
Decentralized Formation Control via the Edge Laplacian

Daniel Zelazo, Amirreza Rahmani, Jasmine Sandhu, and Mehran Mesbahi†

Abstract— Formation keeping strategies for groups of inter-
connected agents have recently been of great research interest
in the systems community. In this work, we explore the
utility of the edge variant of the graph Laplacian in the
synthesis of formation keeping control laws. Along the way, we
show a general duality relation between networked dynamic
systems with measurement restrictions and those with control
constraints. In both cases, it is shown that the closed loop error
dynamics for the formation reduces to the edge agreement
problem- which in turn- can be fully characterized via the
spanning trees of the underlying interconnection topology.

I. INTRODUCTION

Distributed dynamic systems are collections of dynamical

units that interact over an information exchange network.

Such systems are ubiquitous in diverse areas of science

and engineering. Examples include physiological systems

and gene networks [1], large scale energy systems, and

multiple space, air, and land vehicles [2], [3], [4], [5]. The

control and dynamical systems community is actively trying

to formalize these systems and lay out a foundation for

their analysis and synthesis [9], [6], [7], [8]. As a result,

a distinct area of research that lies at the intersection of

systems theory and graph theory has emerged. A basic yet

fundamental class of problems that lies at this intersection

is the Laplacian dynamics, also known as the agreement or

consensus protocol [10], [11], [12], [13].

In our recent work [14], an edge variant of the agree-

ment problem and its system-theoretic significance have

been examined. The main results of [14] provided a better

understanding of the role that certain subgraphs, e.g., cycles

and spanning trees, play in the dynamics of the original

agreement problem. We have also pointed out the rami-

fication of the edge Laplacian in the parameterization of

reduced order models via the spanning trees of the underlying

network. The present paper demonstrates the utility of the

edge Laplacian in the context of formation control. In this

direction, we consider the formation keeping problem for a

group of interconnected single integrator agents. Our main

result indicates a duality between networked systems with

measurement restrictions and those with control constraints.

In both cases by synthesizing a controller with specific

properties, we show that the closed loop error dynamics for

the formation reduces to an edge agreement problem that in
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Fig. 1. Incidence matrices for two simple graphs

turn can be fully characterized via the spanning trees of the

underlying interconnection topology.

Finally, we provide a “node” interpretation of the closed

loop system and show that in special cases, the formation

keeping problem reduces to the agreement problem.

II. PRELIMINARIES AND NOTATIONS

Since our approach to formation keeping employs ideas

from graph theory, we will provide a few relevant notions

that are used throughout the paper.

A. Graphs and their algebraic representation

An undirected (simple) graph G is specified by a vertex

set V and an edge set E whose elements characterize the

incidence relation between distinct pairs of V . Two vertices

i and j are called adjacent (or neighbors) when {i, j} ∈ E ;

we denote this by writing i ∼ j. The cardinalities of the

vertex and edge sets of G will be denoted by |G| and ‖G‖,

respectively. A subgraph of a graph G is a graph whose

vertex and edge sets are subsets of those of G. An orientation

of an undirected graph G is the assignment of directions to

its edges, i.e., an edge ek is an ordered pair (i, j) such that

i and j are, respectively, the initial and the terminal nodes

of ek.

Graphs admit a set of convenient matrix representations.

For example, the |G| × ‖G‖ incidence matrix E(G) for an

oriented graph G is a {0,±1}-matrix with rows and columns

indexed by vertices and edges of G, respectively, such that

[E(G)]ik =







+1 if i is the initial node of edge ek

−1 if i is the terminal node of edge ek

0 otherwise

Figure 1 depicts an example of two oriented graphs and

their respective incidence matrices. From the definition of

the incidence matrix it follows that the null space of its

transpose, N (E(G)T ), contains span {1}, where 1 is the

vector with all entries equal to one. The rank of the incidence

matrix depends only on |G| and the number of its connected

components [16].

