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Abstract— In this paper, closed form expressions of linear
MIMO system responses are used to express the solution of
the Sylvester equation in closed form. The solution makes use
of matrix polynomial formulations of etA. The solutions to
the input and the output Lyapunov equations, i.e. the input
and the output Gramians, are then presented as a special
case. From these the Hankel singular values can be computed.
The final expressions are presented in a form that emphasizes
efficient computational implementation and the resulting time
complexity.

I. INTRODUCTION

There exists an extensive literature within the fields of
ordinary differential equations, difference equations, matrix
theory and Laplace transforms on closed formed expressions.
The majority of such results, however, predates the computer
era, and is not presented in a form that has onus on
efficient algorithmic implementations. This fact, somewhat
surprisingly, is still reflected in modern textbooks, e.g., in
control theory, in the area of signals and systems as well as
mathematics. In these textbooks, the corresponding types of
results are presented in a restrictive setting, with little or no
attention to how they could be implemented in general algo-
rithms. Computer algorithms that have been developed over
recent decades, e.g., within control theory and mathematics,
on the other hand, are often based on general approaches
to numerical solutions of ordinary differential equations and
linear equations that do not make specific use of the structure
that lies in the closed form expressions.

Naturally, much attention has been given to numerical
methods during the past decades with the rapid development
of fast computers. Those generally provide approximate so-
lutions which are often applicable to large systems, see e.g.,
[1] regarding the computation of matrix exponentials and
[2] and [3] regarding the solutions of Lyapunov equations.
Despite the effectiveness and advantages of such numerical
methods, closed form time domain solutions nevertheless
provide direct, easy and accurate computation for small
to midsize systems. Further, closed form solutions open a
window of opportunities definitely worth exploring, e.g. in
the control area for the design of controllers and model
reduction, both in their own right for small to midsize
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systems and by combining them with numerical methods for
large systems.

Closed form continuous time transfer function expressions
(SISO case) were derived in [4] and extended to the case of
repeated eigenvalues in [5]. The closed form lends itself well
to computation and analysis of transfer function responses
and opens up many new interesting applications, e.g., solving
for optimal zero locations by minimizing transient responses
[4]; tracking a given reference step response in [6], and
addressing the model reduction problem by L2/H2 mini-
mization in [7]. The closed form expressions were further
used in the direct computation of coefficients for PID and
generalized PID controllers in [8] and [9].

It is of interest to extend the results obtained for SISO
systems to the MIMO case. Clearly, the results obtained for
SISO systems can be used directly for MIMO systems in
the transfer function matrix form. In the case of MIMO
systems in the state space form, the computation of the
matrix exponential etA becomes of interest. Many different
approaches have been proposed to compute the matrix expo-
nential based, e.g. on eigenvector expansions of the matrix
A, rational approximations to the exponential function and
exact polynomial representations making use of the Cayley
Hamilton theorem, see e.g. [10], [11] and references therein.
It should be noted that for large A matrices, the computation
of the matrix exponential itself is not computationally attrac-
tive and may be plagued by roundoff error[11]. However,
in the case of MIMO responses, the central computational
task is to calculate the vector etAb for a given vector b
and a given matrix A. For this task, the computation can
be arranged into a recursive procedure that lends itself to
efficient implementation. These procedures can be derived
in many different ways, making e.g. use of properties of
confluent Vandermonde matrices and their inverses, interpo-
lation polynomials and inverse Laplace transforms. In [12],
we emphasized the connection with the Laplace transforms
in computing etA, highlighting the potential benefits of the
procedure by applying it to the task of calculating Gramians
and solving the standard Lyapunov equation. This approach
can e.g. be contrasted with that used in Matlab’s lyap which
transforms the corresponding system matrices to the Schur
form, computes the solution of the resulting triangular system
and transforms the solution back[13].
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While some of the basic ideas presented in [12] are
certainly not new, cf e.g., [14] and [15], care has been
taken to formulate them in a framework that can be readily
implemented in a computational environment like Matlab, in
an efficient manner. It should further be emphasized that the
main motivation behind this work is to provide another tool
in the linear systems toolbox, to be used along with methods
that have already been developed, e.g. based on numerical
approaches, indeed these may support each other in further
development.

