ) /J z H z z = . Thus the logarithmic 

derivatives of ( )J z  and ( )H z are same except at 1 0θ  = . 
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Thus

0

0 0

0

0

1

0 1

0

0

0

1

0

1

2

[ (0)/ (0) (0)]( )

1
(1 )( )/

1
(1 )( )/

( )

(28)

( ) 0

T

T

H H F

A
A

A A
A

V
H

r

for

V
H for

r

e

e

e

ν

ν

ν

ν

ν

ν ν

ν

ν ν

ν

ν

θ θ

θ θ θ

θ θ θθ

θ

θ θ

θ θ

θ θ

θ θ

θ

θ θ

θ θ

∞

=

∞

=

′  − −

−
− −

−
− −

−

−

−

−

  ≠ 0

 =

⎧
⎪
⎪
⎪⎪=               ×         ⎨
⎪
⎪
⎪  
⎪⎩

∏

∏

�

  
 
As in [1], it is observed that only factors of the product series 
corresponding to small νθ and 0νθ θ− are significant.  
 

IV. SIMULATION 

The simulation results presented in [1] have been verified 
with the current derivations in our work. Fig 3 shows the 
comparison of Fig 2 (a) in [1] and our derivation of the same 
with 0ε = , with the exact solution of (1), (2) and (3). 

 
Fig 3. Normalized range as function of θ ;  

 p = 2, k = 2, 0 60θ = D , 0 15γ  = D  
Thus, the exact solution is closely approximated by the series 
presented in [1] and so derived in our study, with ε assigned 
to zero for comparison. To study the effect of error bound, 
ε is assigned values and the comparison results for the same 
at different values of ε are presented. From Fig 4, we see 
that for ε =0.1, the series solution with 8 factors give a close 
approximation of the exact solution with same error bound. 
It may be noted that the increase in the error bound in LOS 
rate produces a decrease in the rate of change of range-to-go. 
Similarly in Fig 5, for ε =0.1, the series solution with 8 
factors give a close approximation of the exact solution with 
same error bound. Thus the results show that the product 
series rapidly converge to the exact solution. Also, it may be 
noted that a few factors are to be considered for close 
approximation to the exact solution. 

Fig 4. Normalized range as function of θ ;   
p = 2, k = 3, 0 60θ = D , 0 15γ  = D  

  Fig 5. Normalized LOS rate as function of normalized 
range;   p = 2, k = 3, 0 60θ = D , 0 15γ  = D  

 

V. CONCLUSION 

Our study extends the work in [1] for a estimator lag in the 
set of closed form solutions of the differential equations for 
the equations of motion of a missile pursuing a non-
maneuvering target according to PPN guidance law. The 
complex analysis theory has been applied to obtain the 
uniform convergent series for ( )r θ and ( )θ θ� . The results 
reflect that the series so obtained closely approximate the 
exact solution of the differential equations. The work of 
generalizing the series for maneuvering target is going on. 
The analytical closed form solution of the homing loop is a 
significant contribution from the point of view of guidance 
law design and acts as the basic outline to do so. 
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APPENDIX I 
 
The following proof implies that the zeros of the function  

0 0( ) [sin( ) cos( )] sinH z p kz kz zϕ ε ϕ = − − − −  are all real 
and  simple. It is assumed that 1k > and 1p > .  Fig 6 shows 
the plot of ( )H z . 
For the complex plane z i yθ =  +  , Euler’s formula is 

                             cos sinze z i z= +                                (29) 
 
Then, 

0 0

0

0

( ) {sin( ) cosh( ) cos( ) cosh( )}

sin cosh( ) [ {cos( ) sinh( )

sin( ) sinh( )} cos sinh( )] (30)

H z p k ky k ky

y i p k ky

k ky y

ϕ θ ε ϕ θ

θ ϕ θ

ε ϕ θ θ

= −   −  −   −

                  − −   +

                 −  +            
 
 

For ( )H z to vanish, both real and imaginary parts have to be 
zero. For the above ( )H z , if 0y = , we obtain the real roots 

νθ  of ( )H θ . If 0y ≠ , then ( )H z = 0, if  
 

      0

0

{sin( ) cosh( )

cos( ) cosh( )} sin cosh( )

p k ky

k ky y

ϕ θ

ε ϕ θ θ

−   − 

     −  −  
= 0         (31) 

 

      0

0

{cos( ) sinh( )

sin( ) sinh( )} cos sinh( )

p k ky

k ky y

ϕ θ

ε ϕ θ θ

−   + 

     −  +  
   = 0         (32) 

are satisfied together.  
 
By rearranging,  

   0 0

cosh( )
{sin( ) cos( )} sin

cosh( )

y
p k k

ky
ϕ θ ε ϕ θ θ−  − − =         (33) 

 

    0 0

sinh( )
{cos( ) sin( )} cos

sinh( )

y
p k k

ky
ϕ θ ε ϕ θ θ−   +  − =       (34) 

 
By squaring and adding both sides, 

2 2
2 2 2 2

2 2

cosh ( ) sinh ( )
(1 ) sin cos

cosh ( ) sinh ( )

y y
p

ky ky
ε θ θ+  =   +   

                          2 2sin cos 1θ θ≤   +  =                                 (35) 
This condition is clearly a contradiction if 1p > . Hence all 

zeros of ( )H z are real zeros vθ of ( )H θ . Fig 6 shows the 

plot of ( )H θ . The x-axis is of vθ and y-axis is 
of ( )H θ function. 
 

