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Abstract— We consider the application of multi-objective sta-
tistical game theory to a remote sensing satellite attitude control.
Statistical game theory is a generalization of mixed H2/H∞
control, where we have two objective functions and we optimize
the higher order cumulants of these objective functions. We
use previously developed satellite attitude model with thrusters,
gravity torquers and a reaction wheel cluster. Then we control
the satellite attitude using the statistical game (Minimal Cost
Variance/H∞) control, H∞ control, and mixed H2/H∞ control.
Throughout the simulations, statistical game control has an
extra degree of freedom to improve the performance and
reduce the overshoot and undershoot compared to either H∞
control and H2/H∞ control. The simulations show that the
performance of Minimal Cost Variance/H∞ is 8.8% and 5.4%
faster than H2/H∞ and H∞ control, respectively. Moreover,
the control actions of MCV/H∞ is reduced by 67% compared
to H∞ control and 55% compared to H2/H∞ control. So, we
achieve both performance improvement while saving the control
energy. In the case of the stability margin, MCV/H∞ control
has the highest stability margin, H∞ control has the lowest,
and H2/H∞ control an intermediate value between those two.

I. INTRODUCTION

In the stochastic optimal control problem, the system is

given as a stochastic differential equation and an optimal

controller is determined to minimize the expected values

of a cost function. Historically, stochastic optimal control

was based upon the mean of a cost function. However, the

mean or the first cumulant is only one of the cumulants

that describe the distribution of a random variable. Other

statistical quantities, such as the variance or the skewness

can be considered to minimize the whole distribution of the

cost function. This is the main idea of statistical control. In

statistical control, a performance index is minimized that is

based upon other statistical quantities such as the variance

and skewness of the cost function, not just the mean [1].

Recently, we have applied the method to structural control

and showed promising results [2].

Multi-objective control is a control method in which the

control must concern itself with not only one performance

index, as in traditional optimal control, but several. The

most prevalent multi-objective control is the mixed H2/H∞

control, which the control wishes to minimize an H2 norm

while keeping the H∞ norm constrained. This approach was

started in [3], and the Nash game approaches to this problem
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are proposed in [4]. In this game, two players; a control and

a disturbance are considered. They both wish to minimize

their respective performance indices when the other player

has played their equilibrium solution [5]. In the stochastic

version of this problem, the players then wish to minimize

the mean of their cost functions.

Minimal Cost Variance (MCV) control minimizes the

variance, instead of the mean, of the cost function. The work

was started in [6]. The full state feedback MCV control

results for a nonlinear system and nonquadratic cost function

are given in [7], and a linear system and quadratic cost

function case is developed in [8]. The work of Diersing

and Sain [9] examined to combine cost cumulants and MCV

control to minimize a linear combination of the first two

cumulants the mean and the variance while satisfying H∞

constraint. This is called MCV/H∞ control and it shows

that these control methods have been applied successfully

to vibration control problems, such as the control structures

excited by seismic disturbance [9].

In this paper, multi-objective statistical control is used

for a Low Earth Orbit (LEO) satellite. For this, we con-

sider MCV/H∞ control with actual commercial satellite

parameters. The work of [11] compared mixed H2/H∞

control with H2 control, and H∞ control method to stabilize

attitude control. This comparison was performed for a one

player system. Here, we consider a stochastic version of the

system with quadratic cost function. When the system has

a stochastic white noise present in addition to a bounded

power disturbance, the players’ performance indices can be

cast in terms of the mean value of the two quadratic costs. In

a Nash game approach, a control and a disturbance is taken

as two players. The equilibrium solution is found by solving

coupled Riccati equations.

We present multi-objective statistical control method with

equilibrium solutions in Section II. In Section IV, Korea

Multi Purpose Satellite (KOMPSAT) system model with

three magnetic torquers and a four reaction wheel cluster as

actuators is provided. In section V, the performance of two

control, H∞ and H2/H∞ is compared to that of MCV/H∞

control with real parameters of a LEO satellite. Finally,

Section VI concludes this paper.