Theorem 2.1: Let G = (V, E) be a graph with c connected

components. Then rank E(G) = |G| − c.
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Fig. 2. A graph can be represented (not necessarily in a unique way) as
a tree and edges that complete its cycles

The degree of a vertex is the cardinality of the set of

vertices adjacent to it. A graph is complete if all possible

pairs of vertices are adjacent, or equivalently, if the degree

of all vertices is | G | − 1. A sequence of r + 1 distinct and

consecutively adjacent vertices, starting from vertex i and

ending at vertex j, is called a path of length r (form i to

j); when i = j, we call this path a cycle. We call a graph

connected if there exists a path between any pair of vertices.

A connected graph without cycles is referred to as a tree.

Equivalently, a tree is a connected graph on | G | vertices

with | G |−1 edges. Figure 1(a) shows an example of a tree,

while Figure 1(b) is a connected graph containing cycles.

The Laplacian of G,

Ln(G) := E(G)E(G)T , (1)

is a rank deficient positive semi-definite matrix 1.

A graph is connected if and only if the spectrum of its

Laplacian has one zero element [16].

For notational convenience, in subsequent sections we

will not include “G” in the description of graphs and their

associated matrices.

B. Role of cycles and trees in the edge Laplacian

The edge Laplacian of an arbitrary oriented graph G is

defined as

Le(G) := E(G)T E(G). (2)

The edge Laplacian is a real ‖G‖ × ‖G‖ symmetric matrix.

It follows from (2) that the nonzero eigenvalues of the edge

Laplacian are equal to the square of the nonzero singular

values of E(G). We note that adding an edge to the graph G
increases the sum of the eigenvalues of Le(G) by two [14].

Theorem 2.2 ([14]): Given a connected directed graph G
with incidence matrix E(G), and edge Laplacian Le(G), the

null space of Le(G) and E(G) are equivalent. In particular,

both null spaces characterize the cycles of the graph G.

We will assume that all graphs under consideration are

connected and hence contain a spanning tree. The edges that

are not in the given spanning tree must complete the cycles

in the graph. Using an appropriate permutation of the edge

ordering, we can therefore express the incidence matrix as

E =
[

Eτ Ec

]

(3)

where Eτ represents a given spanning tree and Ec represents

the remaining edges not in the tree (the cycle edges).

1Subscripts n and e are used to distinguish between operations on the
nodes and edges of the graph respectively

The incidence relation, in turn, can be expressed as

E = [Eτ Ec ] = Eτ [ I T ] = Eτ R, (4)

where

R = [ I T ] (5)

and

T = (ET

τ
Eτ )−1ET

τ
Ec (6)

captures the relation between the cycle states and tree

states [14], [18].

C. Edge agreement and its reduced order representation

The edge agreement problem is a variant of the well-

studied agreement dynamics on the node states [14]. The

agreement dynamics is defined as

ẋn(t) = −Ln(G)xn(t) (7)

where xn(t) ∈ R
|G| denotes the state vector of the nodes in

the network.

We define the edge states, xe(t) ∈ R
‖G‖, as the difference

between the states of two nodes incident to an edge,

xe(t) = ET xn(t);

hence the edge agreement dynamics can be derived as

ẋe(t) = −Le(G)xe(t). (8)

As indicated by (4), the incidence relation of the cycle

edges are captured by the spanning tree of the graph. We can

partition the edge state vector into the states corresponding

to the tree edges, xτ (t), and those of the cycle edges, xc(t),
as

xe(t) =
[

xT
τ (t) xT

c (t)
]T

= RT xτ (t). (9)

Using this observation and the definition of the edge

Laplacian (2), we can parameterize reduced order represen-

tations of the edge agreement as follows.