In this paper, we extend the work in [12] to solving
the Sylvester equation in its most general form, and then
apply the resulting closed form to the input and the output
Lyapunov equations, resulting in closed form Gramians from
which Hankel singular values can be computed. Finally, nu-
merical examples illustrating these approaches are presented.

II. MATHEMATICAL PREREQUISITES

Consider the general state space representation of MIMO
systems in the minimal form given by

ẋ = Ax + Bu
y = Cx

(1)

where A is an n× n matrix, B is n× p and C is r × n.
Assume the matrix A has the characteristic equation

det(sI−A) =

n
∑

i=0

ais
i = (s−λ1)

d1(s−λ2)
d2 · · · (s−λν)dν ,

(2)
where an = 1, the rest of the a′

is are real numbers and λi,
i = 1, . . . , ν are the eigenvalues of A. The corresponding
Jordan matrix (assuming controllability and observability) is
given by

J =













J1 0 · · · 0

0 J2
. . .

...
...

. . .
. . . 0

0 · · · 0 Jν













(3)

with the diagonal blocks

Ji =



















λi 1 · · · · · · 0

0 λi 1
...

0 0 λi 1
...

...
. . .

. . .
. . . 1

0 · · · 0 0 λi



















, (4)

each a di × di matrix.
Now, consider a basic rational function with a unity

numerator:

Fb(s) =
1

sn + an−1sn−1 + · · ·+ a0

=
1

(s− λ1)d1(s− λ2)d2 · · · (s− λν)dν

=

ν
∑

i=1

di
∑

j=1

κij

(s− λi)
j
, (5)

where κij are the basic partial fraction expansion coefficients
which are easily computed recursively as in [5], i.e.,

κij =























∏ν
q=1,q 6=i

1
(λi−λq)dq

, j = di

∑di−j
q=1

κi(j+q)(−1)q

di−j
×

∑ν
p=1,p6=i

dp

(λi−λp)q , j = di − 1, . . . , 1.

(6)

The term basic response refers here to the response of a
transfer function containing only poles and a unity numer-
ator, i.e., the basic impulse response yb(t) is the solution
of

y
(n)
b (t)+an−1y

(n−1)
b (t)+ . . .+a0yb(t) = δ(t), t > 0.

(7)
The basic response is then given by

yb(t) =

ν
∑

i=1

di
∑

j=1

κij

t(di−j)

(di − j)!
eλit = κTE(t), t > 0,

(8)
where

κ =
[

κ11 · · · κ1d1 · · · κν1 · · · κνdν

]T
(9)

and where E(t) is an n × 1 vector containing the linearly
independent basis functions

E(t) =











E1(t)
E2(t)

...
Eν(t)











(10)

with

Ei(t) =













eλit

d
dλi

eλit

...
1

(di−1)!
ddi−1

dλ
di−1

i

eλit













=











eλit

teλit

...
t(di−1)

(di−1)!e
λit











. (11)

We can express etA in the matrix polynomial form[12]

etA =

n−1
∑

i=0

αi(t)A
i, (12)

=

n−1
∑

i=0

(γT
i E(t))A

i, (13)

consistent with the Cayley Hamilton theorem, where γi, i =
0, 1, . . . , n − 1, are n × 1 vectors, which can be computed
recursively as

γn−1 = κ, γn−k−1 = Jγn−k+an−kκ, k = 1, 2, . . . , n−1.
(14)

The derivatives of yb(t) are given by

y
(k)
b (t) = (Jkκ)TE(t), k = 1, 2, . . . . (15)
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Remark 1: Let yb(t) be defined as in (8) and define

Yb(t) =

















yb(t)

y
′

b(t)
...

y
(n−2)
b (t)

y
(n−1)
b (t)

















, (16)

then it follows from (15) and (14) that:














γT
0

γT
1
...

