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Abstract— We consider the problem of distributed function
calculation in the presence of faulty or malicious agents. In
particular, we consider a setup where each node has an initial
value and the goal is for (a subset of) the nodes to calculate
a function of these values in a distributed manner. We focus
on linear iterative strategies for function calculation, where
each node updates its value at each time-step to be a weighted
average of its own previous value and those of its neighbors;
after a sufficiently large number of time-steps, each node is
expected to have enough information to calculate the desired
function of the initial node values. We study the susceptibility of
such strategies to misbehavior by some nodes in the network;
specifically, we consider a node to be malicious if it updates
its value arbitrarily at each time-step, instead of following the
predefined linear iterative strategy. If the connectivity of the
network topology is 2f or less, we show that it is possible for
a set of f malicious nodes to conspire in a way that makes it
impossible for a subset of the other nodes in the network to
correctly calculate an arbitrary function of all node values. Our
analysis is constructive, in that it provides a specific scheme for
the malicious nodes to follow in order to obfuscate the network
in this fashion.

I. INTRODUCTION

In distributed systems and networks, it is often necessary

for some or all of the nodes to calculate some function

of certain parameters. For example, sink nodes in sensor

networks may be tasked with calculating the average value of

all the sensor measurements [1], [2]. Another example is the

case of multi-agent systems, where all agents communicate

with each other to coordinate their speed and direction

[3]. The problem of function calculation in networks has

been studied by the computer science, communication, and

control communities over the past few decades, leading to the

development of various protocols [4], [1], [5]. Special cases

of distributed function calculation include data transmission

from one or multiple sources to one or multiple sinks, and

the distributed consensus problem, where all nodes in the

network calculate the same function [4]. The notion of con-

sensus has recently received extensive attention in the control

literature, due to its applicability to cooperative control of

multi-agent systems [6]. In these cases, the approach to

consensus is to use a linear iteration, where each node in

the network repeatedly updates its value to be a weighted
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linear combination of its own value and those of its neighbors

(e.g., see [3], [6] and the references therein). These works

have revealed that if the network topology satisfies certain

conditions, the weights for the linear iteration can be chosen

so that all of the nodes asymptotically converge to the

same value. Recently, it was shown in [7], [8], [9] that this

linear iterative strategy can actually be applied to the more

general function calculation problem, allowing any node in

the network to calculate any arbitrary function of the node

values in a finite number of time-steps (upper bounded by

the size of the network).

In this paper, we extend and generalize the above results on

linear iterative strategies to address the problem of function

calculation in the presence of malicious or faulty nodes.

Specifically, we allow for the possibility that some nodes

in the network update their values at each time-step in

an arbitrary manner, instead of following the predefined

strategy of using a specific weighted linear combination of

their neighbors’ (and own) values. Such arbitrary updates

can occur, for example, if some nodes in the network are

compromised by a malicious attacker whose objective is

to disrupt the operation of the network [4], or they might

be the result of hardware malfunctions at the nodes, which

cause them to incorrectly calculate their update value [10].

The contribution of this paper is to show that the graph

connectivity is a determining factor for the ability of linear

iterative strategies to tolerate malicious (or faulty) agents.

In particular, if the connectivity of the graph is 2f or less,

then it is possible to find a subset of f nodes that can

conspire to prevent some nodes from calculating an arbitrary

function of all node values (regardless of the choice of

weights in the linear iteration). This result has implications

for the fault-tolerant distributed consensus problem, where

all nodes are required to calculate the same function, even

when there are a certain number of malicious nodes in the

network. While we focus on the attacker’s perspective in this

paper, we also show in the companion paper [11] that linear

iterative strategies can be made robust against malicious

nodes if the connectivity of the network is sufficiently high.

Together, these results effectively narrow the gap between

linear iterative schemes and existing fault-tolerant consensus

protocols (such as those described in [4]). It is worth noting

that the recent paper [12] also considers the problem of

reaching distributed consensus in the presence of malicious

nodes through a model that is similar to the one considered

in our work; however, that paper only requires the non-

malicious nodes to asymptotically reach agreement on the

same value (this value does not necessarily have to be
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any specific function of the initial values). In contrast, we

consider the more general problem of enabling each node to

calculate any arbitrary function of the initial values despite

the presence of malicious nodes, and furthermore, for the

special case of distributed consensus, our results allow the

non-malicious nodes to reach consensus in finite-time.