Theorem 2.3 ([14]): The system described by (8) is

equivalent to the reduced order system described by

ẋτ (t) = −ET

τ
EτRRT xτ (t)

= −Le(Gτ )RRT xτ (t), (10)

where Le(Gτ ) is the edge Laplacian associated with a given

spanning tree Gτ , xτ (t) is the tree states, and the matrix R
is defined as in (5).

III. DECENTRALIZED LAWS FOR FORMATION CONTROL

Formation keeping is one of the common control ob-

jectives in multi-agent systems. Representative scenarios

include formation keeping problems for unmanned aerial

vehicles, coordinated robots, and multi-satellite systems. A

formation for a set agents can often be described by the

relative states (e.g., positions) of the agents, in addition to

the inertial position of the formation- as measured from

an arbitrary point in the formation. For the remainder of
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our presentation, we will assume that a target formation is

specified only by the relative positions. In such a setting, we

proceed to consider two dynamic systems associated with a

given formation, with dual interpretations of each other, and

examine how the edge Laplacian can be used to synthesize

decentralized stabilizing control laws for formation keeping.

A. Admissible formations

We first note that in general, the transformation from node

to edge states expressed by

ET : xn(t) → xe(t) (11)

is neither injective nor surjective. Fixing one of the nodes

at the origin, however, eliminates the ambiguity in the node

states knowing the edge states; in this case, relative states

are sufficient to specify the state of the system and the

transformation (11) becomes injective. In this direction, the

transformation from the modified node states,

x̄n(t) = xn(t) − x(i)
n

(t) 1,

using a node anchored at the origin x
(i)
n , to the set of

tree edge states xτ (t) is bijective; hence the corresponding

transformation (11) becomes invertible.

We also note that cycle states in the network should satisfy

the geometric constraint imposed by the tree states. In other

words, cycle edge states, xc(t), should satisfy the relation

xc(t) = TT xτ (t), (12)

where the matrix T is defined as in (6).

Definition 3.1: A reference formation zr(t) is admissible

if it satisfies the cycle constraint (12).

As an example, consider the graph in Figure 2. The relative

formation

zr =
[

1 2 −1 1 3
]T

is not admissible, since

TT





1
2
−1



 =

[

−1
3

]

6=

[

1
3

]

.

In the meantime, the transformation from node states with a

node anchored at index i, i.e.,

x̄n = xn − xn(i) 1,

to the set of tree edge states, xτ (t), is bijective, and hence

invertible.

B. Measurement-restricted systems

Consider a system of N agents modeled by single inte-

grator dynamics

ẋ(t) = u(t) (13)

y(t) = ET x(t), (14)

where x(t) is the collection of all N agent states, and u(t) is

the collection of the agents’ controls. We assume that each

agent has available to it a relative measurement for use in its

control law. The specific measurement available to agent i

is determined by the underlying interconnection topology of

the system. We denote this topology by the incidence matrix

E described in §II-A.

Given an admissible reference formation zr(t) (which for

now is assumed to be constant), we can define the formation

error signal as

e(t) = zr(t) − ET x(t). (15)

Differentiating (15) leads to the formation error dynamics,

ė(t) = −ET u(t) (16)

y(t) = e(t). (17)

Proposition 3.2: The error dynamics (16) is controllable if

and only if the incidence matrix E corresponds to a spanning

tree. On the other hand, (16) is uncontrollable if there are

cycles in the underlying network.

Proof: We note that the controllability matrix for (16)

is C = −ET . From the discussion in §II-A, one has

rank ET ≤ N − 1.

If the incidence matrix E corresponds to a spanning tree,

then C has full column rank and (16) is controllable. On the

other hand, if E has p independent cycles, then (16) has p
uncontrollable modes.

Let us first consider the case where the underlying topol-

ogy corresponds to a spanning tree. We can define a feedback

law of the form

u(t) = Eτe(t). (18)

The closed-loop error dynamics then becomes

ė(t) = −ET

τ Eτe(t)

= −Le(Gτ )e(t). (19)

From the properties of the edge Laplacian, it is evident that

the formation error approaches the origin in the steady state

from an arbitrary initial condition. Furthermore, the control

law is decentralized, in the sense that the control law for

each agent only relies on the formation error pertaining to

its neighbors.