II. MULTI-OBJECTIVE STATISTICAL CONTROL

The system is described as a linear system

dx(t) = [Ax(t) + Bu(t) + Dv(t)] dt + Edξ(t) (1)

where x is the state, u is the control, v is the disturbance,

and ξ is a Brownian motion with variance W . The regulated
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outputs of the system are

z1(t) = H1(t)x(t) + G1(t)u(t) (2)

z2(t) = H2(t)x(t) + G2(t)u(t) (3)

We assume that H ′
iHi = Qi, and G′

iGi = Ri for i=1,2,

where Q1, Q2, and R2 are assumed positive semi-definite

and R1 is assumed positive definite. This stochastic differ-

ential equation has two cost functions. The first cost function,

J1, is to be associated with the control u and the second, J2

is for the disturbance v. The players’ cost functions will be

assumed to be quadratic;

J1 =

∫ tf

t0

(z′1(t)z1(t)) dt

=

∫ tf

t0

(x′(t)Q1x(t) + u′(t)R1u(t)) dt

(4)

J2 =

∫ tf

t0

(

δ2v′(t)v1x(t) − z′2(t)z2(t)
)

dt

=

∫ tf

t0

(

δ2v′(t)v(t) − x′(t)Q2x(t)
)

dt

− u′(t)R2u(t)

(5)

With the system and costs defined, we can discuss the

control method. The game to be considered here is one in

which the first player, the control u, wishes to minimize

a performance index consisting of a linear combination of

cumulants given by ϕ1=Etx{J1}+γV artx{J1}, where γ is

some positive constant and V artx is the variance using

the conditional expectation. On the other hand, the second

player, the disturbance v, wishes to minimize the mean of its

cost function. That is the disturbance has ϕ2=Etx{J2} as its

performance index. Because both players will be assumed

to have feedback information available to them, UM will

be the information pattern for the control and WF will be

the information pattern for the disturbance. We call this

MCV/H∞ control. We assume that the costs are quadratic.

That is M(t, x) = x′M(t)x + m(t), V(t, x) = x′V(t)x +
v(t), and P(t, x) = x′P(t)x + p(t) where M, V , P are

matrix functions of time and m, v, p are scalar functions of

time. The MCV/H∞ equilibrium solution for the control is

determined as

min
µ∈UM

{x′Ṁx + ṁ + 2(Ax + Bµ + Dν∗)′Mx

+ tr(EWE′(M) + γV) + x′Q1x + µ′R1µ

+ γ[x′V̇x + v̇ + 2(Ax + Bµ + Dν∗)′Vx

+ 4MEWE′M]} = 0

(6)

and minimizing this gives

u∗ = µ∗(t, x) = − R−1B′[M(t) + γV(t)]x(t) (7)

Similarly, for the disturbance

min
ν∈WF

{x′Ṗx + ṗ + 2(Ax + Bµ∗ + Dν)′Px

+ tr(EWE′(P)) + γ2v′v − x′Q2x

− µ′R2µ
∗} = 0

(8)

which by minimization yields

v∗ = ν∗(t, x) = −
1

δ2
D′P(t)x(t) (9)

Using this equilibrium solution (µ∗, ν∗), we can determine

three Riccati equations by substitution. M, V and P are

solutions of these three Riccati equations. There is the mean

of the control’s cost function

Ṁ + A′M + MA + Q1 −MBR−1
1 B′M

−
1

δ2
PDD′M−

1

δ2
MDD′P

+ γ2VBR−1
1 B′V = 0

(10)

where M(tf ) = Q1
f . Next, we derive an expression for the

variance.

V̇ + A′V + VA − γMBR−1
1 B′V − γVBR−1

1 B′M

−
1

δ2
PDD′V −

1

δ2
VDD′P − 2γVBR−1

1 B′V

+ 4MEWE′M = 0

(11)

with V(tf ) = 0. Finally an expression for the mean of the

disturbance’s cost is given by

Ṗ + A′P + PA − (M + γV)BR−1
1 B′P

− PBR−1
1 B′(M + γV) −

1

δ2
PDD′P

− Q2 −MBR−1
1 R2R

−1
1 B′M

− γMBR−1
1 R2R

−1
1 B′V − γVBR−1

1 R2R
−1
1 B′M

− γ2VBR−1
1 R2R

−1
1 B′V = 0

(12)

with P(tf ) = Q2
f . Notice that when the system is linear

and the costs are quadratic in the stochastic game, we

know the equilibrium solution (µ∗, ν∗) when these Riccati

equations are satisfied [2]. Also as γ goes to zero, the

equilibrium solution becomes the solution of H2/H∞ control

problem. This suggests that MCV/H∞ control is a cumulant

generalization of H2/H∞ control [9].