In our development, we use ei to denote the column vector

with a 1 in its i–th position and 0’s elsewhere. The symbol

IN denotes the N × N identity matrix, and the notation A′

indicates the transpose of matrix A. We will denote the rank

of matrix A by ρ(A), and we will denote the column space

of matrix A by R(A). We will also denote the cardinality of

a set S by |S|, and for a pair of sets S and T , we will use

S − T to denote the set of elements of S that are not in T .

II. BACKGROUND ON GRAPH THEORY

We will use the following terminology in our discussion.

Further details can be found in standard texts on graph

theory, such as [13].

A graph is an ordered pair G = {X , E}, where X =
{x1, . . . , xN} is a set of vertices, and E is a set of ordered

pairs of vertices, called directed edges. If (xi, xj) ∈ E ⇔
(xj , xi) ∈ E , the graph is said to be undirected. The nodes

in the set Ni = {xj |(xj , xi) ∈ E} are said to be neighbors

of node i, and the in-degree of node i is denoted by degi =
|Ni|. A subgraph of G is a graph H = {X̄ , Ē}, with X̄ ⊆ X
and Ē ⊆ E (where all edges in Ē are between vertices in

X̄ ). A subgraph H of G is said to be induced if, whenever

xi, xj ∈ X̄ , (xi, xj) ∈ Ē ⇔ (xi, xj) ∈ E .

A path P from vertex xi0 to vertex xit
is a sequence of

vertices xi0 , xi1 , . . . , xit
such that (xij

, xij+1
) ∈ E for 0 ≤

j ≤ t− 1. A path is called a cycle if its start vertex and end

vertex are the same, and no other vertex appears more than

once in the path. Paths P1 and P2 are vertex disjoint if they

have no vertices in common. A set of paths P1, P2, . . . , Pr

are vertex disjoint if the paths are pairwise vertex disjoint.

Given two subsets X1,X2 ⊂ X , a set of r vertex disjoint

paths, each with start vertex in X1 and end vertex in X2, is

called an r-linking from X1 to X2. Note that if X1 and X2

are not disjoint, we will take each of their common vertices

to be a vertex disjoint path between X1 and X2 of length

zero.

A graph is said to be strongly connected if there is a path

between vertices xi to xj for every xi, xj ∈ X . We will

call a graph disconnected if there exists at least one pair of

vertices xi, xj ∈ X such that there is no path from xi to xj .

A vertex cut in a graph is a subset S ⊂ X such that removing

the vertices in S (and the associated edges) from the graph

causes the graph to be disconnected. A graph is said to be

κ-connected if every vertex cut has cardinality at least κ. The

connectivity of a graph is the smallest size of a vertex cut.

Note that if a graph is κ-connected, the in-degree of every

node must be at least κ (otherwise, we can disconnect the

graph by removing all the neighbors of the offending node,

thereby producing a vertex cut of size less than κ).

III. FUNCTION CALCULATION VIA LINEAR ITERATIONS

The interaction constraints in distributed systems and

networks can be conveniently modeled via a directed graph

G = {X , E}, where X = {x1, . . . , xN} is the set of nodes

in the system and E ⊆ X ×X represents the communication

constraints in the network (i.e., directed edge (xj , xi) ∈ E if

node xi can receive information directly from node xj). Note

that undirected graphs can be readily handled by treating

each undirected edge as two directed edges.

Suppose that each node i has some initial value, given by

xi[0], and the goal is for (a subset of) the nodes to calculate

some function of these initial values. At each time-step k,

all nodes can update and/or exchange their values based on

some strategy that adheres to the constraints imposed by the

network topology. The scheme that we study in this paper

makes use of linear iterations; specifically, at each time-step,

each node updates its value as

xi[k + 1] = wiixi[k] +
∑

j∈Ni

wijxj [k] , (1)

where the wij ’s are a set of weights.1 In other words, each

node updates its value to be a linear combination of its own

value and the values of its neighbors. For ease of analysis, the

values of all nodes at time-step k can be aggregated into the

value vector x[k] =
[
x1[k] x2[k] · · · xN [k]

]′
, and the

update strategy for the entire system can be represented as

x[k+1] = Wx[k], for k = 0, 1, . . ., where the (i, j)–th entry

of the weight matrix W is the weight wij (note that wij = 0
if j /∈ Ni). The values (or outputs) that are available to node i
during the k–th time-step will be denoted by yi[k] = Cix[k],
where Ci is a (degi +1)×N matrix with a single 1 in each

row denoting the positions of the state-vector x[k] that are

available to node i (i.e., these positions correspond to nodes

that are neighbors of node i, along with node i itself).