Next consider the scenario when the underlying topology

contains cycles. Using the results from [14], we can thereby

partition the error states into the error on the tree edges and

the cycle edges as

e(t) =
[

eτ (t)T ec(t)
T

]T
. (20)

Proposition 3.3: The formation error dynamics described

in (16) is equivalent to the following reduced order model,

ėτ (t) = −ET

τ u(t) (21)

e(t) = RT eτ (t). (22)

Proof: The complete error dynamics can be written as

a linear combination of the error trajectory over a spanning

tree. More specifically,

e(t) = RT eτ (t) (23)
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where R is defined in (4). Differentiating (23) with respect to

the dynamics in (16) and left-multiplying by the left-inverse

of RT gives (21).

Proposition 3.3 shows that even when there are cycles

in the network, one can always describe the formation

error dynamics by an equivalent system on the underlying

spanning tree. Using this result, we can then synthesize the

feedback law

u(t) = Eτeτ (t), (24)

for formation keeping. In this venue, the closed-loop forma-

tion error dynamics becomes

ėτ (t) = −Le(Gτ )eτ (t) (25)

e(t) = RT eτ (t). (26)

Thus, the proposed control law is effectively ignoring the

redundant information in the cycle structure of the network.

The steady-state formation error still approaches the origin

as −Le(Gτ ) is Hurwitz.

C. Control-restricted systems

We now provide a dual interpretation of the system

described in §III-B. Consider as a motivating example a

network of nodes coupled physically, as in a piezoelectric

network. In this setting, we envision that we have control

over the edges on the network, resulting in the expansion or

contraction of the physical lengths between the nodes. The

system can thus be modeled as,

ẋ(t) = E u(t), (27)

y(t) = x(t), (28)

where x(t) represents the node states and the matrix E is

the incidence matrix for the graph representing the inter-

connection topology. As in our discussion in §III-B, we can

define the formation error signal to be (15). Differentiating

(15) with respect to the dynamics in (27) leads to the error

dynamics,

ė(t) = −ET Eu(t) = −Le(G)u(t) (29)

y(t) = e(t). (30)

Proposition 3.4: The error dynamics (29) is controllable if

and only if the incidence matrix E corresponds to a spanning

tree. On the other hand, (29) is uncontrollable if there are

cycles in the underlying network.

Proof: The proof follows directly from the properties

of the edge Laplacian.

Let us now consider the case where G is a tree. Define a

feedback law of the form,

u(t) = e(t). (31)

Implementing this control law results in a closed-loop error

dynamics identical to the earlier model (19). When there are

cycles present in the network, we can again use the results

from [14] to obtain a reduced order representation of the

error dynamics.

Proposition 3.5: The formation error dynamics described

in (29) is equivalent to the following reduced order model:

ėτ (t) = −Le(Gτ )Ru(t) (32)

y(t) = RT eτ (t) (33)

where R is defined as in (5).

Proof: This follows from Theorem 2.3.

Using the feedback law defined in (31) leads to the closed-

loop system,

ėτ (t) = −Le(Gτ )RRT eτ (t) (34)

e(t) = RT eτ (t). (35)

To show that eτ (t) converges to the origin for the system

described in (34), we use the following result.

Theorem 3.6: The edge Laplacian for a graph with cycles,

Le(G), is similar to the matrix
[

Le(Gτ )RRT 0
0 0

]

,

where Gτ is a spanning tree subgraph of G, the matrix R is

defined in (5), and the block-matrix of zeros is square with

dimension equal to the number of independent cycles in the

graph.