III. MCV/H∞ CONTROL AS A GENERALIZATION OF

H2/H∞ CONTROL

In the H2/H∞ control technique, one wishes to minimize

the H2 norm of the system while constraining the H∞ norm

to some value, in our case we will call this value δ. The

Nash game approach to solving the H2/H∞ problem was

undertaken by [4] and [10]. The H2/H∞ control problem

can be approached by finding a Nash equilibrium solution to

a two person game in which one player is the control and

the other player is the disturbance. For the stochastic case,

the control wishes to minimizes the mean of its cost function

J1 and the disturbance wishes to minimize the mean of J2,

the disturbance’s cost function as given in (5). The control

wishing to minimize the mean of J2 corresponds with the H2

norm, while the mean of J2 corresponds with a constraint on

the H∞ norm. The stochastic differential equation governing

the system is still (1). For E{J2} ≥ 0, we have

E

{
∫ tf

t0

(

δ2v′(t)v(t) − z′2(t)z(t)
)

dt

}

≥ 0. (13)
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With some manipulation this becomes

E

{
∫ tf

t0

δ2v′(t)v(t)dt

}

≥ E

{
∫ tf

t0

z′2(t)z(t)dt

}

and by interchanging the integration and expectation, we

obtain
∫ tf

t0

δ2E {v′(t)v(t)} dt ≥

∫ tf

t0

E {z′2(t)z(t)} dt.

This then becomes
∫ tf

t0

E
{

‖z2(t)‖
2
}

dt ≤ δ2

∫ tf

t0

E
{

‖v(t)‖
2
}

dt (14)

where ‖z(t)‖
2

= z′(t)z(t). However, the two-norm for the

stochastic case and signal w, as given in [10], is defined as

||w||22,[t0,tf ] =

∫ tf

t0

E
{

‖w(t)‖
2
}

dt. (15)

Using this and substituting into (14), we have

||z2(t)||2,[t0,tf ] ≤ δ||v(t)||2,[t0,tf ]. (16)

The H∞ norm of a system Tz2v is defined as

||Tz2v||∞,[t0,tf ] = sup
v

||z2||2,[t0,tf ]

||v||2,[t0,tf ]
. (17)

What we can see is that by minimizing the mean of J2 with

respect to the disturbance v, we in effect constrain the H∞

norm of the system.

Using the Nash game approach to the H2/H∞ problem

gives the following solutions from [4],[10].

u∗ = µ∗(t, x) = − R−1(t)B(t)M(t)x(t)

v∗ = ν∗(t, x) = −
1

δ2
D′P(t)x(t)

(18)

with

Ṁ + A′M + MA + Q1 −MBR−1
1 B′M

−
1

δ2
PDD′M−

1

δ2
MDD′P = 0

(19)

and
Ṗ + A′P + PA −MBR−1

1 B′P

− PBR−1
1 B′M−

1

δ2
PDD′P

− Q2 −MBR−1
1 R2R

−1
1 B′M.

(20)

In MCV control, we minimize the variance of J1 while

holding the mean of J1 to a constraint. This can be seen as

a generalization of H2 control. Meanwhile, we also consider

some uncertainty to the system that can be better viewed

through the H∞ technique. In the same vein, we can view

MCV/H∞ as a generalization of H2/H∞. Therefore we

generalize the Nash game approach to the MCV/H∞ case,

where the control considers the variance of its cost J1 and the

disturbance still considers the mean of J2. The disturbance’s

performance index of the mean of its cost corresponds to a

constraint on the H∞ norm, as has been shown.