γT
n−2

γT
n−1















E(t) =













a1 · · · an−1 1
... · · 0

an−1 · ·
...

1 0 · · · 0













Yb(t). (17)

III. A CLOSED FORM SOLUTION OF THE SYLVESTER

EQUATION

Consider the Gramian

X ≡

∫ ∞

0

etAFGHetBH

dt, (18)

where X is an m × n matrix, A is m × m, B is n × n,
F is m × p and G is n × p. If Re(λi + µj) < 0 for all
eigenvalues λi of A and µj of B. X satisfies the general
Sylvester equation

AX + XBH + FGH = 0. (19)

This is easily shown by observing that

AX + XB
H

=
∫

∞

0

(

AetA
FG

HetBH

+ etA
FG

HetBH

B
H

)

dt

=
∫

∞

0
d

(

etAFGHetBH
)

= −FGH ,

(20)

where the combined strict stability condition is used in the
last step.

Theorem 1: The Gramian X can be expressed as

X =
n−1
∑

j=0

m−1
∑

i=0

πAB,ijA
iFGH

(

BH
)j

, (21)

where

πAB,ij = γT
A,i

∫ ∞

0

EA(t)EB(t)Hdtγ̄B,j , (22)

with the γi’s defined as in (14) and the E(t)’s defined as in
(10) for the strictly stable matrices A and B.

Proof: We have from (13) that

etAF =

m−1
∑

i=0

(

γT
A,iEA(t)

)

AiF (23)

and

GHetBH

= GH

n−1
∑

j=0

(

γT
BH ,jEBH (t)

)

(

BH
)j

. (24)

Noting that γT
i E(t) is a scalar function, the result follows

directly.
Q.e.d.

Remark 2: The (ρ, σ)–th element of the (k, j)–th
subblock of

∫ ∞

0
EA(t)EB(t)Hdt, i.e., of the matrix

∫ ∞

0
EA,k(t)EB,j(t)

Hdt is given by

∫ ∞

0

EA,k(t)EB,j(t)
Hdtρ,σ =

(

ρ+σ−2
ρ−1

)

(−λA,k − λ̄B,j)ρ+σ−1
.

The subsequent evaluation of the πAB,ij coefficients then
requires ∼ 2mn(m + n) operations. Having calculated the
coefficients πAB,ij , X can be calculated in three steps:

1) Calculate the matrices AiF for i = 0, 1, . . . , m−1 and
BjG for j = 0, 1, . . . , n−1 recursively,∼ 2p(m3+n3)
operations;

2) Calculate
∑m−1

i=0 πAB,ijA
iF for j = 0, 1, . . . , n − 1,

∼ 2pm2n operations;

3) Calculate
∑n−1

j=0

(

∑m−1
i=0 πAB,ijA

iF

)

(

BjG
)H

,

∼ 2pmn2 operations;

i.e. a total of ∼ 2p(m3 + m2n + mn2 + n3) operations.
Remark 3: Assuming that we know both the eigenvalues

of A, λ1, λ2, . . . , λm and of B, µ1, µ2, . . . , µn as well as
the corresponding coefficients of the characteristic equations,
the calculation of the partial fraction coefficients, the vectors
γA,i, i = 0, 1, . . . , m − 1 and γB,j , j = 0, 1, . . . , n− 1
require O(m2) and O(n2) operations, respectively, and
the calculation of the matrix

∫ ∞

0 EA(t)EB(t)Hdt requires
O(mn) operations. Thus the main remaining computational
task requires ∼ 2(pm3 + (p + 1)m2n + (p + 1)mn2 + pn3)
operations. By contrast the solution of the Sylvester equation
by the Hessenberg-Schur method requires ∼ 10m3/3 +
10m2n + 5mn2 + 26n3 operations regardless of the value
of p and does not depend on knowing either the eigenvalues
nor the coefficients of the characteristic equation[16].

