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Abstract— In a companion paper we have solved the
problem of full-state stabilization of unstable “shock-like”
equilibrium profiles of the viscous Burgers equation with
actuation at the boundaries. In this paper we consider
the problem of output feedback stabilization. We design a
nonlinear observer for the Burgers equation that employs
only boundary sensing. We employ its state estimates in an
output feedback control law which we prove to be locally
stabilizing. The main idea is to use a nonlinear spatially-
scaled transformation (that employs three ingredients, of
which one is the Hopf-Cole nonlinear integral transforma-
tion) and then employ the linear backstepping observer
design method. The stabilization properties of the output
feedback law are illustrated with numerical simulations of
the closed-loop system. We also consider the problems of
trajectory generation and tracking for the fully nonlinear
Burgers equation. Our algorithm is applicable to a large
class of functions of time as reference trajectories of the
boundary output, though we focus in more detail on the
special case of sinusoidal references. Since the Burgers
equation is not globally controllable, the reference ampli-
tudes cannot be arbitrarily large. We provide a sufficient
condition that characterizes the allowable amplitudes and
frequencies, under which the state trajectory is bounded
and tracking is achieved.

I. INTRODUCTION

In this paper we study various nonlinear control prob-
lems for the viscous Burgers equation, which is consid-
ered a basic model of nonlinear convective phenomena
such as those that arise in Navier-Stokes equations. We
consider a family of stationary solutions called “shock
profiles” (or “shock-like” profiles) which are unstable
and not stabilizable (even locally) by simple means
such as the standard “radiation boundary conditions.”
In a companion paper [8] we have studied the problem
stabilization of the shock profiles using two control
inputs (one at each boundary) by full-state feedback. We
have also provided an estimate of the region of attraction
for the closed-loop system under the full-state feedback
laws, which is finite because the Burgers system is not
globally controllable [4], [5].
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In this paper, we consider boundary-output feedback
stabilization and the problems of trajectory generation
and tracking for the Burgers equation with two inputs
and one reference output.

Early efforts on output feedback stabilization for the
Burgers system where presented in [3], where a lin-
ear static collocated output feedback (a.k.a. “radiation”
boundary conditions) is proved to achieve local L2

exponential stability. In [12] this result is improved to
L∞, but remains local. Global stabilization is achieved
in [7] (see also [1] and [9]) using nonlinear static output
feedback.

Our output feedback design is based on a nonlinear
spatially-scaled transformation (which is also used in the
full-state design [8]) that transforms the system (with the
help of one of the two boundary controls) into a linear
reaction-diffusion PDE with nonlinear boundary condi-
tions. For this system we design a nonlinear observer
(with gains computed using the backstepping observer
design method [11]) that uses injection of the output
estimation error at one of the boundaries. We combine
the observer with the full-state feedback design of [8].
The resulting output feedback is fully collocated and
decentralized, as in the case with “radiation boundary
conditions.” However, while our feedback at one of the
boundaries is static (like the “radiation” feedback), at
the other boundary it is dynamic (and nonlinear). The
stabilization properties of the observer-based feedback
laws are illustrated in simulations.

Finally, we present results for trajectory generation
and tracking for the Burgers equation, which are en-
abled by our transformation into the heat equation, for
which the general trajectory generation problem has
been solved in [6] and for which explicit solutions are
shown here for a particular class of functions. While we
do not achieve a global result due to the lack of global
controllability mentioned above, for the case of tracking
a sinusoid in time we give a bound that quantifies
the trade-off between the maximum amplitudes and
frequencies for which tracking is achieved.

II. FULL-STATE STABILIZATION OF THE SHOCK

PROFILES OF THE BURGERS EQUATION

In this section we summarize the results of [8].

Consider the viscous Burgers equation

ut = uxx − uxu, (1)
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where u(x, t) is the state variable, for x ∈ [0, 1], with
boundary conditions

ux(0, t) = ω0(t), ux(1, t) = ω1(t), (2)

where ω0(t) and ω1(t) are the control inputs. To save
space, in the sequel we will drop the arguments (x, t)
whenever the context allows.