Definition 1: Let g : R
N 7→ R

q be a function of the

initial values of the nodes (note that g(·) will be a vector-

valued function if q ≥ 2). We say g(x1[0], x2[0], . . . , xN [0])
is calculable by node i if it can be calculated by node

i after running the linear iteration for a sufficiently large

number of time-steps. We call g(x1[0], x2[0], . . . , xN [0]) a

linear function if it is of the form Qx[0] for some q × N
matrix Q. The system is said to achieve distributed consensus

if all nodes in the system calculate the same function

g(x1[0], x2[0], . . . , xN [0]) after running the linear iteration

for a sufficiently large number of time-steps.

In [9], it was shown that, for almost any choice of weights,

the nodes in the system can calculate any arbitrary function

of the other node values after running the linear iteration

x[k + 1] = Wx[k] for a finite number of time-steps (as

long as there are paths from the nodes that hold the needed

values to the nodes that have to calculate the functions). We

will now summarize the salient points of the analysis in that

paper. First, by noting that x[k] = W kx[0], the output at

time-step k can be written as yi[k] = CiW
kx[0], and the

1The methodology for choosing the weights appropriately and the impli-
cations of this choice are discussed later in the paper.
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set of all outputs seen by node i over L + 1 time-steps is

given by







yi[0]
yi[1]

...

yi[L]








︸ ︷︷ ︸

yi[0:L]

=








Ci

CiW
...

CiW
L








︸ ︷︷ ︸

Oi,L

x[0] . (2)

When L = N − 1, the matrix Oi,L in the above equation is

the observability matrix for the pair (W, Ci) [14]. The row-

space of Oi,L characterizes the set of all linear functions

of x[0] that can be calculated by node i up to time-step

L. Specifically, if the row space of the observability matrix

Oi,L contains a matrix Q, one can find a matrix Γi such

that ΓiOi,L = Q. Thus, after running the linear iteration for

L+1 time-steps, node i can immediately calculate the linear

function Qx[0] as a linear combination of the outputs of the

system over those time steps, i.e.,

Γiyi[0 : L] = ΓiOi,Lx[0] = Qx[0] . (3)

If ρ(Oi,L) = N , the pair (W, Ei) is said to be observable.

In this case, node i can determine the entire initial value

vector x[0] from the outputs of the system (since the matrix

Q = IN will be contained in the row space of Oi,L), and

can therefore calculate any function of those values.

An important feature of the observability matrix is that

there exists an integer νi such that ρ(Oi,0) < ρ(Oi,1) <
· · · < ρ(Oi,νi−1) = ρ(Oi,νi

) = ρ(Oi,νi+1) = · · · . In

other words, the rank of the matrix Oi,L monotonically

increases with L until L = νi − 1, at which point it

stops increasing. This means that the outputs of the system

yi[0],yi[1], . . . ,yi[νi − 1] contain the maximum amount of

information that is possible to obtain about the initial state,

and future outputs of the system do not provide any extra

information to node i. The integer νi is called the observ-

ability index of the pair (W, Ci), and can be upper bounded

as νi ≤ N − degi [9]. This implies that if it is possible for

node i to calculate the desired value g(x1[0], . . . , xN [0]), it

can do so in at most N − degi time-steps.

The following theorem from [9] indicates that, for almost

any choice of weight matrix, the observability matrix for

each node i will allow node i to obtain the initial value

of all nodes that have a path in the network to node i. As a

consequence, each node i can calculate any arbitrary function

of these initial values after running the linear iteration for a

finite number of time-steps.

Theorem 1: Let G denote the graph of the network. Define

the set Ri = {xj | There exists a path from xj to xi in G}.

Then, for almost any choice of weight matrix W , node i
can obtain the value xj [0], xj ∈ Ri, after running the linear

iteration x[k + 1] = Wx[k] for Li + 1 time-steps, for some

0 ≤ Li < |Ri| − degi; node i can therefore calculate any

arbitrary function of the values {xj [0] | xj ∈ Ri}.

