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Abstract: In this paper, a 3D Euclidean position estimator

using a single moving calibrated camera whose position is

known is developed that asymptotically recovers the structure

of a static object. To estimate the unknown structure an

adaptive least squares estimation strategy is employed based

on a novel prediction error formulation and a Lyapunov

stability analysis. Numerical simulation results are presented

to illustrate the effectiveness of the proposed algorithm.

I. INTRODUCTION

Three-dimensional (3D) reconstruction of an object, where

the Euclidean coordinates of feature points on a moving

or fixed object are recovered from a sequence of two-

dimensional (2D) images, known as ‘Structure from Motion

(SFM)’ [1], [2], [3], or ‘Simultaneous Localization and

Mapping (SLAM)’ [4], [5], has been a mainstream research

problem for a long time. The recovery of 3D structure from

its 2D projection is usually done by mounting a camera on

a moving vehicle such as unmanned aerial vehicle (UAV)

or a mobile robot that travels through the environment and

takes images of static objects or features. SFM and SLAM

have significant impact for several applications including au-

tonomous vehicle navigation, aerial tracking, path planning,

surveillance of ground based, stationary or moving objects

[6], [7], [8], [9], and terrain mapping systems [10], [11], [12].

Although, the problem of Euclidean reconstruction is

inherently nonlinear, linearization based techniques, such as

the extended Kalman filter [3], [4], [5], have been used

quite frequently. The linearized motion models can cause

significant inconsistencies in solutions, as noted in [13].

Some of the past research focused on utilizing nonlinear

system analysis and estimation tools to develop nonlinear

state observers for the problem [14], [15], [16]. In recent

work, Dahl et al. [17] designed a structure estimator for

the system state and motion, based on a parameterization

of the nonlinear perspective dynamic system. Dupree et al.

[18] presented an algorithm for reconstruction of an object’s

Euclidean coordinates even if the tracked feature points leave

the camera’s field of view, but his work required that at least

one geometric length of the object be known a priori. The

work presented by Laganiere et al. [19] utilized a neural

network based approach to recover the structure of a moving
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scene from an image sequence where the maximal rigidity

principle is applied, allowing a rigid transformation in the

structure from one time instant to another. Chitrakaran et al.

[20], [21] proposed a nonlinear estimation technique, using a

monocular camera, for identification of the Euclidean struc-

ture of an object. The homography between two different

views, the current frame and a constant reference frame, was

utilized to model the camera motion. This algorithm required

at least one distance between two feature points on the object

to be known for the recovery of 3D Euclidean coordinates.

Furthermore, the normal vector to the object must be known

[20] and the rotation between the object frame and the

camera at the reference position must be known [21]. In

recent work [22], where the velocity of the moving camera

was assumed to be known for the reconstruction of Euclidean

coordinates of a static object, the requirements of [20], [21],

that information about the scene be known a priori were

eliminated. The work in [22] utilized a nonlinear integral

observer to estimate the velocity of each feature point in the

image plane and then an estimator for the unknown depth

variable was developed which facilitated the estimation of

3D Euclidean coordinates of the feature. In [23], De Luca et

al. developed an on-line depth estimator based on nonlinear

observer theory by using a state space realization of the

perspective camera model and utilizing measurements of the

camera velocity.

In this work, our objective is to estimate the 3D Euclidean

structure of a static object using a single calibrated camera

mounted on a moving platform whose position is measurable.

In the past, several researchers have addressed the structure

identification with constrained camera motion problem, for

example [2], [24], [25]. Chaumette et al. [2] proposed a

method where the presence of noise and discrete sampling,

forced constraints on the motion of the camera. Larry et al.

[24] used Kalman filter based algorithms but again various

constraints were imposed on the camera motion to make

the problem simpler. For instance the camera motion was

assumed to have a constant depth, thus making the problem

simpler. In similar work, Smith et al. [25] allowed only lateral

motion to the camera.

In this paper, we present a method to estimate the Eu-

clidean structure of feature points on a static object using

a moving calibrated camera whose position is measurable.

The estimator is designed by first developing a geometric

model to relate the fixed feature points on the object with

the moving camera. The novelty of this work lies in the

parameterization of a nonlinear static model which relates the

projected pixel coordinates with the Euclidean coordinates

of the feature points. A prediction error formulation is
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then presented which allows us to utilize well established

nonlinear estimation theory to design an adaptive least

squares estimator. We show that the developed estimator

asymptotically identifies the Euclidean coordinates of the

feature points subject to a persistency of excitation condition

similar to that of [23]. The real-time estimation technique

that is presented has shown good robustness to noise and

also provides fast convergence which is demonstrated by our

simulation.