IV. SOLUTION OF THE LYAPUNOV EQUATION AND

COMPUTATION OF HANKEL SINGULAR VALUES

Consider the input Gramian

P =

∫ ∞

0

etABBHetAH

dt (25)

which satisfies the Lyapunov equation

AP + PAH + BBH = 0. (26)

We can now write directly from Theorem 1

P =

n−1
∑

i=0

n−1
∑

j=0

πijA
iBBH

(

AH
)j

, (27)

where

πij = γT
i

∫ ∞

0

E(t)E(t)Hdtγ̄j , (28)

with γi defined as in (14) and E(t) defined as in (10).
Remark 4: Making use of the symmetry of P , the main

computational task requires in this case, following the same
procedure as above,∼ (5p+3)n3 operations, comparing with
∼ 32n3 operations required by the Schur algorithm[16].

Remark 5: We can make use of (17) and express

πij = ãT
i+1

∫ ∞

0

Yb(t)Yb(t)
Hdtãj+1, (29)
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where ãi denotes the i-th column vector of the matrix
on the right hand side of (17). Here we note that the
matrix

∫ ∞

0
Yb(t)Yb(t)

Hdt will have the following plaid like
structure [17]

Y =





















Y0 0 −Y1 0 Y2 · · ·

0 Y1 0 −Y2 0
−Y1 0 Y2 0 −Y3

0 −Y2 0 Y3 0

Y2 0 −Y3 0
. . .

...
. . . Yn−1





















, (30)

where

Yi =
∫ ∞

0

(

y
(i)
b (t)

)2

dt

= (J iκ)T
∫ ∞

0 E(t)E
H(t)dtJ iκ.

(31)

This follows from the fact that

y
(i)
b (0) = 0, i = 0, 1, . . . , n− 2, y

(n−1)
b (0) = 1

limt→∞ y
(i)
b (t) = 0, i = 0, 1, . . . , n− 1,

(32)
since assuming the system is strictly stable. In addition, it
follows from Lyapunov’s stability theorem, that Y is positive
definite, also easily noted by the fact that for any nonzero
vector c, we have that

cTYc =

∫ ∞

0

(cT Yb)
2dt > 0. (33)

Remark 6: Let (Ac, Bc) denote the controller (compan-
ion) form

A
c

=

[

0(n−1)×1 I(n−1)×(n−1)

−a0 −a1 · · · − an−1

]

, B
c

=

[

0(n−1)×1

1

]

.

(34)

Then it follows from the observation Yb(t) = etAc

Bc that Y
satisfies the Lyapunov equation

AcY + Y(Ac)T + Bc(Bc)T = 0. (35)

The last line in the Lyapunov equation can be written as

(AcY)n· + ((AcY)·n)
T

+
[

0 · · · 0 1
]

= 01×n. (36)

Then, transposing, rearranging and noting that the last ele-
ment in the first two vectors will be the same, we can write

Y











a0

a1

...
an−1











−























0

(−1)
n+1
2 Yn+1

2

0
...
0
Yn−1

0























=











0
...
0

1/2











n odd,

(37)

and

Y











a0

a1

...
an−1











−



















(−1)
n−2

2 Yn
2

0
...
0
Yn−1

0



















=











0
...
0
−1/2











n even.

(38)
Rewriting, we can solve for Y directly as a function of the
a-coefficients when n is odd:

























a0 a2 · · · · · · an−1 0 · · · 0
0 a1 a3 · · · an−2 1 · · · 0
0 a0 a2 · · · · · · an−1 · · · 0
0 0 a1 · · · · · · an−2 · · · 0
...

...
. . .

...
...

... 0 a1 a3 · · · 1
0 0 · · · 0 a0 a2 · · · an−1

























×

























Y0

−Y1

Y2

−Y3

...

...
Yn−1

























=























0
0
0
0
...
0

1/2























(39)
and when n is even:

























a0 a2 · · · · · · 1 0 · · · 0
0 a1 a3 · · · an−1 0 · · · 0
0 a0 a2 · · · · · · 1 · · · 0
0 0 a1 · · · · · · · · · 0
...