In the above theorem, the phrase “almost any” indicates

that the set of parameters for which the theorem does not

hold has Lebesgue measure zero [9]. When the graph is

strongly connected, there is a path from every node to every

other node, and so each node can calculate any arbitrary

function of the initial values after running the linear iteration

for maxi(N − degi) time-steps. As discussed in [9], the

weights can be chosen (almost arbitrarily) by a centralized

entity and provided to the nodes2 a priori, or they can be

chosen independently by each node and discovered by the

network after following a simple distributed protocol.

Remark 1: Note that unlike asymptotic consensus

schemes, where x[k] converges to a constant vector after

running the linear iteration for an infinite number of time-

steps, the protocol described above does not require x[k]
to converge to any particular vector (or even to converge

at all). Instead, each node i is able to calculate its desired

function from (3) by examining the evolution of its own

values and the values of its neighbors over a finite number

of time-steps.

In this paper, we will examine the susceptibility of linear

iteration based function calculation schemes to misbehavior

by a set of nodes that update their values at each time-step

in a malicious manner.

IV. MODELING MALICIOUS NODES AND MAIN RESULT

Suppose the objective in the system is for each node i to

calculate gi(x1[0], x2[0], . . . , xN [0]), for some function gi :
R

N → R
qi that could be different for each node. When there

are no malicious nodes in the network, we saw in the last

section that this can be accomplished by having the nodes

run the linear iteration x[k + 1] = Wx[k] with almost any

weight matrix W for a finite number of time-steps. Suppose,

however, that instead of applying the update equation (1),

some node l updates its value at each time-step as

xl[k + 1] = wllxl[k] +
∑

j∈Nl

wljxj [k] + ul[k] , (4)

where ul[k] is an additive error at time-step k.

Definition 2: Suppose all nodes run the linear iteration for

T time-steps in order to perform function calculation. Node

l is said to be malicious (or faulty) if ul[k] is nonzero for at

least one time-step k, 0 ≤ k ≤ T − 1.

Note that the model for malicious nodes considered here

is quite general, and allows node l to update its value in a

completely arbitrary manner (via appropriate choices of the

error ul[k] at each time-step). Let S = {xi1 , xi2 , . . . , xif
}

denote the set of nodes that are malicious during a run of

the linear iteration. Using (4), the linear iteration can then

be modeled as

x[k + 1] = Wx[k] +
[
ei1 ei2 · · · eif

]

︸ ︷︷ ︸

BS








ui1 [k]
ui2 [k]

...

uif
[k]








︸ ︷︷ ︸

uS [k]

yi[k] = Cix[k], 1 ≤ i ≤ N , (5)

2Actually, each node i only requires the weights corresponding to the i-th
row of W , along with the coefficient matrix Γi solving (3) with Q = IN .
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where yi[k] represents the outputs (node values) seen by

node i during time-step k of the linear iteration (recall that

Ci is a (degi +1) × N matrix with a single 1 in each

row capturing the positions of the state-vector x[k] that are

available to node i, and el denotes a unit vector with a single

nonzero entry with value 1 at its l–th position). The set of

all values seen by node i during the first L+1 time-steps of

the linear iteration is given by

yi[0 : L] = Oi,Lx[0]+ (6)









0 0 · · · 0
CiBS 0 · · · 0

CiWBS CiBS · · · 0
...

...
. . .

...

CiW
L−1BS CiW

L−2BS · · · CiBS










︸ ︷︷ ︸

MS
i,L










uS [0]
uS [1]
uS [2]

...

uS [L − 1]










︸ ︷︷ ︸

uS [0:L−1]

,

where yi[0 : L] and Oi,L are defined in equation (2). The

matrices Oi,L and MS
i,L will characterize the ability of node

i to calculate the required function of the initial values, and

we will call MS
i,L the fault matrix for the triplet (W, BS , Ci).

In our development, we will use the fact that matrices Oi,L

and MS
i,L can be expressed recursively as

Oi,L =

[
Ci

Oi,L−1W

]

, MS
i,L =

[
0 0

Oi,L−1BS MS
i,L−1

]

,

(7)

where Oi,0 = Ci and MS
i,0 is the empty matrix (with zero

columns). We will demonstrate the following key result,

showing how a set of malicious nodes can prevent some

nodes in the network from calculating an arbitrary function

of all initial node values.