The rest of this paper is organized as follows, in Section

II the geometric model which relates Euclidean coordinates

of visual features on the static object with their correspond-

ing projected pixel coordinates is developed based on the

perspective projection. Section III describes the Euclidean

structure estimation with the prediction error formulation

and the stability analysis. Numerical simulation, presented

in Section IV, demonstrates the performance of the proposed

estimator.

II. GEOMETRIC MODEL

To develop a geometrical relationship between a moving

camera and a stationary object, an orthogonal coordinate

frame, denoted by C, whose origin coincides with the optical

center of the moving camera, an inertial coordinate frame,

denoted by W , and an orthogonal coordinate frame, denoted

by B are considered (see Figure 1). To make the following

discussion more tractable, n feature points located on a static

object, denoted by Fi ∀ i = 1, ..., n are considered. Let

the 3D coordinates of the ith feature point on the object be

denoted as the constant xfi ∈ R
3 relative to the base frame

W , and m̄i (t) ∈ R
3 relative to C, which is defined as follows

m̄i , [xi yi zi]
T

. (1)

Fig. 1. Geometric relationships between the fixed object, mechanical
system, and the camera.

In the subsequent development, it is assumed that the

object is always in the field of view of the camera, hence the

distances from the origin of C to all feature points are always

positive and bounded. To relate the coordinate systems,

let Rb (t) ∈ SO (3) and xb (t) ∈ R
3 denote the rotation

matrix and the translation vector respectively, from B to W ,

expressed in W . Let Rc (t) ∈ SO (3) and xc (t) ∈ R
3 denote

the rotation matrix and the translation vector respectively,

from C to B, expressed in B. Let mi (t) ∈ R
3 denote the

normalized Euclidean coordinates for the ith feature point,

which is defined as follows

mi ,
1

zi

m̄i = [xi/zi yi/zi 1]
T

. (2)

In the image captured by the camera, each of these fea-

ture points has corresponding projected pixel coordinates,

denoted by pi (t) ∈ R
2, defined as follows

pi , [ui vi]
T

(3)

where ui (t), vi (t) ∈ R. The projected pixel coordinates of

the feature points are related to the normalized Euclidean

coordinates by the pin-hole model [26] such that

pi = Ami (4)

where A ∈ R
2×3 is a known constant intrinsic camera

calibration matrix defined as follows [27]

A ,

[

fku fku cotφ u0

0 fkv

sin φ
v0

]

(5)

where ku, kv ∈ R denote camera scaling factors, u0, v0 ∈ R

represent the pixel coordinates of the principal point, φ ∈ R

is the angle between the camera axes, and f ∈ R is the

camera focal length. From (2) and (4), pi (t) can be written

as follows

pi =
1

zi

Am̄i. (6)

The Euclidean coordinates of the ith feature point m̄i (t)
relative to the camera along with the corresponding depth

zi (t) are unknown and unmeasurable signals. The corre-

sponding projected pixel coordinates pi (t) along with Rb (t),
and xb (t) are measurable signals and Rc, and xc are known

constant parameters. The objective of this work is to accu-

rately identify the unknown constant Euclidean coordinates

of the feature xfi relative to the world frame in order to

recover the 3D structure of the object.

III. EUCLIDEAN STRUCTURE ESTIMATION

In this section, a prediction error formulation for the

unknown parameters will be used to parameterize the inter-

action matrix and the unknown depth variable. A stability

analysis will be shown that ensures the estimation error

signals go to zero.

A. Prediction Error Formulation

To facilitate the error formulation, the geometric model

shown in Figure 1 is considered, where the vector represent-

ing the distance between the origins of C and W , expressed

in W , be denoted as xcw (t) ∈ R
3. From Figure 1, it is easy

to see that

xcw = Rbxc + xb. (7)
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Similary, from the triangle formed by Fi and the origins of

C and W , the following expression can be obtained

xfi = xcw + RbRcm̄i. (8)

After substituting (7) in (8) and solving for m̄i (t), we obtain

m̄i = RT
c

[

RT
b (xfi − xb) − xc

]

. (9)

After utilizing (6) and (9), the pixel coordinates for the ith

feature point can be written as follows

pi =
1

zi

ART
c

[

RT
b (xfi − xb) − xc

]

. (10)

The corresponding depth zi (t) can be written as follows

zi = RT
c3

[

RT
b (xfi − xb) − xc

]

(11)

where RT
c3 ∈ R

1×3 is the last row of RT
c . It should be

noted that, in (10) and (11), A, Rc, xc are known constant

parameters, Rb (t), xb (t) are measurable signals, and xfi is

an unknown constant parameter. Based on these facts pi (t)
can be parameterized as follows

pi =
1

ΠΘi

WΘi (12)

where

ΠΘi = zi = RT
c3

[

RT
b (xfi − xb) − xc

]

(13)

