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Abstract— Given a network of interconnected nodes, each
with a given initial value, we develop a distributed strategy
that enables some or all of the nodes to calculate any arbitrary
function of these initial values, despite the presence of some
malicious (or faulty) nodes. Our scheme utilizes a linear
iterative strategy where, at each time-step, each node updates
its value to be a weighted average of its own previous value
and those of its neighbors. We consider a node to be malicious
if, instead of following the predefined linear iterative strategy,
it updates its value arbitrarily at each time-step (perhaps by
conspiring and coordinating with other malicious nodes). When
there are up to f malicious nodes, we show that any node in
the network is guaranteed to be able to calculate any arbitrary
function of all initial node values if the graph of the network
is at least (2f + 1)-connected. Specifically, we show that under
this condition, the nodes can calculate their desired functions
after running the linear iteration for a finite number of time-
steps (upper bounded by the number of nodes in the network)
using almost any set of weights (i.e., for all weights except for
a set of measure zero). Our approach treats the problem of
fault-tolerant distributed consensus, where all nodes have to
calculate the same function despite the presence of faulty or
malicious nodes, as a special case.

I. INTRODUCTION

In distributed systems and networks, it is often necessary

for some or all of the nodes to calculate some function

of certain parameters. For example, sink nodes in sensor

networks may be tasked with calculating the average value of

all the sensor measurements [1]. A special case of distributed

function calculation is the distributed consensus problem,

where all nodes in the network calculate the same function

[2]. The notion of consensus has recently received extensive

attention in the control literature, due to its applicability to

topics such as cooperative control of multi-agent systems [3].

In these cases, the approach to consensus is to use a linear

iteration, where each node in the network repeatedly updates

its value to be a weighted linear combination of its own value

and those of its neighbors (e.g. see [3] and the references

therein). These works have revealed that if the network topol-

ogy satisfies certain conditions, the weights for the linear

iteration can be chosen so that all of the nodes asymptotically

converge to the same value. Recently, it was shown in [4],

[5] that this linear iterative strategy can actually be applied
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to the more general function calculation problem, allowing

any node in the network to calculate an arbitrary function of

the node values in a finite number of time-steps. In Part I of

this paper [6], we studied the susceptibility of linear iterative

schemes to (possibly coordinated) misbehavior by a subset of

nodes. Specifically, we allowed for the possibility that some

nodes in the network update their values at each time-step

in an arbitrary manner, instead of following the predefined

strategy of using a specific weighted linear combination of

their neighbors’ and their own values. We showed that if the

graph of the network is 2f connected, then it is possible

for f nodes to conspire to maliciously update their values

in such a way that some nodes cannot calculate an arbitrary

function of all node values [6].

In this paper, we present a method to inoculate linear

iterative schemes against malicious behavior by nodes in

the network. Specifically, the contribution of this paper is to

show that, if the network topology has connectivity at least

2f + 1, then any node can work around the misbehaving

nodes to calculate any desired function of the initial node

values, even if up to f nodes conspire and coordinate their

actions in an attempt to disrupt the network. Given a graph

of 2f + 1 connectivity, our strategy is to have the nodes

follow a linear iterative protocol with random weights, and

to have each node simply observe its own value and those of

its neighbors as they evolve over time. After doing this for a

finite number of time-steps, we show that each node will have

enough information (and a checking scheme) to correctly

determine the initial values despite the possible presence of

up to f malicious nodes. To prove the correctness of this

strategy, we exploit concepts from classical linear system

theory (such as structured system theory, strong observability,

and invariant zeros of linear systems). The problem of fault-

tolerant distributed consensus can be treated as a special

case of our results, effectively narrowing the gap between

linear iterative schemes and existing fault-tolerant consensus

protocols (such as those described in [2]).

For relevant definitions and terminology on graph theory,

we refer the reader to Part I of this paper [6]. We will use the

following classical result in our derivations1 (e.g., see [7]).

Theorem 1: Suppose graph G, with vertex set X , is κ-

connected. Given any two subsets X1,X2 ⊂ X , with |X1| ≥
κ, |X2| ≥ κ, there exists a κ-linking from X1 to X2.