Theorem 2: Let the graph of the given network G have

connectivity κ. If κ ≤ 2f , then regardless of the choice of

weight matrix in the linear iterative strategy, it is possible for

f malicious nodes to conspire to update their values in such

a way that some node cannot correctly calculate an arbitrary

function of all initial node values, regardless of the number

of time-steps for which the linear iteration is run.

We will develop the proof of this theorem over the

remainder of the paper. Note that naturally, there is no way

to prevent a malicious node from trying to influence the

result of a computation by changing its own initial value.

We will choose not to address this here, because of the

philosophically different nature of this issue, and because

of the fact that our problem formulation remains valid in

cases where malicious nodes do not contribute initial values

(i.e., they function as routers).

V. ATTACKING THE NETWORK WHEN κ ≤ 2f

In order to prove Theorem 2, we will start by establishing

a relationship between the column space of the fault matrices

and the column space of the observability matrix for certain

nodes in the network. To do this, consider the graph of a

given network G, and let S1 = {xl1 , xl2 , . . . , xl|S1|
}, S2 =

{xh1
, xh2

, . . . , xh|S2|
} denote disjoint sets of vertices such

that S = S1∪S2 forms a vertex cut of G. Let xi, xj ∈ X −S

be nodes such that there is no path from node j to node i
in the graph induced by X − S (such nodes exist because

S is a vertex cut). Let H denote the set of all nodes that

have a path to node i in the graph induced by X − S, and

let H̄ = X − (H ∪ S).

Theorem 3: For any nonnegative integer L, the columns

of the observability matrix Oi,L corresponding to the nodes

in H̄ can be written as a linear combination of the columns

in the matrices MS1

i,L and MS2

i,L.

Proof: Let xH[k] denote the vector of values of nodes

in set H, xS1
[k] denote the vector of values of nodes in set

S1, xS2
[k] denote the vector of values of nodes in set S2, and

xH̄[k] denote the vector of values of nodes in set H̄. Note that

xi[k] is contained in xH[k], xj [k] is contained in xH̄[k], and

that the sets H,S1,S2, and H̄ are disjoint. Assume without

loss of generality that the vector x[k] in (5) is of the form

x[k] =
[
x′
H[k] x′

S1
[k] x′

S2
[k] x′

H̄
[k]

]′
(it can always be

put into this form via an appropriate permutation of the node

indices). Then, since no node in set H has an incoming edge

from any node in set H̄ (otherwise, there would be a path

from a node in H̄ to node i), the weight matrix for the linear

iteration must necessarily have the form

W =







W11 W12 W13 0
W21 W22 W23 W24

W31 W32 W33 W34

W41 W42 W43 W44







. (8)

The Ci matrix in (5) for node i must be of the form

Ci =
[
Ci,1 Ci,2 Ci,3 0

]
, again because node i has no

neighbors in set H̄. Furthermore, from the definition of the

matrix BS in (5), note that this ordering of nodes implies that

BS1
=

[
0 I|S1| 0 0

]′
, BS2

=
[
0 0 I|S2| 0

]′
. Let n

denote the number of nodes in set H̄ (i.e., xH̄[k] ∈ R
n).

For any nonnegative integer L, the set of columns of the

observability matrix Oi,L corresponding to the nodes in H̄

is given by Oi,L

[
0
0
0
In

]

. Using the recursive definition of Oi,L

in (7), and the fact that Ci

[
0
0
0
In

]

= 0, we obtain

Oi,L







0
0
0
In







=

[
Ci

Oi,L−1W

]







0
0
0
In







=

[
0

Oi,L−1

]

W







0
0
0
In







=

[
0

Oi,L−1

]

BS1
W24 +

[
0

Oi,L−1

]

BS2
W34

+

[
0

Oi,L−1

]







0
0
0
In







W44 .

Applying the above procedure recursively for matrices of

the form
[

0
Oi,L−α

]
[

0
0
0
In

]

, 1 ≤ α ≤ L, we obtain (after some
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algebraic manipulation)

Oi,L







0
0
0
In







= MS1

i,L








W24

W24W44

...

W24W
L−1
44








+ MS2

i,L








W34

W34W44

...

W34W
L−1
44








.

(9)

This concludes the proof of the theorem.

We now show how a certain set of nodes can maliciously

update their values so that some node i cannot obtain any

information about the initial values of some other nodes in

the network.