We consider the “shock-like” stationary solutions de-
termined in [2] as

U(x) = −2σ tanh (σ (x − 1/2)) , (3)

which are parameterized by the variable σ ≥ 0.
From (2) and (3) we obtain that

ω0 = ω1 = −2σ2
(

1 − tanh2(σ/2)
)

≤ 0 (4)

are the constant values of the open-loop control laws
ω0(t) and ω1(t) that produce the equilibrium profile (3).

Let us denote the fluctuation variable around the shock
profile as ũ(x, t) = u(x, t) − U(x). Then the Burgers
equation written in the perturbation variable ũ is

ũt = ũxx − U(x)ũx − U ′(x)ũ − ũxũ. (5)

Let us denote ω̃0(t) = ω0(t) − U ′(0), ω̃1(t) = ω1(t) −
U ′(1). Then the boundary conditions for (5) are

ũx(0, t) = ω̃0(t), ũx(1, t) = ω̃1(t). (6)

In [8] it is shown that the origin of the ũ system (5)
is unstable for σ > 0 (and neutrally stable for σ = 0),
and the following full-state feedback laws are designed:

ω̃0 = 2σ tanh(σ/2)ũ(0) + ũ2(0)/2, (7)

ω̃1 = ũ(1)2/2 + (k(1, 1) − 2σ tanh (σ/2)) ũ(1)

+

∫ 1

0

(kx(1, y) + σ tanh (σ/2) k(1, y))

×G(y)e
R

1

y
ũ(ξ)dξũ(y)dy, (8)

where k(x, y) is given in [8] and

G(x) =
cosh (σ(x − 1/2))

cosh(σ/2)
, (9)

III. OBSERVER AND OUTPUT FEEDBACK LAW

The control in Section II requires to know the state
ũ(x, t) for all x ∈ [0, 1]. We now design output feedback
laws for ω̃0(t) and ω̃1(t) using only boundary measure-
ment. We will design fully collocated (decentralized)
feedback laws, i.e., using only the measurement of
ũ(0, t) for the control ω̃0(t), and only the measurement
of ũ(1, t) for ω̃1(t).

Notice that the control law (7) is already an output
feedback law requiring only the knowledge of ũ(0). We
saw in [8] that applying (7) and the mapping

v(x, t) = G(x)ũ(x, t)e−
1

2

R

x

0
ũ(y,t) dy, (10)

which has the inverse

ũ(x) =
v(x)/G(x)

1 − 1
2

∫ x

0
v(y)
G(y) dy

, (11)

transforms the plant into the linear system

vt = vxx + σ2

[

2

cosh2 (σ (x − 1/2))
− 1

]

v, (12)

vx(0) = σ tanh (σ/2) v(0), (13)

vx(1) = σ tanh (σ/2) v(1) +

(

1 − 1

2

∫ 1

0

v(y)

G(y)
dy

)

×
(

ω̃1 −
1

2
ũ(1)2

)

. (14)

Hence the problem reduces to the design of an observer-
based feedback controller for (12)–(14) using the mea-
surement of ũ(1, t).

A. Observer equations

We start with an observation that the boundary con-
dition (14) contains a state nonlinearity given by the
integral term in v(y). Our observer is designed as a copy
of the (nonlinear) plant with injection of the output error,

v̂t = v̂xx + σ2

[

2

cosh2 (σ (x − 1/2))
− 1

]

v̂

+

[(

1 − 1

2

∫ 1

0

v̂(y)

G(y)
dy

)

ũ(1) − v̂(1)

]

×ρ(x), (15)

v̂x(0) = σ tanh(σ/2)v̂(0), (16)

v̂x(1) = (σ tanh(σ/2) + ρ1)

[(

1 − 1

2

∫ 1

0

v̂(y)

G(y)
dy

)

×ũ(1) − v̂(1)

]

+

(

1 − 1

2

∫ 1

0

v̂(y)

G(y)
dy

)

×
(

ω̃1 −
1

2
ũ(1)2 + σ tanh(σ/2)ũ(1)

)

, (17)

where v̂(x, t) denotes the estimate of the state v(x, t).
Notice that, using (11),

(

1 − 1

2

∫ 1

0

v(y)

G(y)
dy

)

ũ(1) = v(1)/G(1) = v(1), (18)

since G(1) = 1. Hence the term

(

1 − 1

2

∫ 1

0

v̂(y)

G(y)
dy

)

ũ(1), (19)

appearing in (15)–(17), is an estimate of v(1) and it is
used for output injection. The gains ρ(x) and ρ1 are
determined to ensure convergence of v̂ to v.