Notice that these Riccati equations (20) are very similar

to those in the MCV/H∞ case. In fact, as the parameter

γ goes toward zero, the MCV/H∞ control Riccati equa-

tions become these from the H2/H∞ problem. This is a

generalization of the H2/H∞ problem. As the parameter

γ goes toward zero, the weight of the variance on the

performance index becomes less and less, which puts the

weight on the mean constraint. When it is in fact zero, the

problem is simply the H2/H∞ control problem. So through

the use of cumulants and Nash game theory, we can have

a generalization of H2/H∞. Furthermore, we can allow the

control to use higher order cumulants as in the MCV control

problem, but also design for some uncertainties that can be

represented through the H∞ norm of the system.

IV. SYSTEM MODEL

We consider the satellite’s attitude control using four reac-

tion wheels and three thrusters. The actual system description

and its parameters of a LEO satellite KOMPSAT is given in

[11]. The KOMPSAT is a sun-synchronous remote sensing

satellite with the inclination of 98.13 degrees, the altitude

of 685 km, and the total weight of 509 kg. The general

nonlinear satellite attitude dynamic model is given by

Igω̇ = − ω × (Itω + L′IwΩ) − L′τw

+ τ thruster + τgravity + v
(21)

where v represents the disturbances due to the magnetic field,

solar radiation pressure, and atomospheric drag. The states

are given as x = [φ, θ, ψ, ωx, δωy, ωz,Ω1, Ω2, Ω3, Ω4]
′ ≡

[φc, ω,Ω]′ where ωx, ωy, ωz are the angular velocities in

Body Fixed Coordinate (BFC) system, Ωi are the wheel

speeds, φ is the roll Euler angle, θ is the pitch Euler angle,

and ψ is the yaw Euler angle. We assume that roll, pitch, and

yaw angles are available using the conical earth sensor, the

fine sun sensor, and the gyros. In addition, the wheel speeds

are also available from the measurement of the reaction

wheel tachometer. Also the following are defined:

1) n: Orbital rate

2) It: Total amount of inertia for satellite body (3 × 3)

3) Iw: Wheel moment of inertia matrix (4 × 4)

4) Ig = It−L′IwL: Total moment inertial minus moment

of inertia of the wheels (3 × 3)

5) L: Wheel orientation matrix (4 × 3)

L =









cos α sin β sin α sin β cos β
− sin α sin β cos α sin β cos β
− cos α sin β − sin α sin β cos β
sin α sin β − cos α sin β cos β









(22)

To have zero initial conditions we let δωy = ωy + n,

and find the general linear equation form of (21) for any

Torque Equilibrium Attitude (TEA) of the states. For the

simplicity sake, we assume the case of the attitude hold

mode where the TEA values are fixed at the following

values: x0 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]′. Assuming the gravity

gradient torque for a point mass, we have the following

linearized equations.

ω̇ ≡I−1
g nN1ω + I−1

g nN2Ω + I−1
g 3n2N3φc

− I−1
g L′τwheel + I−1

g τ thruster + I−1
g v,

(23)
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Ω̇ = I−1
w τw − Lω̇, (24)

and

φ̇c =[0, 0,−n]′φ + [n, 0, 0]′ψ + [1, 0, 0]′ωx

+ [0, 1, 0]′(ωy + n) + [0, 0, 1]′ωz.
(25)

Because δωy = ωy + n, we have

φ̇ = nψ + ωx

θ̇ = ωy + n = δωy

ψ̇ = −nφ + ωz

(26)

Using (23), (24), and (26), we can obtain a linearized

differential equation of (1) with

A =





X1 I3 03×4

3I−1
g n2N3 I−1

g nN1 I−1
g nN2

−3LI−1
g n2N3 −LI−1

g nN1 −LI−1
g nN2





(27)

where

X1 =





0 0 n
0 0 0
−n 0 0



 (28)

N1 =





0 0 It(3, 3) − It(2, 2)
0 0 0

It(2, 2) − It(1, 1) 0 0





(29)