Lemma 1: If nodes in set S1 are malicious, it is possible

for them to update their values in such a way that the values

seen by node i (over any number of time-steps of the linear

iteration) are indistinguishable from the values seen by node

i when nodes in set S2 are malicious. Furthermore, these

indistinguishable faults make it impossible for node i to

determine the initial values of nodes in the set H̄.

Proof: As in the proof of Theorem 3, let xH[k],xS1
[k],

xS2
[k], and xH̄[k] denote the vector of values of nodes in

sets H, S1, S2, and H̄, respectively, and assume (without loss

of generality) that the vector x[k] in (5) is of the form x[k] =
[
x′
H[k] x′

S1
[k] x′

S2
[k] x′

H̄
[k]

]′
. Let n be the number of

nodes in set H̄ and let a,b ∈ R
n be arbitrary vectors. We will

now show that the values seen by node i when nodes in S1

are malicious and xH̄[0] = a will be indistinguishable from

the values seen by node i when nodes in S2 are malicious

and xH̄[0] = b. This will imply that node i cannot determine

whether the initial values of nodes in H̄ are given by vector

a or vector b.

To this end, suppose the nodes in set S1 are malicious.

From (6), the values seen by node i over L + 1 time-steps

are given by yi[0 : L] = Oi,Lx[0] + MS1

i,LuS1
[0 : L − 1].

From Theorem 3 (specifically, equation (9)), this expression

can be written as

yi[0 : L] = Oi,L







xH[0]
xS1

[0]
xS2

[0]
0







+ MS1

i,LuS1
[0 : L − 1]

+







MS1

i,L








W24

W24W44

...

W24W
L−1
44








+ MS2

i,L








W34

W34W44

...

W34W
L−1
44















xH̄[0].

(10)

Suppose xH̄[0] = a, and that nodes in S1 update their

values at each time-step k with the error values uS1
[k] =

W24W
k
44(b − a), producing the error vector

uS1
[0 : L − 1] =








W24

W24W44

...

W24W
L−1
44








(b− a) . (11)

Substituting this into the expression for yi[0 : L] (with

xH̄[0] = a), the values seen by node i under this fault

scenario are given by

yi[0 : L] = Oi,L







xH[0]
xS1

[0]
xS2

[0]
0







+ MS1

i,L








W24

W24W44

...

W24W
L−1
44








b

+ MS2

i,L








W34

W34W44

...

W34W
L−1
44








a . (12)

Now suppose that nodes in S2 are malicious (instead of nodes

in S1). Again, from (6) and Theorem 3, the values seen by

node i over L + 1 time-steps will be given by equation

(10), except with the term MS1

i,LuS1
[0 : L − 1] replaced

by MS2

i,LuS2
[0 : L − 1]. If xH̄[0] = b, and nodes in S2

update their values at each time-step k with the error values

uS2
[k] = W34W

k
44(a − b), the set of values seen by node

i will be identical to the expression in (12), and thus the

values received by node i when xH̄[0] = a and the nodes in

S1 are malicious will be indistinguishable from the values

seen by node i when xH̄[0] = b and the nodes in S2 are

malicious. Since this holds for all nonnegative integers L,

this fault scenario makes it impossible for node i (and in

fact, any node in set H) to obtain the initial values of node

j (or any other node in set H̄).

We are now in place to prove the main theorem of the

paper (Theorem 2, given at the end of Section IV).

Proof: [Theorem 2] In Lemma 1, we saw that

if the union of the disjoint sets of vertices S1 =
{xl1 , xl2 , . . . , xl|S1|

}, S2 = {xh1
, xh2

, . . . , xh|S2|
} forms a

vertex cut, then some node i cannot distinguish a particular

set of errors by nodes in S1 from another set of errors by

nodes in S2. Furthermore, these errors make it impossible

for node i to obtain any information about the initial values

of some other nodes in the network (i.e., node i cannot

determine whether the initial values of some other nodes

are given by a or b, for some vectors a and b). Choose S1

and S2 such that |S1| = ⌊κ
2 ⌋ and |S2| = ⌈κ

2 ⌉. Since κ ≤ 2f ,

we have ⌊κ
2 ⌋ ≤ f and ⌈κ

2 ⌉ ≤ f , and so S1 and S2 are

both legitimate candidate sets of malicious nodes (if one is

interested in tolerating a maximum of f malicious nodes in

the system). Thus, if κ ≤ 2f , one cannot guarantee that all

nodes can calculate any function of all initial node values

when there are up to f malicious nodes in the system.