2
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B. Design of ouput injection gains using backstepping

To design ρ(x) and ρ1 we use the backstepping
method for observer design [11]. First, we denote the
observer error as e(x, t) = v(x, t)− v̂(x, t). Subtracting
(15)–(17) from (12)–(14) we get equations for e, which
linearized around the origin are

et = exx + σ2

[

2

cosh2 (σ (x − 1/2))
− 1

]

e

−ρ(x)e(1), (20)

ex(0) = σ tanh(σ/2)e(0), (21)

ex(1) = − (σ tanh(σ/2) + ρ1) e(1). (22)

We need to design the gains ρ(x) and ρ1 so that the
system (20)–(22) is exponentially stable. The plant (20)–
(22) is a linear 1-D reaction-diffusion PDE with Robin
boundary conditions, so the backstepping observer de-
sign method in [11] can be applied. We map e(x, t) into
a new variable η(x, t) using

e(x) = η(x) −
∫ 1

x

p(x, y)η(y)dy, (23)

with η verifying the (exp. stable) error target system

ηt = ηxx −
[

σ2 tanh2 (σ (x − 1/2))
]

η

−cη, (24)

ηx(0) = σ tanh(σ/2)η(0), (25)

ηx(1) = −σ tanh(σ/2)η(1). (26)

Following the method in [11], we find the kernel
p(x, y) appearing in (23) from

pxx − pyy = −σ2
[

1 − 2 tanh2 (σ (x − 1/2))

+tanh2 (σ (y − 1/2))
]

p − cp, (27)

p(x, x) = −1

2
[σ tanh (σ (x − 1/2))

+σ tanh(σ/2) + cx] , (28)

px(0, y) = σ tanh(σ/2)p(0, y). (29)

Once p(x, y) is computed, it is used to compute the
output injection gains as follows:

ρ(x) = − (py(x, 1) + σ tanh(σ/2)p(x, 1)) , (30)

ρ1 = −p(1, 1). (31)

Comparing (27)–(29) with the kernel equation in [8],
we deduce that p(x, y) = k(y, x). Hence it is not
necessary to solve (27)–(29) and we can use the solution
for k in (30)–(31), obtaining

ρ(x) = − (kx(1, x) + σ tanh(σ/2)k(1, x)) , (32)

ρ1 = −k(1, 1) = σ tanh(σ/2) +
c

2
. (33)

Note that ρ(x) in (32) is the same function as the control
gain in (8), just changing the sign. Thus, the output
injection gains can be computed from the control kernel.
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Fig. 1. Finite time blow-up of open-loop system (with constant inputs
(4)) for σ = 3 and u0(x) = U(0) + 2 + (U(1) − U(0) − 4)x.

C. Output feedback laws

Using control law (7) and the estimate v̂ [which is
transformed into an estimate of ũ using (11)] in control
law (8), we obtain our nonlinear output feedback control
laws, which are defined as follows

ω̃0(t) = 2σ tanh(σ/2)ũ(0, t) +
ũ2(0, t)

2
, (34)

ω̃1(t) =
1

2
ũ(1, t)2 + (−2σ tanh(σ/2) + k(1, 1)) ũ(1, t)

+

(
∫ 1

0

[kx(1, y) + σ tanh(σ/2)k(1, y)]

×v̂(y, t)dy

)(

1 − 1

2

∫ 1

0

v̂(y, t)

G(y)
dy

)−1

. (35)

Thus we have obtained a diagonal TITO compensator
[

ũ(0, t)
ũ(1, t)

]

7→
[

ω̃0(t)
ω̃1(t)

]

. (36)

IV. SIMULATIONS

The open-loop system (1)–(2) and (4) is unstable,
as shown in [8]. A numerical study of the linearized
system around the shock profile shows the presence of
one positive (though possibly small) eigenvalue for any
σ > 0. In Fig. 1 one can see a finite time blow-up of
the open-loop system for σ = 3.