Note that some of the paths in this linking might have zero

length (i.e., if X1 ∩ X2 is nonempty).

1Recall that a r-linking from a set of vertices X1 to a set of vertices X2

is a set of vertex disjoint paths, each with a start vertex in X1 and an end
vertex in X2.

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeC03.5

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 1356



II. LINEAR ITERATIVE PROTOCOL AND MODELING OF

MALICIOUS NODE BEHAVIOR

The interaction constraints in a distributed system or

network can be modeled via a directed graph G = {X , E},

where X = {x1, . . . , xN} is the set of nodes in the system

and E ⊆ X ×X represents the communication constraints in

the network (i.e., directed edge (xj , xi) ∈ E if node xi can

receive information directly from node xj). The neighbors

of node i are given by the set Ni = {xj |(xj , xi) ∈ E}.

Suppose that each node i has some initial value, given by

xi[0]. At each time-step k, all nodes update and/or exchange

their values based on some strategy that adheres to the

constraints imposed by the network topology. The scheme

that we study in this paper makes use of linear iterations;

specifically, at each time-step, each node updates its value

as

xi[k + 1] = wiixi[k] +
∑

j∈Ni

wijxj [k] + ui[k] , (1)

where the wij’s are a set of weights.2 The term ui[k] is

used to represent an additive error by node i at time-step k.

Specifically, we introduce the following definition.

Definition 1: Suppose all nodes run the linear iteration for

T time-steps in order to perform function calculation. Node

i is said to be malicious (or faulty) if ui[k] is nonzero for at

least one time-step k, 0 ≤ k ≤ T − 1.

Note that the model for malicious nodes considered here

is quite general, and allows node i to update its value in a

completely arbitrary manner (via appropriate choices of ui[k]
at each time-step). As such, this model encapsulates a wide

variety of malicious behavior (including a conspiracy by a

set of malicious nodes). Note, however, that we do not treat

the case where malicious nodes try to influence the result of

the computation by modifying their initial values; see Part I

of this paper for a further discussion of this issue [6].

Let S = {xi1 , xi2 , . . . , xif
} denote the set of nodes

that are malicious during a run of the linear iteration.

For ease of analysis, the values of all nodes at time-

step k can be aggregated into the value vector x[k] =
[
x1[k] x2[k] · · · xN [k]

]′
, and based on the local up-

dates (1), the update equation for the entire system can be

represented as

x[k + 1] = Wx[k] +
[
ei1 ei2 · · · eif

]

︸ ︷︷ ︸

BS








ui1 [k]
ui2 [k]

...

uif
[k]








︸ ︷︷ ︸

uS [k]

yi[k] = Cix[k], 1 ≤ i ≤ N , (2)

where el denotes a unit vector with a single nonzero entry

with value 1 at its l–th position. The matrix W in the above

equation is called the weight matrix for the linear iteration,

with entry (i, j) containing the weight wij from the linear

2The methodology for choosing the weights appropriately and the impli-
cations of this choice are discussed later in the paper.

update (1); note that this imposes the constraint that the

(i, j)-th entry is zero if node j is not a neighbor of node

i. The quantity yi[k] in equation (2) represents the outputs

(node values) seen by node i during time-step k of the

linear iteration. Specifically, Ci is a (degi +1) × N matrix

with a single 1 in each row capturing the positions of the

state-vector x[k] that are available to node i (these positions

correspond to neighbors of node i, along with node i itself).

The set of all values seen by node i during the first L + 1
time-steps of the linear iteration is given by










yi[0]
yi[1]
yi[2]

...

yi[L]










︸ ︷︷ ︸

yi[0:L]

=










Ci

CiW

CiW
2

...

CiW
L










︸ ︷︷ ︸

Oi,L

x[0]+ (3)










0 0 · · · 0
CiBS 0 · · · 0

CiWBS CiBS · · · 0
...

...
. . .

...

CiW
L−1BS CiW

L−2BS · · · CiBS










︸ ︷︷ ︸

MS
i,L










uS [0]
uS [1]
uS [2]

...

uS [L − 1]










︸ ︷︷ ︸

uS [0:L−1]

.

