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Abstract— We consider the problem of stabilization of
unstable “shock-like” equilibrium profiles of the viscous
Burgers’ equation with actuation at the boundaries. These
equilibria are not stabilizable (even locally) using the
standard “radiation boundary condition.” Using a non-
linear spatially-scaled transformation (that employs three
ingredients, of which one is the Hopf-Cole nonlinear
integral transformation) and linear backstepping design,
we design an explicit nonlinear full-state control law that
achieves exponential stability, with a region of attraction
for which we give an estimate. The region of attraction
is not the entire state space since the Burgers equation is
known not to be globally controllable, however, the stability
result achieved is stronger than being infinitesimally local.
In a companion paper we consider output feedback sta-
bilization, for which we design a nonlinear observer with
boundary sensing, and solve the problems of trajectory
generation and tracking.

I. INTRODUCTION

We study a nonlinear control problem for the viscous
Burgers equation, which is considered a basic model of
nonlinear convective phenomena such as those that arise
in Navier-Stokes equations. While the Burgers model
is not able to capture the complexity of turbulence, its
nonlinearity makes it challenging and a starting point
towards developments for the more realistic Navier-
Stokes equations. We consider a family of stationary
solutions called “shock profiles” [9] (or “shock-like”
profiles) which are unstable and not stabilizable (even
locally) by simple means such as the standard “radiation
boundary conditions.” We achieve exponential stabiliza-
tion (in spatial L2 norm) of the shock profiles using two
control inputs (one at each boundary).

Early results with linear control of the Burgers equa-
tion were presented in [4], achieving local stabilization.
Optimal control was considered in [7]. In [6] a lin-
ear static collocated output feedback (a.k.a. “radiation”
boundary conditions) is proved to achieve local L2

exponential stability. In [20] this result is improved to
L∞, but remains local. Global stabilization is achieved
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in [13], using nonlinear boundary conditions, and ex-
tended to KdV, Kuramoto-Sivashinsky, adaptive control,
and other problems in [1], [2], [15], [16], [17], [18]. Ref-
erences [10] and [11] study the null controllability of the
Burgers equation with one and two inputs respectively,
deriving bounds on the minimal time of controllability.
In [3] the stabilization problem is solved using nonlinear
model reduction techniques, with in-domain actuation.

Our recent design for nonlinear parabolic PDEs [22],
[23] (without convective nonlinearities) is based on
a feedback linearizing nonlinear transformation in the
form of a Volterra series and has opened the avenue for
fully nonlinear designs for PDEs. In this paper we follow
a conceptually similar strategy (though rather different
in its execution) and find a nonlinear spatially-scaled
transformation (based on three ingredients, one of which
is the Hopf-Cole nonlinear transformation [8]), that
transforms the system (with the help by one of the two
boundary controls) into a linear reaction-diffusion PDE.
This PDE is stabilized using the linear backstepping
approach [19], yielding a control law that is nonlinear in
the original state variable. We provide an estimate of the
region of attraction for the closed-loop system. This es-
timate is finite because the Burgers system unfortunately
is not globally controllable [10], [11].

We illustrate our theoretical results with numerical
examples. It is first shown, via a study of eigenvalues
and via simulations of the nonlinear system, that the
“radiation feedback” is not stabilizing, even locally, for
sufficiently large shock profiles. The stabilization prop-
erties of the feedback laws are illustrated in simulations.

In a companion paper [14] we pursue output feedback
stabilization, for which we use a nonlinear observer that
uses injection of the output estimation error at one of
the boundaries. We also solve the problem of trajectory
generation and tracking for the Burgers equation.

II. BURGERS EQUATION AND ITS SHOCK PROFILES

Consider the viscous Burgers’ equation

ut = uxx − uxu, x ∈ [0, 1] (1)

where u(x, t) is the state, with boundary conditions

ux(0, t) = ω0(t), ux(1, t) = ω1(t), (2)

where ω0(t) and ω1(t) are the control inputs. In the se-
quel we drop the arguments (x, t) whenever the context
allows to do this without harming clarity.
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Fig. 1. Three example shock profiles for different values of σ.