For the same initial conditions, we show in Figure 2
the numerical evolution of the system with the linear
observer-based backstepping controller of Section III.

V. TRAJECTORY GENERATION AND TRACKING

Given the system (1)–(2), with the two inputs ω0(t)
and ω1(t), we consider a trajectory generation problem
with u(0, t) as the system’s single output. Then, the
problem of trajectory generation consists on finding
open loop control input functions ωr

0(t) and ωr
1(t) to

3
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Fig. 2. Convergence of the closed-loop system under the linear
output-feedback controller for σ = 5.

make u(0, t) evolve exactly according to a given refer-
ence signal ur(0, t). While the open-loop system might
be stable around the trajectory found in the trajectory
generation problem, usually this is not the case. Then
the problem of trajectory tracking, i.e., of determining
feedback laws to stabilize the trajectory, has to be solved.

A. Trajectory generation

We use the invertible transformation

v(x, t) = u(x, t)e−
1

2

R

x

0
u(y,t)dy, (37)

u(x, t) =
v(x, t)

1 − 1
2

∫ x

0
v(y, t)dy

, (38)

which converts the Burgers system (1) into the form

vt(x, t) = vxx(x, t) + v(x, t)

×1

2

(

ω0(t) −
1

2
v(0, t)2

)

, (39)

vx(0, t) = ω0(t) −
1

2
v(0, t)2, (40)

vx(1, t) =

(

1 − 1

2

∫ 1

0

v(y, t)dy

)

ω1(t)

−1

2

v(1, t)2

1 − 1
2

∫ 1

0
v(y, t)dy

. (41)

From (37) we obtain v(0, t) = u(0, t), hence we get
that vr(0, t) = ur(0, t). Thus the trajectory generation
for the u-system (1) can be approached as a trajectory
generation problem for the v-system (39). Then we are
looking for functions vr(x, t), ωr

0(t), and ωr
1(t) that

satisfy (39)–(41) and vr(0, t) = ur(0, t). We choose

ωr
0(t) =

1

2
ur(0, t)2, (42)

which, substituted in (39), simplifies the nonlinear tra-
jectory generation problem to the trajectory generation

problem for the linear heat equation (with nonlinear
boundary conditions)

vr
t (x, t) = vr

xx(x, t), vr
x(0, t) = 0, (43)

vr
x(1, t) =

(

1 − 1

2

∫ 1

0

vr(y, t)dy

)

ωr
1(t)

−1

2

vr(1, t)2

1 − 1
2

∫ 1

0
vr(y, t)dy

. (44)

A general infinite-series solution for vr(x, t) in (43)
exists for a very broad class of functions of time ur(0, t)
(the Gevrey class), which has been developed in the
framework of differential flatness [6]. Furthermore, an
explicit solution can be derived for any function ur(0, t)
that can be written as an output of a linear exosystem.
For example, if

ur(0, t) = b + a sinωt, (45)

i.e., we want to track a sinusoid with a bias, then the
explicit solution for the reference state is

vr(x, t) = b + aIm
{

cosh
(

√

jωx
)

ejωt
}

. (46)

Once vr(x, t) is found, the input reference ωr
1(t) is

computed from (44) as

ωr
1(t) =

1
2vr(1, t)2 +

(

1 − 1
2

∫ 1

0
vr(y, t)dy

)

vr
x(1, t)

(

1 − 1
2

∫ 1

0
vr(y, t)dy

)2 .

(47)
The formula (47) requires that both the derivative and
the integral of the state trajectory vr(x, t) be known. In
the case of the biased sinusoidal output reference (45)
they are easily obtainable as

vr
x(x, t) = aIm

{

√

jω sinh
(

√

jωx
)

ejωt
}

(48)

and

∫ x

0

vr
x(y, t)dy = aIm

{

sinh
(√

jωx
)

ejωt

√
jω

}

+ bx.