N2 =





Iw(1, 1)Lt(3, 1) Iw(2, 2)Lt(3, 2)
0 0

−Iw(1, 1)Lt(1, 1) −Iw(2, 2)Lt(1, 2)

Iw(3, 3)Lt(3, 3) Iw(4, 4)Lt(3, 4)
0 0

−Iw(3, 3)Lt(1, 3) −Iw(4, 4)Lt(1, 4)



 (30)

N3 =





It(3, 3) − It(2, 2) 0 0
0 It(3, 3) − It(1, 1) 0
0 0 0





(31)

Lt = L′ and X(i, j) is the element of a matrix X in the ith
row and jth column. The control is given by the torque due

to reaction wheels and the thrusters, u = [τw, τ thruster]
′.

The control’s input matrix is given as

B =





03×4 03×3

−I−1
g L′ I−1

g

I−1
w + LI−1

g L′ −LI−1
g



 (32)

and the disturbance’s input matrix is

D =





03×3 03×3 03×3

I−1
g I−1

g I−1
g

−LI−1
g −LI−1

g −LI−1
g



 (33)

and E is a vector of ones.

Control Method ωx Time (sec)

H∞ (δ = 4) 5.0e-5 128.38

H2/H∞ (δ = 4) 5.0e-5 123.77

MCV/H∞ (δ = 4 and γ = 1.0e-7) 5.0e-5 117.12

TABLE I

ANGULAR VELOCITY ωx AND TIME OF THREE CONTROL METHODS

V. SIMULATION RESULTS

In this section, we investigate MCV/H∞ control

performance and compare the angular velocity and the

control action as well as the stability margin of H∞ and

H2/H∞ control. All simulations in this paper are based

on the following parameters; orbital rate n = 1.06e-3 rad/s,

total moment of inertia for the spacecraft body,

It =





217.38 0 0
0 95.57 0
0 0 154.57





and the moment of inertia matrix for the reaction wheels,

Iw = 0.0077









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









We let the state weighting matrix Q1 = Q2 = Q = I10×10

and the control weighting matrix R1 = R2 = R = I7×7.

The initial condition is given in the simulation as x0 =
[1deg, 1deg, 1deg, 0,−n, 0, 0, 0, 0, 0].
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Fig. 1. Time when Angular Velocity ωx is 5.0e-5 deg/sec Versus γ

Before we start, we have to determine the parameter δ
of H∞, H2/H∞, and MCV/H∞ control and the parameter

γ of MCV/H∞ control. For fixed δ, we can always find

γ which will improve the performance of the system. In

the first simulation, we fixed δ = 4 and vary γ for the

performance comparison. We define the settling time as the
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Control Method Overshoot Undershoot

H∞ (δ = 4) 6.30e-4 −3.12e-2

H2/H∞ (δ = 4) 1.40e-4 −3.09e-2

MCV/H∞ (δ = 4 and γ = 1.0e-7) 5.42e-5 −3.01e-2

TABLE II

OVERSHOOT AND UNDERSHOOT ANGULAR VELOCITY ωx OF THREE

CONTROL METHODS

time required of angular velocity ωx to reach 5.0e-5 deg/sec.

Figure 1 shows the time when the angular velocity ωx is

5.0e-5 deg/sec versus δ for H∞, H2/H∞, and MCV/H∞

control. Notice that if δ is 4, three Riccati equations have

unique solutions M, V , P from γ = 1.0e-5.6. Since the

settling time of MCV/H∞ control is faster than that of H∞

and H2/H∞ control from γ = 1.0e-6.2 to 1.0e-8, we use γ
= 1.0e-7 for the following simulation. Also one can notice

that if γ of MCV/H∞ control approaches 0, then we have

H2/H∞ control. From this, we can verify that MCV/H∞

control is a generalization of H2/H∞ control.

Figure 2 shows the angular velocity ωx versus time graph

for H∞, H2/H∞, and MCV/H∞ control. Table I shows

the angular velocity ωx and the time when ωx is 5.0e-

5 deg/sec. It shows that the time required to reach 5.0e-

5 deg/sec of ωx in the MCV/H∞ control is 117.12 sec

which is 6.65 sec quicker than that of H2/H∞ control.