The matrices Oi,L and MS
i,L will characterize the ability of

node i to calculate the required function of the initial values.

The matrix Oi,L resembles the observability matrix [8] for

the pair (W, Ci) (it is exactly the observability matrix for

L = N − 1), and we will call MS
i,L the fault matrix for the

triplet (W, BS , Ci). Note that our earlier work in [5] focused

on characterizing the conditions under which, for each node

i, the matrix Oi,L allows node i to calculate the desired

function of the initial values (with MS
i,L = 0). We will call

upon the following simple lemma in our development.

Lemma 1: Let S1 and S2 denote two subsets of X , and

define S = S1 ∪S2. Then, the column space of MS
i,L is the

same as the column space of
[

MS1

i,L MS2

i,L

]

.

Proof: Let S1 = {xi1 , xi2 , . . . , xi|S1|
}, S2 =

{xj1 , xj2 , . . . , xj|S2|
}, and S = {xl1 , xl2 , . . . , xl|S|

}, so that

BS1
=

[
ei1 ei2 · · · ei|S1|

]
, BS2

=
[
ej1 · · · ej|S2|

]
,

BS =
[
el1 el2 · · · el|S|

]
. Since S = S1 ∪ S2, we have

R(BS) = R
([

BS1
BS2

])
(where R(·) denotes the column

space of the matrix). From the structure of BS1
, BS2

and

BS , we have R (Oi,LBS) = R
(
Oi,L

[
BS1

BS2

])
for any

L ≥ 0. Using this in the expression for MS
i,L in (3), one

obtains R
(
MS

i,L

)
= R

([

MS1

i,L MS2

i,L

])

.

In the sequel, we will prove the following key result,

thereby showing how to incorporate resilience to malicious

nodes in linear iteration-based function calculation schemes.

Theorem 2: Let f denote the maximum number of mali-

cious nodes that are to be tolerated in a given network G, and

let κ denote the connectivity of the network. If κ ≥ 2f + 1,

then for almost any choice of weight matrix, every node in

the network can calculate any function of the initial values
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after running the linear iteration for at most N time-steps,

even when up to f malicious nodes update their values

arbitrarily (and possibly in a coordinated manner) at each

time-step.

III. CALCULATING FUNCTIONS IN THE PRESENCE OF

MALICIOUS NODES WHEN κ ≥ 2f + 1

The proof of the following theorem provides a procedure

for each node to calculate its desired function in the presence

of malicious nodes.

Theorem 3: Suppose that there exists a weight matrix W

and an integer L such that, for all possible sets S of 2f

nodes, the matrices Oi,L and MS
i,L satisfy

ρ
([
Oi,L MS

i,L

])
= N + ρ

(
MS

i,L

)
. (4)

Then, if the nodes run the linear iteration for L + 1 time-

steps with the weight matrix W , node i can calculate any

arbitrary function of the values x1[0], x2[0], . . . , xN [0], even

when up to f nodes are malicious.

Proof: Let W be a weight matrix that satisfies the

conditions in the above theorem, and let the nodes run

the linear iteration for L + 1 time-steps. Suppose that the

malicious nodes during the linear iteration are a subset of

the set SF = {xj1 , xj2 , . . . , xjf
}. From (3), the values seen

by node i over L + 1 time-steps are given by

yi[0 : L] = Oi,Lx[0] + MSF

i,LuSF
[0 : L − 1] . (5)

Note that if there are fewer than f malicious nodes, the

components of uSF
[0 : L − 1] corresponding to the non-

malicious nodes in SF can simply be set to zero. Let

S1,S2, . . . ,S(N

f ) denote all possible sets of f nodes, and

let MS1

i,L,MS2

i,L, . . . ,M
S
(N

f )
i,L denote the corresponding fault

matrices. With these matrices in hand, suppose node i finds

the first j ∈ {1, 2, . . . ,
(
N
f

)
} such that

ρ
([

Oi,L M
Sj

i,L yi[0 : L]
])

= ρ
([

Oi,L M
Sj

i,L

])