(49)
It can be shown that following result holds for the

particular case of the output given by (45).
Theorem 1: The following functions

ur(x, t) =
b + aIm

{

cosh
(√

jωx
)

ejωt
}

1 − bx
2 − a

2 Im

{

sinh(
√

jωx)ejωt

√
jω

} , (50)

ωr
1(t) =

(

b +
a

2
sinωt

)2

, (51)

ωr
1(t) =

1
(

1 − b
2 − a

2 Im

{

sinh(
√

jω)
√

jω
ejωt

})2

4
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×
[

1

2

(

b + aIm
{

cosh
(

√

jω
)

ejωt
})2

+

(

1 − b

2
− a

2
Im

{

sinh
(√

jω
)

√
jω

ejωt

})

× aIm
{

√

jω sinh
(

√

jω
)

ejωt
}]

, (52)

satisfy the nonlinear PDE

ur
t (x, t) = ur

xx(x, t) − ur
x(x, t)ur(x, t), (53)

ur
x(0, t) = ωr

0(t), ur
x(1, t) = ωr

1(t), (54)

and, in particular, ur(0, t) = b + a sinωt.
Remark 5.1: The functions (50)–(52) that solve the

trajectory generation problem do not scale linearly with
the amplitude a or the bias b. Furthermore, for values
of a or b sufficiently large, the possibility exists of these
functions taking infinite values for some (x, t) pairs.

B. Trajectory Tracking

Once the trajectory generation problem is solved, we
need to find a feedback law that stabilizes the trajectory
ur(x, t) from any initial condition u(x, 0) (rather than
just generating the desired motion from the special initial
condition ur(x, 0)).

We introduce the state tracking error ṽ(x, t) =
v(x, t)−vr(x, t). Note that occasionally, particularly for
systems that are stable and linear, it suffices to apply
the open-loop inputs, and the system’s solution will
converge to the desired state trajectory. However, in our
case, the linearization of (39)–(41) around the reference
trajectory vr(x, t) is

ṽt(x, t) = ṽxx(x, t) − 1

2
ur(0, t)vr(x, t)ṽ(0, t), (55)

ṽx(0, t) = −ur(0, t)ṽ(0, t), (56)

ṽx(1, t) = − vr(1, t)

1 − 1
2

∫ 1

0
vr(y, t)dy

ṽ(1, t)

−
1
2

∫ 1

0
ṽ(y, t)dy

(

1 − 1
2

∫ 1

0
vr(y, t)dy

)2

[

−1

2
vr(1, t)2

+

(

1 − 1

2

∫ 1

0

vr(y, t)dy

)

vr
x(1, t)

]

. (57)

This complicated linear time-varying PDE system in
general will not be exponentially stable, thus we need
to develop feedback control laws to stabilize the equi-
librium ṽ(x) ≡ 0 to zero.

The PDE governing the tracking error ṽ(x, t) is

ṽt(x, t) = ṽxx(x, t) + v(x, t)

×
(

ω0(t) − u(0, t)2/2
)

/2, (58)

ṽx(0, t) = ω0(t) − u(0, t)2/2, (59)

ṽx(1, t) =

(

1 − 1

2

∫ 1

0

v(y, t)dy

)

×
(

ω1(t) − u(1, t)2/2
)

− vr
x(1, t). (60)

First we choose the control ω0(t) as the feedback law

ω0(t) = 1/2u(0, t)2, (61)

which changes (58)–(59) into

ṽt(x, t) = ṽxx(x, t), (62)

ṽx(0, t) = 0, (63)

while (60) is unchanged. Next, we choose

ω1(t) = c1u(1, t) +
1

2
u(1, t)2 + e

1

2

R

1

0
u(y,t)dy

× (vr
x(1, t) + c1v

r(1, t)) , (64)

where c1 is a positive gain. Using (37) and (38), it is
found that this control law transforms (60) into

ṽx(1, t) = −c1ṽ(1, t). (65)

Therefore the closed-loop ṽ-system is turned into a
heat equation with one Neumann and one stabilizing
Robin boundary condition:

ṽt(x, t) = ṽxx(x, t), (66)

ṽx(0, t) = 0, ṽx(1, t) = −c1ṽ(1, t). (67)

Using a Lyapunov estimate as in [8], we find that the
closed-loop ṽ satisfies the following bound

‖ṽ(t)‖L2 ≤ ‖ṽ(0)‖L2e−c̃t, (68)

for some c̃ > 0 (whose exact value is not important).
The solution to the plant state u(x, t) is

u(x, t) =
vr(x, t) + ṽ(x, t)