Fig 6. Plot of ( )H θ , p = 2, k = 3, 0 60θ = D , 0 15γ  = D , 0.1ε =  
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Next proof is that the zeros are simple as the derivative 

      0 0[ cos( ) sin( )] cos
dH

kp k k
d

ϕ θ ε ϕ θ θ
θ

 = −   −  +  −  −      (36) 

 is not zero at all vθ .  
 
The proof is as follows: 
If  vθ θ = , 

          2 2 2

0 0[sin( ) cos( )] sinp k kν ν νϕ θ ε ϕ θ θ− − −  =         (37) 
Expanding 

     
2 2

0

2

0 0

[1 cos ( )

sin( ) cos( )] cos

p k

k k

ν

ν ν ν

ϕ θ

ε ϕ θ ϕ θ θ

 − − − 

          2 − −  = 1 − 
     (38) 

 
Assumingε  to be small 

0 0

2

0 2 2

cos( )[cos( )

sin( )] cos

k k

k
p p

ν ν

ν ν

ϕ θ ϕ θ

ε ϕ θ θ

− − +

1 1
                        2 −  = 1−  + 

    (39) 

This is a monotonically increasing function of p . 
Hence for 1p >  

  
             0 0{cos( ) sin( )} cosk kν ν νϕ θ ε ϕ θ θ−  +  −  ≥      (40) 

Hence,  

                        ( ) 0
d

H at all
d νθ θ

θ
 ≠         .                         (41)   

 
APPENDIX II 

 
Considering the contour nC in (19), it can be proved that the 
defined contour does not pass through any poles of 

( )F z and ( )F z M ≤ .  
The proof is as follows: 
The parts of nC which intersect the real axis are considered 
now. They intersect the real axis at  

                              0 1
2

2n n
k k

ϕ π
θ  =  ±  + ⎛ ⎞

⎜ ⎟
⎝ ⎠

                         (42) 

Since 1p >  

                                  0sin( ) 1nkϕ θ −  = ±                            (43) 

                                  0cos( )nkϕ θ −  = 0                              (44) 

Hence nC does not pass through any poles of ( )F z . The 

numerator of ( )F z  may be expressed as: 

0 0

0

0

0 0

( ) cos [cos( ) sin( )]

[cos cosh ( ) {cos( ) cosh( )

sin( ) cosh( )}] [sin sinh ( )

{sin( ) sinh( ) cos( ) sinh( )}

G z z p kz kz

y p k ky

k ky i y

p k ky k ky

ϕ ε ϕ

θ ϕ θ

ε ϕ θ θ

ϕ θ ε ϕ θ

 =  − − + −

        =    − −   +

              −   −    +

             −   −  − ]

 

                                                                                           (45) 
and the denominator is as (30). 
 
On the lines n n iyη θ =  + parallel to the imaginary axis, 

           
2

2

( ) [cos cosh ( ) cosh( )]

[sin sinh ( ) sinh( )]

nG y p ky

y p ky

η θ ε

θ

2
 =    ±  

                  +    ±  
             (46) 

                            2 2 2 21 ) cosh ( ) 1 ) sinh( )p ky p kyε≤ ( +  + ( +   
Similarly, 

          
2 2

2

( ) [ cosh( ) sin cosh( )]

[ sinh( ) cos sinh( )]

nH p ky y

p ky y

η θ

ε θ

= ±   −  

                 +  +  
             (47) 

               2 2 2 2( 1) cosh ( ) ( 1) sinh ( )p ky p kyε≥ −   + +   
 
Thus, from (46), (47) and (16), we obtain  

      
2 2

12 2

( ) ( 1) ( 1)
( )

( 1) ( 1)( )
n

n

n

G p p
F M

p pH

η ε
η

εη

2

2

2

+  + +
=  ≤ = 

−  + +
       (48) 

Next we consider the parts of nC which intersect the 

imaginary axis. Let 0 kς ϕ θ =  − , then by Euler’s formula 

( ) ( )
( )

( ) ( )

i y i y i ky i ky i ky i ky

i ky i ky i y i y i ky i ky

e e e e p e e e e ip pe e pe e
F z i

p e e e e e e e e ip pe e pe e

θ θ ς ς ς ς

ς ς θ θ ς ς

ε

ε

− − − − − −

− − − − − −

+  − + + −
 =  

+  − +  − +
 (49) 

 
Multiplying numerator and denominator by kye∓ and at 
y → ± ∞  

 

1

lim ( )
1y

i i i

i i i

for k

F z
for k

e pe p e
pe e ip e

i
ii

θ ς ς

ς θ ς

ε
ε

→±∞

± ±

± ±

  ≠

  =

                                       ⎧
⎪  = −  +⎨±       ⎪  − − ⎩

∓

∓

∓
  (50) 

 
Hence, for large n and small ε , 

                            2( )
p

F z M
p

+1
 ≤ 2  = 

−1
                            (51) 

for all nC  which intersect the imaginary axis.  

Hence for all M greater than the greater of 1M and 2M , we 
obtain 
                                    ( )F z M ≤                                     (52) 

on nC , where M is independent of n. 
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