. (6)

In other words, node i finds the first j such that the vector

yi[0 : L] is in the column space of the matrices Oi,L and

M
Sj

i,L (note that such a j is guaranteed to be found, since the

above equation will be satisfied for Sj = SF ). This means

that there exist vectors x̄ and ū such that Oi,Lx̄+M
Sj

i,Lū =
yi[0 : L]. Using (5) and rearranging, we have Oi,L(x[0] −

x̄) = M
Sj

i,Lū −MSF

i,LuSF
[0 : L − 1]. Letting S = SF ∪ Sj ,

we note from Lemma 1 that the above expression can be

written as Oi,L(x[0] − x̄) = MS
i,LuS [0 : L − 1], for some

appropriately defined vector uS [0 : L − 1]. From equation

(4) in the statement of the theorem, the observability matrix

is assumed to be of full column rank, and all its columns

are linearly independent of the columns of the fault matrix

MS
i,L (since the set S has 2f or fewer nodes). This means

that x[0] = x̄ in the above expression, and so

0 = MS
i,LuS [0 : L − 1] = M

Sj

i,Lū−MSF

i,LuSF
[0 : L − 1] ,

or equivalently, MSF

i,LuSF
[0 : L− 1] = M

Sj

i,Lū. Let N
Sj

i,L be

a matrix whose rows form a basis for the left null space of

M
Sj

i,L. Left-multiplying the above expression by N
Sj

i,L, we

obtain N
Sj

i,LM
SF

i,LuSF
[0 : L − 1] = 0, which means that

if we left-multiply (5) by N
Sj

i,L, we have N
Sj

i,Lyi[0 : L] =

N
Sj

i,LOi,Lx[0]. Since the columns of Oi,L are all linearly

independent of the columns of M
Sj

i,L (from equation (4)),

the matrix N
Sj

i,LOi,L will have full column rank. Define

P
Sj

i,L =
(

N
Sj

i,LOi,L

)†

N
Sj

i,L , (7)

where the notation (·)† indicates the left inverse of a matrix.

One can verify that

P
Sj

i,Lyi[0 : L] = x[0] , (8)

and so node i can obtain the entire set of initial values x[0]
from the above equation (and thereby calculate any function

of those values).

In the sequel, we will show that when κ ≥ 2f +1, one can

find a weight matrix W and an integer L so that all columns

of the observability matrix Oi,L will be linearly independent

of each other, and of the columns in MS
i,L, for every i and

for any set S of up to 2f nodes (i.e., equation (4) will be

satisfied for every node i). To find such a weight matrix, we

will first require some concepts from classical control theory.

A. Strong Observability

Consider a linear system of the form

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k] , (9)

with state vector x ∈ Rn, input u ∈ Rm and output y ∈ Rp,

with p ≥ m. When the values of the inputs at each time-

step are completely unknown and arbitrary, systems of the

above form are termed linear systems with unknown inputs

[9]. For such systems, the following terminology has been

established in the literature (e.g., see [9], [10], [11]).

Definition 2: A linear system with unknown inputs (of the

form (9)) is said to be strongly observable if y[k] = 0 for all

k implies x[0] = 0 (regardless of the values of the unknown

inputs u[k]).
Definition 3: For the linear system (9), the matrix

P (z) =
[

A−zIn B
C D

]
is called the matrix pencil of the set

(A, B, C, D).
Definition 4: The normal-rank of the matrix pencil P (z)

is defined as ρn(P (z)) ≡ maxz0∈C ρ(P (z0)).
Definition 5: The complex number s ∈ C is called an

invariant zero of the system (9) if ρ (P (s)) < ρn(P (z)).
Theorem 4 ([10], [12], [9]): The following statements

are equivalent for the system (9):

• Denoting the output of the system over n time-steps by







y[0]
y[1]

...

y[n − 1]








=








C

CA
...

CAn−1








︸ ︷︷ ︸

On−1

x[0]+
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D 0 · · · 0
CB D · · · 0

...
...

. . .
...