Proof: We define a transformation matrix as

S =
[

RT V
]

, (36)

where the matrix V has columns corresponding to the

orthonormal basis of the kernel of Le(G). In the meantime,

as shown by Theorem 2.2, the columns of V span the cycle

space of the graph as well. In fact, the matrix V is non-

singular; its inverse is

S−1 =

[

(RRT )−1R
V T

]

. (37)

Applying the transformation (36), we have

S−1Le(G)S = S−1RT Le(Gτ )RS

=

[

Le(Gτ )RRT 0
0 0

]

.

Theorem 3.6 shows that the eigenvalues of Le(Gτ )RRT

corresponds to the non-zero eigenvalues of Le(G) where G
is the complete graph. Since the non-zero eigenvalues are

positive, it follows that eτ (t) governed by (34) converges to

the origin.

Recall that in §III-B, we showed that the control can

effectively neglect the measurements associated with the

cycle states. To continue with our duality interpretation, we

observe that the formation error can be driven to the origin by

utilizing the controls only on the tree edges, and neglecting

the controls on the cycle edges.

We can partition the control into the tree and cycle

components as,

u(t) =
[

uτ (t)T uc(t)
T

]T
. (38)
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For the reduced order representation of (32), we now apply

the control law,

u(t) =

[

I
0

]

eτ (t). (39)

This control now results in the closed-loop system,

ėτ (t) = −Le(Gτ )eτ (t) (40)

e(t) = RT eτ (t). (41)

Clearly, the formation error converges to the origin, as the

matrix −Le(Gτ ) is Hurwitz.

D. Improved performance controllers

In the previous sections, we showed a duality between

two different systems associated with a networked formation.

In this direction, we examined how a simple decentralized

control law results in identical closed-loop formation error

dynamics. This dynamics corresponds to the edge Laplacian

agreement protocol described in (8). At the same time, we

observed that only the measurement and control over a span-

ning tree is necessary for the formation keeping. However,

as shown in [14], cycles will improve the convergence rate

of the edge agreement protocol. Therefore, it would be more

desirable to have cycles in the topology, with a complete

graph corresponding to the optimal interconnection.2 Theo-

rem 3.6 now suggests a way to synthesize a control law that

imitates the performance of a complete graph while using

the controls and measurements of a spanning tree.

Theorem 3.7: Consider the reduced order formation error

dynamics described by (21). Define the feedback control law

u(t) = Eτ R̃R̃T eτ (t) (42)

with R̃ being the usual matrix R (5), associated with the

incidence matrix Ec of the complement graph of Gτ . Then

the closed-loop error dynamics corresponds to an edge

agreement protocol for a complete graph.

Proof: The closed-loop error dynamics using the con-

trol law (42) is

ėτ (t) = −ET

τ
Eτ R̃R̃T eτ (t).

Using Theorem 3.6, we can see that the eigenvalues of the

matrix ET
t

EtR̃R̃T are the same as the non-zero eigenvalues

of the edge Laplacian for the complete graph.

E. Node representation of formation problem

Consider the system of (13), given the interconnection

topology, apply the feedback controller of the form

u(t) = Ee(t).

Then the closed loop system in terms of the node states

assumes the form

ẋ(t) = −L(G)x(t) + Ezr(t). (43)

When zr = 0, the dynamics (43) reduces to the well-known

consensus problem over the node states.

2This restricted notion of optimality does not take into account the cost
of extra edges in the network.

On the other hand, when the improved performance con-

troller is used, the closed loop system in terms of the node

states becomes

ẋ(t) = −EtR̃R̃T Etx(t) + Eτ R̃R̃T zτ (t)

= −L(Gc)x(t) + EcR̃
T zτ (t) (44)

where the subscript c denotes the complete graph, and zτ

corresponds to the desired formation defined on the tree

edges. The formation keeping problem can therefore be

seen as a controlled agreement problem [15]. We note that

the condition on admissible formations corresponds to the

controllability of this system.