We are interested in the family of “shock-like” sta-
tionary solutions determined in [5] as

U(x) = −2σ tanh (σ (x − 1/2)) , (3)

which are parameterized by the variable σ ≥ 0. The
family of solutions given by (3) is called shock profiles
since, the more positive σ is, the more “shock-like”
U(x) looks, as illustrated in Fig. 1.

Remark 2.1: We point out that all the stabilization
and observer design results in this paper can be derived
for any other continuous equilibrium profile U(x). How-
ever, we concentrate on the symmetric profiles (3) as
the most interesting class of equilibria, where the open-
loop instability is the most pronounced. We also point
out that, while the Burgers equation is often studied in
the form ut = εuxx − uxu for a non-unity viscosity
parameter ε, to reduce the notational burden, in this
paper we study the problem with ε = 1 only. All
the results in the paper can be derived for any ε 6=
1 and the dependence on the ε is non-essential. The
equilibrium profile U(x) = −2εσ tanh (σ (x − 1/2))
scales with ε, which results in the open-loop eigenvalues
simply scaling with ε. The primary effect of ε 6= 1 on
the “nonlinear aspects” of the results is that it affects
the actual size of the region of attraction but not the
fundamental form of the estimate of its size.

Continuing with (3), we first observe that

U ′(x) = −2σ2
(

1 − tanh2 (σ (x − 1/2))
)

, (4)

hence

U ′(0) = U ′(1) = −2σ2
(

1 − tanh2(σ/2)
)

. (5)

Then from (2) we obtain that

ω0 = ω1 = −2σ2
(

1 − tanh2(σ/2)
)

≤ 0 (6)

are the constant values of the open-loop control laws
ω0(t) and ω1(t) that produce the equilibrium profile (3).

Let us denote the fluctuation variable around the shock
profile as ũ(x, t) = u(x, t) − U(x), where U(x) is
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Fig. 2. Value of the reaction coefficient in (12). It is positive and large
in the region around x = 1/2, potentially destabilizing the system.

defined as in (3). Then the Burgers equation written in
the perturbation variable ũ is

ũt = ũxx − U(x)ũx − U ′(x)ũ − ũxũ. (7)

Let us denote ω̃0(t) = ω0(t) − U ′(0), ω̃1(t) = ω1(t) −
U ′(1). Then the boundary conditions for (7) are

ũx(0, t) = ω̃0(t), ũx(1, t) = ω̃1(t). (8)

III. INSTABILITY OF SHOCK PROFILES IN OPEN

LOOP AND UNDER “RADIATION BOUNDARY

FEEDBACK”

To study the stability of the origin of the open-loop
system (7), we linearize it, obtaining

θt = θxx + 2σ (tanh (σ (x − 1/2)) θ)x , (9)

θx(0) = θx(1) = 0, (10)

where θ(x, t) is the linearization of ũ. Equation (9) is an
advection-reaction-diffusion PDE. To simplify the study
of stability, we eliminate the advection term using the
invertible transformation ζ(x, t) = G(x)θ(x, t), where

G(x) =
cosh (σ(x − 1/2))

cosh(σ/2)
, (11)

which transforms (9)–(10) into

ζt = ζxx + σ2

[

2

cosh2 (σ (x − 1/2))
− 1

]

ζ,(12)

ζx(0) = −σ tanh(σ/2)ζ(0), (13)

ζx(1) = σ tanh(σ/2)ζ(1). (14)

For σ = 0 the system is neutrally stable. For σ > 0,
in addition to the boundary conditions being of destabi-
lizing (“anti-radiation”) type, the reaction term in (12)
is also destabilizing in the vicinity of x = 1/2. This is
shown in Fig. 2. The larger the value of σ > 0, the more
positive the first eigenvalue of (12)–(14) becomes. For
example, for σ = 15 the first eigenvalue is +0.6.