CAn−2B CAn−3B · · · D








︸ ︷︷ ︸

Mn−1








u[0]
u[1]

...

u[n − 1]








,

the matrices On−1 and Mn−1 satisfy

ρ
([
On−1 Mn−1

])
= n + ρ (Mn−1).

• The set (A, B, C, D) has no invariant zeros.

• The system is strongly observable.

The above theorem indicates that if we can choose the

weight matrix W so that the set (W, BS , Ci, 0) has no

invariant zeros, for all possible sets S of 2f nodes, then the

rank condition in equation (4) of Theorem 3 will be satisfied

with L = N − 1 (note that the assumption p ≥ m will be

trivially satisfied in networks that have (2f +1)-connectivity,

because each node i will have at least 2f +1 neighbors, and

thus Ci will have at least 2f +2 rows). Therefore, node i will

be able to calculate any desired function of the initial values,

even in the presence of up to f malicious nodes. Thus, we

now focus on choosing W so that this is the case.

B. Invariant Zeros

Let S = {xi1 , xi2 , . . . , xi2f
} denote any set of 2f nodes,

and let S̄ = X − S. Define BS =
[
ei1 ei2 · · · ei2f

]
.

For any choice of weights for the linear iteration, let WS̄

represent the weight matrix corresponding to interconnec-

tions within the set S̄, WS,S̄ represent the weight matrix

corresponding to connections from the set S to the set S̄,

WS represent the weight matrix corresponding to intercon-

nections within the set S, and WS̄,S represent the weight

matrix corresponding to connections from the set S̄ to the

set S. Note that WS̄ has dimension (N−2f)×(N−2f), and

WS has dimension (2f)×(2f). Furthermore, for any node i,

let Ci =
[
Ci,S̄ Ci,S

]
denote a (degi +1)×N matrix with

a single 1 in each row corresponding to the nodes in X that

are neighbors of node i, along with node i itself (the first

N − 2f columns correspond to nodes in S̄ and the last 2f

columns correspond to nodes in S).

Lemma 2: For any set S of 2f nodes, the invariant

zeros of (W, BS , Ci, 0) are exactly the invariant zeros of

(WS̄ , WS,S̄ , Ci,S̄ , Ci,S).
Proof: The matrix pencil for the set (W, BS , Ci, 0) is

given by P (z) =
[

W−zIN BS

Ci 0

]
. Without loss of generality,

we can assume that W is of the form

W =

[
WS̄ WS,S̄

WS̄,S WS

]

,

since this is obtained simply by renumbering the nodes so

that nodes in the set S have indices between N −2f +1 and

N . This also means that BS has the form BS =
[

0
I2f

]
, and

substituting these equations (with Ci =
[
Ci,S̄ Ci,S

]
) into

the above expression for P (z), we see that

ρ(P (z)) = 2f + ρ

([
WS̄ − zIN−2f WS,S̄

Ci,S̄ Ci,S

])

.

Thus, the invariant zeros of the set (W, BS , Ci, 0) are exactly

the invariant zeros of the set (WS̄ , WS,S̄ , Ci,S̄ , Ci,S).
Lemma 2 and Theorem 4 reveal that in order to ensure

that the rank condition (4) in Theorem 3 is satisfied for

every node i, we can focus on the problem of choosing

the weights so that the set (WS̄ , WS,S̄ , Ci,S̄ , Ci,S) will have

no invariant zeros, for any choice of i and for any set S
of 2f nodes. To choose a set of weights that accomplishes

this, we will use techniques from a branch of control theory

pertaining to linear structured systems [13]. Specifically, a

linear system of the form (9) is said to be structured if

each entry of the matrices A, B, C and D is either a

fixed zero or an independent free parameter. It is known

that linear systems have certain structural properties (such as

observability, controllability, etc.), and these properties hold

generically. In other words, if the structural property holds

for some particular choice of free parameters, it will hold for

almost any choice of parameters (i.e., the set of parameters

for which the property does not hold has Lebesgue measure

zero) [13]. It turns out that the number of invariant zeros of

a linear system is also a structured property (i.e., a linear

system with a given zero/nonzero structure will have the

same number of invariant zeros for almost any choice of

the free parameters) [11].