F. Double integrator model

We conclude the main technical part of the paper by

pointing out how our analysis for formation consisting of

agents with first order dynamics can be extended to those

with double integrator dynamics. In this direction, consider

the relative state dynamics of a network of double integrators

associated with a spanning tree Gτ . Next, construct the error

dynamics that corresponds to a given edge reference signal,

ζr(t) := [ zr(t)
T żr(t)

T ]T ; hence

ë(t) = −ET

τ ẍ(t) = −Eτ u(t).

Define now the state feedback controller

u(t) = K [ e(t)T ė(t)T ]T

and set K = [Eτ Eτ ]. The resulting closed loop system is

then
[

ė(t)
ë(t)

]

=

[

0 I
−Le(Gτ ) −Le(Gτ )

] [

e(t)
ė(t)

]

.

We note that for the above state matrix Acl, the characteristic

equation is detAcl = det(λ2I + (λ + 1)Le(Gτ )) = 0. Since

λ = −1 does not satisfy this equation it is not an eigenvalue

of Acl. The eigenvalues of Acl thus satisfy

det(λ2/(λ + 1) I + Le(Gτ )) = 0.

Denoting the eigenvalues of −Le(Gτ ) by µ, one has that for

each i,
µi = λ2

i
/(λi + 1),

and hence

λi =

(

µi ±
√

µ2
i

+ 4µi

)

/2.

Since −Le(Gτ ) is negative definite, µi < 0 for all i; thus Acl

is Hurwitz guaranteeing that {e(t), ė(t)} → 0 as t → ∞.

The closed loop system that corresponds to the relative state

dynamics with ζ(t) := [ z(t)T ż(t)T ]T is now

ζ̇(t) = Le(Gτ ) ζ(t) + Fe(Gτ ) ζr(t) (45)

where

Le(Gτ ) :=

[

0 I
−Le(Gτ ) −Le(Gτ )

]

,

Fe(Gτ ) :=

[

0 0
Le(Gτ ) Le(Gτ )

]

.
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If we convert the edge dynamics back to the node dynamics,

the closed loop system assumes the form

η̇(t) = L(Gτ ) η(t) + E(Gτ ) ζr(t), (46)

where η(t) := [x(t)T ẋ(t)T ]T ,

L(Gτ ) =

[

0 I
−L(Gτ ) −L(Gτ )

]

, E =

[

0 0
Eτ Eτ

]

,

and L(Gτ ) is the graph Laplacian of Gτ . Once again, we

note a duality correspondence between the node and edge

dynamics of (45) and (46).

IV. SIMULATIONS

Here we use the results described in §III-D to drive 4 nodes

with a star interconnection topology to a diamond-shaped

final relative formation. We assume the agents have first order

dynamics of the form (13). We developed two controllers,

one that uses the relative feedback over the described star

topology as in (24), while the other one is based on the

improved performance controller of (42).

Figure 3(a) depicts the trajectories of the nodes for each

controller. The agents all start aligned on the x-axis and

move to their final relative position of a diamond (cubes).

The trajectories of the agents using the improved controller

are more direct. As we expected this will improve the

performance by driving the RMS error to zero faster than the

simple topology feedback controller. Figure 3(b) shows the

maximum formation error for both controllers and how the

improved control feedback law has a better performance. We

should emphasize that the improved controller is not optimal

in terms of the global performance and is only the optimal

provided the limited knowledge (relative positions) and the

required local interaction topology.

V. CONCLUSIONS

In this paper we applied results from [14] to the problem

of decentralized formation control for a group of agents.

Our results highlighted a duality between networked systems

that are measurement-restricted and those that are control-

restricted. In both cases, the form of the proposed control

laws are such that the closed-loop error dynamics reduces to

an edge agreement problem. Using reduced order represen-

tations of the edge Laplacian then led to decentralized con-

trollers that require only measurements and control over the

tree states. Furthermore, we show the performance achiev-

able on a complete network, in terms of the convergence

rate of the formation error, can be emulated by using only a

spanning tree measurement topology.
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