Remark 3.1: With “radiation boundary feedback,”

ω̃0(t) = kũ(0, t), ω̃1(t) = −kũ(1, t), k > 0, (15)

motivated by [6], the system (12)–(14) changes only in
its boundary conditions,

ζx(0) = (k − σ tanh(σ/2)) ζ(0), (16)

ζx(1) = − (k − σ tanh(σ/2)) ζ(1). (17)
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Fig. 3. Top: Values of the 7 rightmost eigenvalues of (12), (16), (17)
for growing values of k and fixed σ = 15. Notice that all eigenvalues
are real and move leftward as k increases. Bottom: Detail for the first
eigenvalue, which remains positive for any value of k.

The stability properties of the system (12), (16), (17)
improve as k → +∞. However, numerical eigenvalue
calculation shows that for σ > σ∗, where σ∗ ≈ 10,
the system always has exactly one unstable eigenvalue,
so no value of k exists that stabilizes the system, see
Fig. 3. The same negative result applies to the “non-
linear radiation boundary feedback” in [13]. So, a more
sophisticated form of feedback, either full-state feedback
or dynamic output-feedback, is needed to stabilize the
shock-like equilibria (even locally).

IV. FULL STATE FEEDBACK LAW

We perform a two-step feedback linearizing design.
In the first step, we use a state transformation and a
feedback law for ω̃0 to linearize the transformed PDE
and its boundary condition at x = 0. In the second step
we design a feedback law for ω̃1 to stabilize the resulting
linear system using the backstepping method.

A. Linearizing transformation and the design of ω̃0

Define a new state variable v(x, t) as follows:

v(x, t) = ũ(x, t)e−
1

2

R

x

0
[ũ(y,t)+U(y)] dy, (18)

which can be written using (11) as

v(x, t) = G(x)ũ(x, t)e−
1

2

R

x

0
ũ(y,t) dy. (19)

Remark 4.1: Transformation (19) is a composition
of the Hopf-Cole transformation on ũ(x, t) and the
transformation ∂x, scaled by G(x). The former is used
to study the solutions of Burgers’ equation [8]. The
transformation ∂x was used in [22] to design a feedback
control law for a semilinear parabolic system. The
scaling G(x) is the standard “gauge” transformation
used to eliminate advection terms in parabolic PDEs.

The transformation (19) from ũ to v is invertible:

ũ(x) =
v(x)/G(x)

1 − 1
2

∫ x

0
v(y)
G(y) dy

. (20)

Substituting the transformation (19) into the system (7)–
(8) we obtain that v verifies the following equations:

vt = vxx −
(

U ′(x) + σ2
)

v

+1/2
(

ω̃0 − U(0)ũ(0) − ũ2(0)/2
)

v,(21)

vx(0) = ω̃0 −
1

2
(ũ(0) + U(0)) ũ(0), (22)

vx(1) =

(

ω̃1 −
1

2
(ũ(1) + U(1)) ũ(1)

)

×e−
1

2

R

1

0
[ũ(y,t)+U(y)] dy. (23)

Setting the feedback law

ω̃0 = U(0)ũ(0) +
ũ2(0)

2
= 2σ tanh(σ/2)ũ(0) + ũ2(0)/2, (24)

we obtain the following system for v, in which we
express all the coefficients as explicitly as possible:

vt = vxx + σ2

[

2

cosh2 (σ (x − 1/2))
− 1

]

v, (25)

with boundary conditions

vx(0) = σ tanh(σ/2)v(0), (26)

vx(1) = σ tanh(σ/2)v(1) +
(

ω̃1 − ũ(1)2/2
)

×

(

1 −
1

2

∫ 1

0

cosh(σ/2)v(y)

cosh (σ (y − 1/2))
dy

)

.(27)

Notice that (25) is a linear reaction-diffusion parabolic
equation with the same destabilizing reaction coefficient
that the linearized system (12) had.