To analyze structural properties (such as the number of

invariant zeros) of linear systems, one first associates a graph

H with the structured set (A, B, C, D) as follows. The vertex

set of H is given by X ∪U∪Y , where X = {x1, x2, . . . , xn}
is the set of state vertices, U = {u1, u2, . . . , um} is the set of

input vertices, and Y = {y1, y2, . . . , yp} is the set of output

vertices. The edge set of H is given by Exx∪Eux∪Exy∪Euy ,

where Exx = {(xj , xi)|Aij 6= 0}, Eux = {(uj , xi)|Bij 6= 0},

Exy = {(xj , yi)|Cij 6= 0}, and Euy = {(uj, yi)|Dij 6= 0}.

The following theorems characterize the generic number of

invariant zeros of a structured system and the generic normal-

rank of a structured matrix pencil in terms of the associated

graph H. The terminology Y-topped path is used to denote

a path with end vertex in Y . Recall that a linking is a set of

vertex disjoint paths.

Theorem 5 ([11], [13]): Let P (z) be the matrix pencil

of the structured set (A, B, C, D), and let the normal-rank

of P (z) be n + m, even after the deletion of an arbitrary

row from P (z). Then the generic number of invariant zeros

of system (9) is equal to n minus the maximal number of

vertices in X contained in the disjoint union of a size m

linking from U to Y , a set of cycles in X , and a set of

Y-topped paths.

Theorem 6 ([11]): Let P (z) be the matrix pencil of the

structured set (A, B, C, D). Then the normal-rank of P (z)
is generically equal to n plus the maximum size of a linking

from U to Y .

To apply the above results to the problem of de-

termining the number of invariant zeros of the set

(WS̄ , WS,S̄ , Ci,S̄ , Ci,S), we note that all matrices in this

set are essentially structured matrices, with the exception

that the nonzero entries in Ci,S̄ and Ci,S are taken to be

1 rather than free parameters. However, one can easily show
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that this fact does not affect the normal rank or the number

of invariant zeros of the system (e.g., by using a technique

similar to the one described in [5]). We can therefore treat

(WS̄ , WS,S̄ , Ci,S̄ , Ci,S) as a structured set, and use the above

results on structured systems to prove the following lemma

for the linear iteration in (2).

Lemma 3: Let the graph of the network G have connec-

tivity κ. Let xi be any node in the network, and let S be

any set of 2f nodes. If κ ≥ 2f + 1, then for almost any

choice of weights, the set (WS̄ , WS,S̄ , Ci,S̄ , Ci,S) will have

no invariant zeros.

Proof: We will show that the matrix pencil

P (z) =

[
WS̄ − zIN−2f WS,S̄

Ci,S̄ Ci,S

]

has full normal-rank (equal to N ) even after the deletion of

an arbitrary row. We will then use Theorem 5 to prove the

lemma.

We start by constructing the graph H associated with

the matrices (WS̄ , WS,S̄ , Ci,S̄ , Ci,S) in P (z). For this set

of matrices, note that the state vertices in the graph H are

given by the set S̄ , and the input vertices are given by the

set S. In particular, H can be obtained by first taking the

graph of the network G, and removing all incoming edges

to nodes in S (since the nodes in S are treated as inputs

in the above set of matrices). To this graph, add degi +1
output vertices (denoted by the set Yi), and place a single

edge from the set xi ∪ Ni to vertices in Yi, corresponding

to the single nonzero entry in each row of the matrices Ci,S̄

and Ci,S . Furthermore, add a self loop to every state vertex

to correspond to the nonzero entries on the diagonal of the

weight matrix WS̄ .