...
. . .

...
...

... a0 a2 · · · · · · 1
0 0 · · · 0 a1 a3 · · · an−1

























×

























Y0

−Y1

Y2

−Y3

...

...
−Yn−1

























=























0
0
0
0
...
0
−1/2























(40)

The implication of these facts is that we can evaluate the
coefficients πij , from (29), (39) and (40) without having
to evaluate the eigenvalues λi, i.e. only by knowing the
coefficients of the characteristic equation and by making
use of the zero structure in (17), (30), (39) and (40), the
computational task will in fact be slightly less than applying
(13).

A dual result may be derived for the output Gramian and
subsequently the Hankel singular values may be computed.
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Consider the output Gramian

Q =

∫ ∞

0

etAH

CHCetAdt (41)

which satisfies the Lyapunov equation

AHQ + QA + CHC = 0. (42)

It then follows by substituting (13) into (41), similarly as in
the proof of Theorem 1, and then making use of (28)

Q =

n−1
∑

i=0

n−1
∑

j=0

πij(A
H)iCHCAj . (43)

Similarly, using duality A ←→ AH , B ←→ CH , we can
directly write (43) from (27), by noting that the characteristic
equations of the dual systems and thus (28) stay the same.

Now, having P and Q, the Hankel singular values are
easily computed as

σ2
i = λi(PQ). (44)

Finally, the cross Gramian

X =

∫ ∞

0

etABCetAdt, (45)

which is the solution to the Sylvester equation where p = r

AX + XA + BC = 0 (46)

can by a similar argument be expressed as

X =

n−1
∑

i=0

n−1
∑

j=0

πijA
iBCAj . (47)

V. EXAMPLES

Example 1:

First, consider a fictitious example to demonstrate the
solution of the Sylvester equation (19) where

A =





−9 −4 −4
−2 −8 0
−6 −7 −8



 , F =





0
1
2



 , (48)

and

B =

[

0 1
−5 −6

]

, G =

[

1
6

]

. (49)

The eigenvalues of the A matrix are given by
−14.8574,−4.4303,−5.7123 and the corresponding
characteristic equation is given by s3+25s2+176s+376 = 0.
Now the γA,i vectors can be computed recursively as in
(14), where γA,2 contains the partial fraction coefficients of
the unity numerator transfer function computed from (6)

γA,2 = κA =

[

6.3490
−5.6144
0.2654

]

, γA,1 =

[

1.5388
−1.6452
0.1064

]

,

γA,0 =





0.0748
−0.0853
0.0105



 . (50)

Similarly, the eigenvalues of the B matrix are given by
−1,−5 and the corresponding characteristic equation is

given by s2+6s+5 = 0. Then, the γB,i vectors (14) result in

γB,1 = κB =

[

1.25
−0.25

]

, γB,0 =

[

0.25
−0.25

]

. (51)

We now compute

∫ ∞

0

E(t)E(t)Hdt =





0.1842 0.1060
0.1490 0.0934
0.0631 0.0504



 (52)

utilizing Remark 2. We then compute πAB from (22) result-
ing in

πAB =





0.3962 0.0467
0.0525 0.0075
0.0020 0.0003



 . (53)

We finally obtain the solution to the Sylvester equation (19)
from (22) applying steps 1)-3) in Remark 2 resulting in

X =





−0.2690 −0.1777
0.2383 0.3688
0.3224 0.6337



 . (54)

Example 2:

We will now use a well known MIMO model of a jet (see
e.g. Matlab’s Control Toolbox help) in order to illustrate
the application of some of the formulae presented above.
The inputs to the system, u1 and u2, symbolize the rudder
and aileron deflections, respectively, in degrees. The outputs
y1 and y2 represent the yaw rate and bank angle. The
corresponding system matrices are given by

A =









−0.0558 −0.9968 0.0802 0.0415
0.5980 −0.1150 −0.0318 0
−3.0500 0.3880 −0.4650 0

0 0.0805 1.0000 0









, (55)