VI. EXAMPLE

−3

−1

−2

1

33

4
4

4

−12

2

2

3

21

Fig. 1. Network with edge and self weights chosen from the set
{−4,−3,−2,−1, 1, 2, 3, 4}.
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Consider the network shown in Fig. 1. The objective

in this network is for all nodes to calculate the function

g(x1[0], x2[0], x3[0], x4[0]) =
∑4

i=1 x2
i [0]. Since the network

is strongly connected, Theorem 1 indicates that each node i
can calculate any function of the initial values after running

the linear iteration with almost any choice of weight matrix

for at most N − degi = 2 time-steps (when there are

no malicious nodes in the network). For this example,

we will choose each of the edge and self weights as an

independent random variable uniformly distributed in the

set3 {−4,−3,−2,−1, 1, 2, 3, 4}. These weights are shown

in Fig. 1, and produce the weight matrix

W =







−3 2 2 0
2 −1 0 4
4 0 3 3
0 1 −2 −1







. (13)

One can verify that the observability matrix Oi,N−degi −1 is

of full column rank (with rank 4) for each i, and thus each

node can indeed obtain all initial values after N − degi =
2 time-steps (via equation (3) with Q = I4), and thereby

calculate the function
∑4

i=1 x2
i [0].

However, suppose that we allow for the possibility that

one or more of the nodes in the network are malicious. Since

the network in Fig. 1 has connectivity κ = 2 (e.g., the set

S = {x2, x3} forms a vertex cut), Theorem 2 indicates that

only one malicious node is required in order to prevent some

node from calculating the required function. For example,

suppose that node 2 is malicious, and wants to prevent node

1 from obtaining any information about the value of node

4. Consider the weight matrix in (13). Since the nodes x2

and x3 form a vertex cut (separating the vertices x1 and x4),

we see that the weight matrix is already in the form (8).

Specifically, we have W24 = 4, W34 = 3 and W44 = −1.

Suppose the initial values of the nodes are given by x[0] =
[

3 −1 2 1
]′

, and at each time-step, node 2 updates

its value as

x2[k + 1] = 2x1[k] − x2[k] + 4x4[k] + u2[k] ,

where u2[k] is given by (11) with a = 1 and b = −2
(i.e., node 2 will attempt to prevent node 1 from determining

whether x4[0] = 1 or x4[0] = −2). With this set of updates,

the values seen by node 1 over the first 2 time-steps of

the linear iteration are given by y1[0] =
[
3 −1 2

]′
and

y1[1] =
[
−7 −1 21

]′
. However, one can verify that these

are exactly the values seen by node 1 if the initial values were

x[0] =
[

3 −1 2 −2
]′

, and node 3 updates its values

at each time-step as

x3[k + 1] = 4x1[k] + 3x3[k] + 3x4[k] + u3[k] ,

where u3[k] = W34W
k
44(a − b) with a = 1 and b = −2

(as specified in the proof of Lemma 1). Thus, node 1 cannot

3In general, the result in Theorem 1 will hold with high probability if one
chooses the weights for the linear iteration from a continuous distribution
over the real numbers (such as a Gaussian distribution). For this pedagogical
example, however, it suffices to consider a distribution on a small set of
integers.

determine whether node 2 or node 3 is malicious, and thus

cannot determine whether x4[0] = 1 or x4[0] = −2. As

long as node 2 updates its values at each time-step with the

errors given by (11), node 1 can never distinguish between

malicious behavior by node 2 from malicious behavior by

node 3, regardless of the number of time-steps for which

the linear iteration is run. Node 2 has therefore succeeded in

preventing node 1 from calculating its desired function.

VII. SUMMARY

In this paper, we considered the problem of distributed

function calculation in networks with malicious or mal-

functioning nodes. Specifically, we studied a linear iterative

strategy, and showed that while such a strategy allows nodes

to calculate any function when there are no malicious nodes

in the network, it is possible for a set of malicious nodes

to update their values in such a way as to prevent some

nodes from calculating any function of all node values. In

particular, if the connectivity of the network is 2f or less,

we showed that f malicious nodes can conspire to disrupt

the network in this fashion. In the companion paper [11],

we show that if the connectivity of the graph is greater than

2f , the linear iterative strategy makes it impossible for f
malicious nodes to prevent any node from calculating an

arbitrary function of the initial values.
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