Suppose we remove one of the rows of P (z) correspond-

ing to a vertex v ∈ S̄ (i.e., one of the top N − 2f rows of

P (z)), and denote the resulting matrix by P̄ (z). The generic

rank of P̄ (z) can be found by examining the associated

graph, which we will denote by H̄. Note that H̄ is obtained

from H simply by removing all incoming edges to vertex v

in H, since we removed the row corresponding to v from

P (z); however, all outgoing edges from v are still left in

the graph (since the column corresponding to vertex v is left

in matrix P̄ (z)). Thus, we see that vertex v can be treated

as an input vertex in H̄, leaving N − 2f − 1 state vertices

(corresponding to the set S̄ −v). Since the set S ∪v has size

2f +1, and since the graph G of the network has connectivity

κ ≥ 2f +1, Theorem 1 indicates that there will be a linking

of size 2f +1 from the set S ∪v to the set xi ∪Ni in G, and

hence in H̄ (since such a linking would not use any incoming

edges to S ∪ v). Furthermore, since each vertex in xi ∪ Ni

has a one-to-one correspondence to a vertex in Yi, we see

from Theorem 6 that the matrix pencil P̄ (z) will generically

have full normal-rank (equal to (N −2f−1)+2f +1 = N ).

Suppose we remove one of the bottom degi +1 rows of

P (z) (corresponding to one of the output vertices in Yi) to

form matrix P̄ (z). The associated graph H̄ is obtained by

simply removing the appropriate output vertex from H, and

since degi +1 ≥ κ + 1 ≥ 2f + 2, there will be at least

2f + 1 output vertices in H̄. Choose any 2f of the nodes in

xi ∪Ni such that none of the chosen nodes have an edge to

the removed output vertex in H (this is possible since each

output vertex only connects to a single vertex in xi ∪ Ni).

Denote these 2f nodes by Xi. Once again, since the graph

is at least 2f +1 connected, there exists a linking of size 2f

from S to Xi, and therefore to the remaining output vertices

in H̄. From Theorem 6, the matrix pencil will generically

have full normal-rank (equal to (N − 2f) + 2f = N ) even

after deleting one of the bottom degi +1 rows of P (z).
The above arguments show that P (z) will generically

have full column rank after deleting an arbitrary row. From

Theorem 5, the number of invariant zeros of P (z) is equal to

N−2f minus the maximal number of vertices in S̄ contained

in the disjoint union of a size 2f linking from S to Yi, a cycle

family in S̄, and a Yi-topped path family (in the graph H). If

we simply take all the self-loops in H (corresponding to the

nonzero weights on the diagonal of the weight matrix WS̄ ),

we will have a set of disjoint cycles that covers all N − 2f

vertices in S̄ . Thus, the matrix pencil P (z) will generically

have no invariant zeros, thereby proving the lemma.

We now prove Theorem 2 (provided in Section II).

Proof: From Lemmas 2 and 3, we see that for almost

any choice of weight matrix W , the set (W, BS , Ci, 0)
will have no invariant zeros, for any i and any set S of

2f nodes. Furthermore, since the set of weights for which

this property does not hold has measure zero, it will hold

generically (and therefore simultaneously) for all i and for

all possible sets S of 2f nodes. From Theorem 4, we see that

ρ
([
Oi,N−1 MS

i,N−1

])
= N +ρ

(
MS

i,N−1

)
, for all nodes i

and all sets S of 2f nodes. Thus, Theorem 3 indicates every

node can calculate any arbitrary function of the initial values

after running the linear iteration for at most N time-steps,

despite the actions of up to f malicious nodes.

IV. EXAMPLE
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Fig. 1. Network with weights chosen from the set
{−4,−3,−2,−1, 1, 2, 3, 4}.

Consider the network shown in Fig. 1. The objective in this

network is for all nodes to calculate the function
∑5

i=1 x2
i [0],

even if there is up to f = 1 malicious node in the network.

A. Network Design

Examining the network, we see that the connectivity of the

network is κ = 3 (since removing any two nodes still leaves a

strongly connected network), and so Theorem 2 indicates that

every node can calculate the desired function after running

the linear iteration with almost any choice of weights for
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at most N = 5 time-steps, despite the presence of up to

one malicious node. For this example, we choose each of

the edge and self weights as an independent random variable

uniformly distributed in the set3 {−4,−3,−2,−1, 1, 2, 3, 4}.