B. Design of ω̃1 using the backstepping method

To find a feedback law for ω̃1 that stabilizes (25)–
(27), we use the backstepping method for 1-D parabolic
equations [19]. We define a new state w(x, t), which is
obtained from v using the transformation

w(x, t) = v(x, t) −

∫ x

0

k(x, y)v(y, t) dy. (28)
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Fig. 4. Value of the target system reaction coefficient in (29),
compared with the coefficient of the v plant in (25), for σ = 15.
Notice that the coefficient only has been changed close to x = 1/2,
where it was destabilizing. The new coefficient is negative everywhere.

The state w satisfies the following PDE:

wt = wxx + σ2

[

1

cosh2(σ(x − 1/2))
− 1

]

w

−cw, (29)

wx(0) = σ tanh(σ/2)w(0), (30)

wx(1) = −σ tanh(σ/2)w(1), (31)

where c ≥ 0 is a parameter of the controller. The system
(29)–(31) will be referred to as the target system.

Remark 4.2: The reaction term in (29) is non-
positive, so the w-system is exponentially stable. Note
that we have not completely eliminated the reaction term
from the original system (25) but only lowered it to
eliminate its positive part, without wasting control effort
on changing its negative part, see Fig. 4.

Remark 4.3: The coefficient c in (29) can be set to
zero whenever σ > 0. When σ = 0, we need c > 0
because the resulting system wt = wxx−cw,wx(0, t) =
wx(1, t) = 0 would be only neutrally stable for c = 0.

We need to determine the kernel k(x, y) in (28) so
that w verifies (29)–(31). Following [19], we find that
the kernel k has to verify the following equation:

kxx = kyy + σ2
[

1 − 2 tanh2 (σ(y − 1/2))

+ tanh2 (σ(x − 1/2))
]

k + ck, (32)

k(x, x) = −σ/2 [tanh (σ (x − 1/2))

+ tanh (σ/2)] − cx/2, (33)

ky(x, 0) = σ tanh (σ/2) k(x, 0), (34)

which is a linear hyperbolic PDE in the domain T =
{(x, y) : 0 ≤ y ≤ x ≤ 1}. In [19] it is shown that
(32)–(34) is well-posed and that k ∈ C2(T ). The kernel
k can be computed numerically or symbolically [19].

From (31), (28) and (27) we find the control law

ω̃1(t) =
ũ(1, t)2

2
+ (k(1, 1) − 2σ tanh (σ/2)) ũ(1, t)

+

∫ 1

0

(kx(1, y) + σ tanh (σ/2) k(1, y))

×G(y)e
R

1

y
ũ(ξ,t)dξũ(y, t)dy. (35)

V. CLOSED-LOOP STABILITY UNDER FULL-STATE

CONTROL LAW

Denote the initial condition as ũ0(x) = ũ(x, 0), and
define a class K∞ [12] function

g(r) = r/2er/2. (36)

Theorem 1: Assume that ũ0 ∈ H2 is such that

‖ũ0‖L2 < g−1
(

1/m
√

σ/ sinhσ
)

(37)

and that it verifies the compatibility conditions

ũ′

0(0) = 2σ tanh(σ/2)ũ0(0) + ũ2
0(0)/2, (38)

ũ′

0(1) = ũ0(1)2/2 + (k(1, 1) − 2σ tanh(σ/2)) ũ0(1)

+

∫ 1

0

(kx(1, y) + σ tanh (σ/2) k(1, y))

×G(y)e
R

1

y
ũ0(ξ)dξũ0(y)dy. (39)

Then the equilibrium profile ũ ≡ 0 of system (7)–(8)
with feedback laws (24) and (35) is exponentially stable
in the L2 norm, i.e., for all t > 0,

‖ũ(t)‖ ≤

√

2σ coth(σ/2)g (‖ũ0‖L2)
1
m

√

σ/ sinhσ − g (‖ũ0‖L2)
e−αt, (40)

where m,α > 0.
Remark 5.1: Theorem 1 is a statement of regional

(less than global, more than infinitesimally local) sta-
bility in the L2 space.