1 − 1
2

∫ x

0
vr(y, t)dy − 1

2

∫ x

0
ṽ(y, t)dy

, (69)

where ṽ(x, t) is the solution of (66)–(67) with initial

condition ṽ0 = u(x, 0)e−
1

2

R

x

0
u(y,0)dy − vr(x, 0). Since

limt→∞ ṽ(x, t) ≡ 0, we have that u(x, t) converges to

ur(x, t) =
vr(x, t)

1 − 1
2

∫ x

0
vr(y, t)dy

. (70)

However, the tracking result fails to be global (i.e., to
hold for all initial conditions) because the solution (69)
is only valid if the condition

∫ x

0

vr(y, t)dy +

∫ x

0

ṽ(y, t)dy < 2, (71)

is verified for all x and t. This condition holds when
ur(0, t) ≡ 0, namely, when vr(x, t) ≡ 0 (which is a
basic result on stabilizing u around the origin, which
is global), however, it does not necessarily hold in the
presence of a nonzero trajectory vr(x, t).

The following theorem describes the behavior of the
closed-loop system with our tracking controller.

Theorem 2: Consider the system (1)–(2) with control
laws (61) and (64), where vr(x, t) is a solution of
the motion planning problem of Section V-A. Let the

5
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reference trajectory vr(x, t) be bounded for all x ∈
[0, 1], t ≥ 0, and let vr

x(1, t) be bounded for all t ≥ 0.
If the following conditions hold

‖vr(t)‖2
L2 ≤ 1/4 , ∀t ≥ 0, (72)

‖u0‖2
L2 ≤ h−1 (1/4) , (73)

where h(r) = re
√

r, then the solution u(x, t) is bounded
for all x ∈ [0, 1] and t ≥ 0, the control inputs
ω0(t) and ω1(t) are bounded for all t ≥ 0, and the
function ũ(x, t) = u(x, t) − ur(x, t) converges to zero
exponentially in t, for all x ∈ [0, 1].

We apply now Theorem 2 to our example with a
sinusoidal output (45) with b = 0 (no bias).

Theorem 3: Consider the closed-loop Burgers system
(1)–(2) with the controls

ω0(t) = u(0, t)2/2 (74)

ω1(t) = −c1u(1, t) + u(1, t)2/2

+e
R

1

0
u(y,t)/2dyaIm

{(

√

jω sinh
(

√

jωx
)

+c1 cosh
(

√

jωx
))

ejωt
}

(75)

If ‖u0‖2
L2 ≤ h−1 (1/4) and

a ≤ amax(ω) =
1

8

√

2ω

cosh
√

2ω − cos
√

2ω
(76)

where amax(ω) is a positive, decreasing function with
amax(0) = 1/8, then the state and the control inputs
remain bounded and the state u(x, t) converges to

ur(x, t) =
aIm

{

cosh
(√

jωx
)

ejωt
}

1 − 1
2aIm

{

1√
jω

sinh
(√

jωx
)

ejωt
} , (77)

which means, in particular, that u(0, t) converges to
ur(0, t) = a sinωt.

C. Example

We illustrate the solution to the trajectory tracking
problem for the output reference ur(0, t) = b + a sinωt
from Theorem 1. The explicit state trajectory is

ur(x, t) =

{

b +
a

2

[

e
√

ω
2

x sin

(

ωt +

√

ω

2
x

)

+e−
√

ω
2

x sin

(

ωt −
√

ω

2
x

)]}

×
{

1 − b

2
x − a

4
√

ω

×
[

e
√

ω
2

x sin

(

ωt − π

4
+

√

ω

2
x

)

+e−
√

ω
2

x sin

(

ωt − π

4
−
√

ω

2
x

)]}−1

.

(78)

0

0.5

1

0

1

2
ï10

0

10

20

xt

Fig. 3. Solution to the nonlinear trajectory generation problem for a
sinusoidal reference.

The presence of the b term in the denominator of (78)
will increase the possibility of a blow-up of the trajectory
when b > 0, however b < 0 will help to keep the
denominator away from 0. Figure 3 shows the plot of the
solution to the nonlinear trajectory generation problem.
We don’t show a simulation for tracking as it simply
represents convergence to the trajectory in Figure 3.
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