The resulting weights are shown in Fig. 1, and produce the

weight matrix W in (2). For brevity, we will focus on node

3 in the network. Since node 3 has access to its own value,

as well as those of its neighbors (nodes 1, 2 and 5), at each

time-step, the matrix C3 is given by C3 =

[
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

]

. With

the above set of weights, one can verify that equation (4) is

satisfied with i = 3 and L = 1 for all sets S of 2f = 2 nodes,

where Oi,L and MS
i,L are defined in equation (3). Based on

Theorem 2, node 3 can find the candidate malicious node in

the system after running the linear iteration for L + 1 = 2
time-steps if it has access to the matrices O3,1 =

[
C3

C3W

]

and M
Sj

3,1 =
[

0
C3BSj

]

for all possible sets Sj = {xj} of one

malicious node (note that there are
(
5
1

)
= 5 such sets). For

each set Sj , we also calculate the matrices P
Sj

3,1 given in (7),

satisfying P
Sj

3,1M
Sj

3,1 = 0 and P
Sj

3,1O3,1 = IN , and provide

these matrices to node 3. We will omit the explicit values of

these matrices in the interest of space. At this point, node

3 has all the information it needs to calculate the function
∑5

i=1 x2
i [0], even in the presence of one malicious node.

Performing the same analysis for all nodes i, one finds that

equation (4) is satisfied with L = 1 for all i and all sets S of

2f = 2 nodes. Therefore, all nodes can calculate the function
∑5

i=1 x2
i [0] after running the linear iteration for L + 1 = 2

time-steps.

B. Performing Function Calculation

Suppose that the initial values of the nodes are x[0] =
[

3 −1 4 −4 7
]′

, and the nodes run the linear itera-

tion with the weights shown in Fig. 1; however, suppose that

node 1 is malicious and updates its value as

x1[1] = −3x1[0] + 2x2[0] + 1x3[0] + 2x4[0] + 2x5[0] − 8 ,

i.e., during the first time-step, it commits an additive error

of u1[0] = −8. All other nodes follow the predefined

(correct) strategy of updating their values according to the

weighted average specified by the weight matrix W . Af-

ter one iteration, the values of all nodes become x[1] =
[
−9 31 23 14 −8

]′
. Since the values seen by node

3 at time-step k are given by y3[k] = C3x[k], the values seen

by node 3 over the two time-steps of the linear iteration are

y3[0 : 1] =
[

3 −1 4 7 −9 31 23 −8
]′

. Node

3 can now use these values to eliminate the effects of the

malicious node on the system. As discussed in Theorem 2,

node 3 finds the first set Sj consisting of one node that

satisfies equation (6); in this case, node 3 finds that this

equation is satisfied for S1 = {x1}. Node 3 then uses

3In general, the result in Theorem 2 will hold with high probability if one
chooses the weights for the linear iteration from a continuous distribution
over the real numbers (such as a Gaussian distribution). For this pedagogical
example, however, it will suffice to consider a distribution on a small set of
integers.

equation (8) to multiply the vector y3[0 : 1] by the matrix

PS1

3,1, and this produces PS1

3,1y3[0 : 1] = x[0]. Node 3 can

now calculate the function
∑5

i=1 x2
i [0], and obtains the value

91. All other nodes obtain the function value in the same way,

and the system reaches consensus in 2 time-steps. Note that

no scheme can produce consensus in this network in fewer

than 2 time-steps (since the diameter of the graph is 2), and

so the linear iterative strategy is time optimal for this graph,

even in the presence of one malicious node.

V. SUMMARY

In this paper, we considered the problem of enabling

nodes to calculate functions in a network in the presence

of malicious or malfunctioning nodes. We utilized a linear

iteration to provide this capability, and showed that if the

network is at least (2f + 1)-connected, then for almost any

choice of weights, it is possible for any node i to follow a

checking/correction strategy that enables it to calculate any

arbitrary function despite the presence of up to f malicious

nodes (after running the linear iteration for at most N time-

steps). This result complements the analysis in [6], where it

was shown that if the connectivity of the network satisfies

κ ≤ 2f , it is possible for f malicious nodes to prevent some

nodes from calculating any function of all values, regardless

of the choice of weight matrix and the number of steps used

in the linear iteration.
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