B =









0.0073 0
−0.4750 0.0077
0.1530 0.1430

0 0









, (56)

C =

[

0 1 0 0
0 0 0 1

]

, D =

[

0 0
0 0

]

. (57)

The systems eigenvalues are given by −0.0329 ±
0.9467i,−0.5627,−0.0073 and the corresponding
characteristic equation is given by s4 + 0.6358s3 +
0.9389s2 + 0.5116s + 0.0037 = 0. Now the γi vectors can
be computed recursively as in (14) where γ3 contains the
partial fraction coefficients of the unity numerator transfer
function,

γ3 = κ =

[

−0.2388 + 0.4553i
−0.2388 − 0.4553i

−1.5301
2.0078

]

, γ2 =

[

−0.5750 + 0.0484i
−0.5750 − 0.0484i

−0.1119
1.2619

]

,

γ1 =







−0.2511 − 0.1184i
−0.2511 + 0.1184i

−1.3736
1.8759







, γ0 =







−0.0018 − 0.0009i
−0.0018 + 0.0009i

−0.0100
1.0136







. (58)
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In order to compute directly the output Gramian, the
solution to the Lyapunov matrix equation, we first compute

∫ ∞

0

E(t)E(t)Hdt =









15.1812 0.0184 + 0.5275i 0.4761 + 0.7568i 0.0448 + 1.0545i

0.0184 − 0.5275i 15.1812 0.4761 − 0.7568i 0.0448 − 1.0545i

0.4761 − 0.7568i 0.4761 + 0.7568i 0.8887 1.7546
0.0448 − 1.0545i 0.0448 + 1.0545i 1.7546 68.7005









(59)

utilizing Remark 2.
Now it is straightforward to compute the solution to the

Lyapunov equation (22) applying steps 1)-3) in Remark 2

and substituting A = B = A and F = G = B resulting in

P =









1.8663 −0.0066 −2.9371 8.0258
−0.0066 1.7427 −2.8782 18.3346
−2.9371 −2.8782 16.9103 −1.4759
8.0258 18.3346 −1.4759 524.8139









.

(60)

We also get the same result using (27) and (28), or (29)-(31)
and (39)-(40).

The output Gramian Q can be computed in an analogous
manner, using (22) in steps 1)-3) in Remark 2 and substitut-
ing A = B = AH and F = G = CH resulting in

Q =









73.3 −85.0 −18.0 −12.0
−85.0 2624.0 492.7 314.8
−18.0 492.7 98.5 62.9
−12.0 314.8 62.9 41.0









. (61)

We also get the same result using (43) and (28). The Hankel
singular values can finally be computed from P and Q, i.e.
using (44) resulting in

σ2
1 = 36034.81,

σ2
2 = 1.96,

σ2
3 = 131.41,

σ2
4 = 151.84.

(62)

VI. CONCLUSIONS AND FUTURE WORK

In this paper, closed form expressions of linear MIMO
system responses are used to express the solution of the
Sylvester equation in closed form. The solution makes use
of matrix polynomial formulations of etA. The input and the
output Lyapunov equations and solutions of the input and
the output Gramians are then presented as a special case
of the Sylvester equation. From these the Hankel singular
values can be computed. Two examples are then shown. The
final expressions are presented in a form that emphasizes
efficient computational implementation and the resulting
time complexity.

The emphasis in this work has been on the derivation
of computationally efficient formulations of closed form
expressions. The short term motivation has simply been to
provide another tool in the linear systems toolbox to be used
along with methods that have already been developed based
on numerical approaches. The aim is to develop criteria based

on numerical efficiency and stability to aid in the choice
of appropriate solution tools. It is finally hoped that such
expressions may enhance the understanding of linear systems
as such and provide new approaches to solving control
problems. For example it may be of interest to make use
of the closed form solutions of the Lyapunov equation in the
solution of the Riccati equation by Newtons method, where a
Lyapunov equation needs to be solved in each iteration (see
e.g. [16], pp. 567).
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