WΘi = ART
c

[

RT
b (xfi − xb) − xc

]

. (14)

We note that zi (t) is assumed to satisfy the following

inequalities

ρi (·) ≥ zi(t) = ΠΘi ≥ εi (15)

where ρi (·) ∈ R ∀ i = 1, ..., n is a positive function and

εi ∈ R ∀ i = 1, ..., n is a positive constant. In (13) and

(14), Π(t) ∈ R
1×4, W (t) ∈ R

2×4 are measurable regression

matrices, and Θi ∈ R
4 is an unknown constant parameter

vector1, which is defined as

Θi , [xfi1 xfi2 xfi3 1]T (16)

where xfij ∈ R ∀ j = 1, 2, 3, is the unknown Euclidean

coordinate of the ith feature point, relative to the world frame.

It should be noted that in (13) and (14), xfi is the only

unknown. After multiplying both sides of (12) with the term

Π(t)Θi, the following expression can be obtained

piΠΘi = WΘi. (17)

The estimate of (17) can be defined as follows

p̂iΠΘ̂i = W Θ̂i (18)

where Θ̂i (t) ∈ R
4 is the estimate for Θi ∈ R

4. After sub-

tracting (18) from (17), the following expression is obtained

piΠΘi − p̂iΠΘ̂i = WΘi − W Θ̂i. (19)

1The reader is referred to [28] for derivations of Π (t), W (t), Θi, ∀ i =
1, ..., n.

After adding and subtracting the term p̂iΠΘi to the left-hand-

side of (19) and simplifying, the following expression can be

obtained [29]

p̃i =
1

ΠΘi

(W − p̂iΠ)Θ̃i (20)

where Θ̃i (t) ∈ R
4 is the estimation error defined as follows

Θ̃i , Θi − Θ̂i ∀ i = 1, ..., n (21)

and the combined prediction error for the ith feature point

p̃i (t) ∈ R
2 is defined as follows

p̃i , pi − p̂i ∀ i = 1, ..., n. (22)

The combination of the pixel coordinates and their esti-

mates for all the feature points, denoted by p (t) ∈ R
2n and

p̂ (t) ∈ R
2n respectively, are defined as follows

p ,
[

pT
1 pT

2 ... pT
n

]T
(23)

p̂ ,
[

p̂T
1 p̂T

2 ... p̂T
n

]T
(24)

and the prediction error p̃ (t) ∈ R
2n is defined as follows

p̃ , p − p̂ =
[

p̃T
1 p̃T

2 ... p̃T
n

]T
. (25)

Based on (20), the prediction error p̃ (t) can be written as

p̃ = BW̄pΘ̃ (26)

where W̄p (t) ∈ R
2n×4n is a measurable signal defined as

follows

W̄p ,













W − p̂1Π 02×4 ... 02×4

02×4 W − p̂2Π ... 02×4

. . . .

. . . .
02×4 02×4 ... W − p̂nΠ













(27)

where 02×4 ∈ R
2×4 is a zero matrix, and B (t) ∈ R

2n×2n

is an auxiliary matrix defined as

B , diag

{

1

ΠΘ1

,
1

ΠΘ1

, ...,
1

ΠΘn

,
1

ΠΘn

}

. (28)

The combination of the estimation error, Θ̃ (t) ∈ R
4n, is

defined as follows

Θ̃ , Θ − Θ̂ =
[

Θ̃1 Θ̃2 ... Θ̃n

]T

. (29)

Based on the stability analysis, the adaptive update law

.

Θ̂ (t)
is designed as follows

.

Θ̂, Proj
{

αΓW̄T
p p̃

}

(30)

where Proj{·} ensures the positiveness of the term

Π(t) Θ̂i (t) (see [30] for a detailed description), and α (t) ∈
R is a positive scalar function defined as follows

α , 1 +
1

ε̄
ρ̄ (·) (31)

where ρ̄ (·) , max
i

{ρi (·)} ∈ R is a positive function and

ε̄ , min
i

{εi} ∈ R is a positive constant. In (30), Γ (t) ∈
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R
4n×4n is the least-squares estimation gain matrix, designed

as follows
d

dt

{

Γ−1(t)
}

= 2W̄T
p W̄p. (32)

B. Stability Analysis

Theorem 1: The update law defined in (30) ensures that
∥

∥

∥
Θ̃ (t)

∥

∥

∥
→ 0 as t → +∞ provided that the following

persistent excitation condition [31] holds

γ1I4n ≤

∫ t0+T

t0

W̄T
p (τ )W̄p(τ )dτ ≤ γ2I4n (33)

where γ1,γ2 are positive constants, I4n ∈ R
4n×4n is an

identity matrix.

Proof: See [29] for a similar proof.