VI. SIMULATIONS

A. Open-loop system

The open-loop system (1)–(2), (6), is unstable, as
mentioned in Section III. A numerical study of the
linearized system around the shock profile shows the
presence of one positive (though possibly small) eigen-
value for any σ > 0. In Fig. 5 one can see a finite time
blow up of the open-loop system for σ = 3.

B. Radiation boundary feedback

In Remark 3.1 we explained that the shock profiles are
not stabilizable (even locally) by “radiation feedback”
for σ > σ∗, where σ∗ ≈ 10 (obtained numerically).
The lack of stabilizability by “radiation feedback” is
consistent with its objective being merely the regulation
of the scalar outputs ũ(0, t) and ũ(1, t) to zero, rather
than stabilization of the entire state ũ(x, t). For small
σ, the latter may be achieved as a bonus, a consequence
of stability of the underlying “zero dynamics.” However,
for large σ the zero dynamics become unstable, and thus
regulation of the output is not accompanied by closed-
loop stability of the state.

Despite the instability of the linearized Burgers equa-
tion with the “radiation feedback” at the shock profiles,
things are not so bad in fully nonlinear simulations.
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Fig. 5. Finite time blow-up of open-loop system (with constant inputs
(6)) for σ = 3 and u0(x) = U(0) + 2 + (U(1) − U(0) − 4)x.

The nonlinearities prevent finite time blow-up (rather
than causing it) and the closed-loop solutions merely
converge to a different equilibrium (rather than the
desired “shock profile” equilibrium). In Fig. 6 one can
see the convergence of u to two different non-symmetric
equilibria, which seem to (nearly) match the desired
shock profile at the boundaries but not elsewhere.

In simuations we find that for odd initial conditions
around x = 1/2 radiation feedback (15) achieves con-
vergence to U(x). However, for non-symmetric initial
conditions, the system goes to other stationary solutions.

C. Backstepping feedback

Before showing the results with our nonlinear design,
we show the results with a linearized backstepping
controller

ω̃0(t) = 2σ tanh (σ/2) ũ(0, t) (41)

ω̃1(t) = − (3σ tanh (σ/2) + c/2) ũ(1, t)

−

∫ 1

0

ρ(y)G(y)ũ(y, t)dy . (42)

The kernel −ρ(x) and a closed-loop solution with the
controller (42), (43) are shown in Figure 7. The radia-
tion feedback does not stabilize the desired equilibrium
profile in this case, as shown in Figure 6.

In Fig. 8 we show solutions from various initial
conditions under the nonlinear backstepping controller.

VII. CONCLUSIONS

We have solved the problem of full-state stabilization
for the fully nonlinear viscous Burgers equation (see a
companion paper [14] where we solve the problems of
observer design, output feedback stabilization, trajectory
generation, and tracking) . Our results are based on
a nonlinear feedback linearizing transformation, which
allows us to use the linear backstepping control design
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Fig. 6. Behavior for radiation feedback with negative (top) and
positive (bottom) constant initial condition for σ = 15 and k = 100.
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Fig. 8. Convergence of the closed-loop system under the nonlinear
full-state feedback law for various initial conditions and σ = 15.

method [19] . Due to the explicit nature of the transfor-
mation and our methods, we were able to derive formu-
las for the feedback laws. Since our transformation is
not globally invertible, our results are not global, which
is consistent with lack of global controllability shown
in [10], [11], however we derive a non-infinitesimal
region of attraction, using the largest level set of our
Lyapunov function within the regions of feasibility of
the control law and invertibility of the transformation.

Particularly interesting problems for future research
include a possible design using only one control input,
ω̃1 (with ω̃0 set to zero), an extension to more general
nonlinear parabolic PDEs with convective nonlinearities
and to convective nonlinearities of more general form,
to Burgers equations in higher dimensions, and to more
challenging PDEs with convective nonlinearities such as
Kuramoto-Sivashinsky and Navier-Stokes.
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