Table II shows the largest overshoot and undershoot values

of Figure 2. MCV/H∞ control has the smallest overshoot

Control Method Time |τ
wheel

|
H∞ (δ = 4) 128.38s 1.9e-10

H2/H∞ (δ = 4) 123.77s 1.4e-10

MCV/H∞ (δ = 4 and γ = 1.0e-7) 117.12s 6.3e-11

TABLE III

CONTROL ACTION DUE TO REACTION WHEELS FOR THREE CONTROL

METHODS
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Fig. 4. Control Action due to Reaction Wheels Versus Time

and H∞ control has the highest overshoot. H2/H∞ control

performance is between the other two control methods.

The wheel speed Ω1 is also simulated in Figure 3. In this

plot, one can see that MCV/H∞ control has the smallest

undershoot at −1.1e-6, and has the fastest settling time. H∞

control has the largest undershoot at −5.1e-6, and has the

slowest settling time. The undershoot and the settling time of

H2/H∞ control is in between MCV/H∞ and H∞ control.

We note that the other three wheel speeds Ω2, Ω3, and Ω4

achieve the similar performance as Ω1.

We have two control actions given by reaction wheel

torques τwheel and thruster torques τ thruster. Figure 4 plots

the magnitude of τwheel versus time and Table III shows

the amount of τwheel for the specific times. We choose the

times to match the times of Table I. At those times, we found

that the magnitude of τwheel value of MCV/H∞ control is
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Control Method Time |τ
thruster

|
H∞ (δ = 4) 128.38s 2.4e-5

H2/H∞ (δ = 4) 123.77s 2.3e-5

MCV/H∞ (δ = 4 and γ = 1.0e-7) 117.12s 7.8e-6

TABLE IV

CONTROL ACTION DUE TO THRUSTERS FOR THREE CONTROL

METHODS
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Fig. 5. Control Action due to Thrusters Versus Time

Control Method Max. Real Part

H∞ (δ = 4) -4.56e-2

H2/H∞ (δ = 4) -5.44e-2

MCV/H∞ (δ = 4 and γ = 1.0e-7) -5.67e-2

TABLE V

ROBUST STABILITY COMPARISON

the smallest and H∞ control is the largest. We also show

the control action due to thrusters τ thrusters in Figure 5 and

Table IV. From these results, we find that MCV/H∞ control

requires the smallest control effort, and H∞ control requires

the largest. Again, H2/H∞ is in between two controls.

Finally, we provide the stability results. Table V shows the

maximum real part of the closed loop system poles for H∞,

H2/H∞, and MCV/H∞ control. H∞ control has the largest

closed loop eigenvalue, MCV/H∞ control has the smallest

eigenvalue, and H2/H∞ is in between. From the stability

point of view, MCV/H∞ control gives the highest stability

margin, H∞ control gives the smallest, and H2/H∞ control

is in between.

VI. CONCLUSIONS

In this paper, multi-objective statistical control method

for satellite attitude control is studied. In doing this, we

consider a stochastic version of a system and a system with

two players, a control and a disturbance. A Nash game

approach was taken to solve the case when two players

wish to optimize their own performance indices, namely

two different linear combinations of cost cumulants. The

performance comparison of MCV/H∞ control with two

different control methods H∞ and H2/H∞ is provided.

We compared these three control methods for δ = 4 and

γ = 1.0e-7. By comparing those performances, MCV/H∞

control has the fastest settling time in reaching 5.0e-5 deg/sec

angular velocity ωx, and requires the least control effort, and

H∞ control has the slowest settling time and requires the

most control effort. H2/H∞ control showed the intermediate

performance between MCV/H∞ and H∞ control. MCV/H∞

control showed the smallest overshoot and undershoot in time

response because we optimized with respect to the variations.

Finally, from the stability point of view, MCV/H∞ control

has the largest stability margin, H∞ control has the smallest,

and again H2/H∞ control is in between. We conclude that

MCV/H∞ control is a cumulant generalization of H2/H∞

control and the performance of MCV/H∞ control is better

than H∞ and H2/H∞ control for satellite’s attitude control.
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