Remark 1: The parameter vector Θ̂i (t) provides a scaled

estimate of the Euclidean coordinates of the feature points on

the object relative to the world frame. Since the last element

in the unknown constant parameter vector is equal to 1 (16),

the scale factor can be computed as

λi = Θ̂i4 (34)

where, λi (t) ∈ R is the scale factor for the ith feature point

and Θ̂i4 (t) ∈ R is the last entry of Θ̂i (t). It should be

noted that Θ̂i4 (t) is always nonzero which is guaranteed by

the projection algorithm introduced in (30). The estimates of

the Euclidean coordinates of the ith feature point can now be

recovered as follows

x̂fi1 =
1

λi

Θ̂i1

x̂fi2 =
1

λi

Θ̂i2

x̂fi3 =
1

λi

Θ̂i3 (35)

where Θ̂ij (t) ∀ j = 1, 2, 3, is the jth element of the

estimated parameter vector for ith feature point.

IV. SIMULATION RESULTS

A simulation study was conducted to evaluate the per-

formance of the proposed estimation algorithm using the

Mathworks Simulink program. Simulations were performed

using four static feature points whose Euclidean coordinates,

with respect to the world frame, were selected as follows

xf1 = [0 1 1]T

xf2 = [0 0.5 1]
T

xf3 = [0 0 1]
T

xf4 = [1 1 1]
T

. (36)

The linear and angular positions of the mechanical system

were chosen as

qb = [−0.1cos(t) 0.1sin(t) − 0.1sin(0.5t)]T m

θb = [0.1sin(0.1t) 0 0]T rad. (37)

Image space feature point trajectories were generated based

on rigid body kinematics and known motion of the camera.

In addition, the camera’s intrinsic calibration matrix and

extrinsic parameters were selected as follows

A =





825 0 320
0 835 240
0 0 1





Rc =





1 0 0
0 1 0
0 0 1



 xc = [0.5 0 0.1]
T

m. (38)

Initial condition for the unknown vector to be estimated was

taken as 100 for all its entries. The estimator gains were

chosen to give the best performance were selected as follows

α = 300, Γi = diag{4000, 4000, 4000, 4000}. (39)

In the simulations, three different cases were taken into

consideration using the above parameters. For case 1, the

pixel coordinates had no noise added to them. In case 2,

Gaussian noise of variance 200, having a mean of 0, was

added to the pixel coordinates and in case 3, Gaussian noise

with a variance of 400, having a mean of 0, was added to

the pixel coordinates.

Fig. 2. Simulation case 1: Distance estimation error without additive noise.

TABLE I

SIMULATION RESULTS FOR ESTIMATED EUCLIDEAN DISTANCES

Object Actual

distance
(cm)

Estimated

distance
(cm)

Error

(cm)

%Error

Case 1

Length I (xf1, xf2) 50.0 49.94 0.06 0.12
Length II (xf2, xf4) 111.8 111.25 0.55 0.49
Length III (xf1, xf4) 100.0 99.86 0.14 0.14

Case 2

Length I (xf1, xf2) 50.0 49.90 0.10 0.20
Length II (xf2, xf4) 111.8 111.15 0.65 0.58
Length III (xf1, xf4) 100.0 99.74 0.26 0.26

Case 3

Length I (xf1, xf2) 50.0 49.88 0.12 0.24
Length II (xf2, xf4) 111.8 111.08 0.72 0.64
Length III (xf1, xf4) 100.0 99.65 0.35 0.35

The simulation results for the Euclidean distance estima-

tion for each of the cases is shown in Table I. Here it should
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Fig. 3. Simulation case 2: Distance estimation error with Gaussian noise
of variance 200.

Fig. 4. Simulation case 3: Distance estimation error with Gaussian noise
of variance 400.

be noted that, for all the estimated lengths, the percentage

error is below 1% for all the cases and below 0.5% for most

of the lengths. It can be easily inferred from Table I that

even the image points with noise (case 2 and case 3) do

not make any significant effect on the estimator. All the

above mentioned cases demonstrate the robustness of the

estimator. The estimated Euclidean distance error without

additive noise is shown in Figure 2. Figures 3 and 4 show

distance estimation error for cases 2 and 3 respectively. Note

that the error signals converge in just a few seconds.

V. CONCLUSION

An estimation technique for reconstruction of 3D Eu-

clidean coordinates of a static object, with a moving cali-

brated camera whose position is measurable, was presented.

An adaptive update law was designed after utilizing a unique

prediction error formulation. It was proven that Euclidean

distance estimation signals are driven to zero, upon satisfac-

tion of a persistent excitation condition. Numerical simula-

tion results were presented demonstrating the robustness and

accuracy of the estimator. The estimator accurately identifies

the Euclidean distances between the feature points without

having any information of the object.
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