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   Abstract- Forward kinematics problem of parallel robots is 
very difficult to solve in comparison to the serial 
manipulators. This problem is almost impossible to solve 
analytically. Numerical methods are one of the common 
solutions for this problem. But, convergency of these 
methods is the drawback of using them. In this paper, neural 
network approach is used to solve the forward kinematics 
problem of the HEXA parallel manipulator. This problem is 
solved in the typical workspace of this robot. The results 
show the advantages of this method in providing very small 
modeling errors. 
 
 

І.  INTRODUCTION 
 HE idea of designing parallel robots started in 1947 
when D. Stewart constructed a flight simulator based 
on his parallel design [1]. Then, other types of parallel 

robots were introduced [2]. Parallel manipulators have 
received increasing attention because of their high 
stiffness, high speed, high accuracy and high carrying 
capability [3]. However, parallel manipulators are 
structurally more complex, and also require a more 
complicated control scheme; in addition, they have a 
limited workspace in compare to serial robots. Therefore, 
parallel manipulators are the best alternative of serial 
robots for tasks that require high load capacity in a limited 
workspace. 
     A parallel robot is made up of an end-effector that is 
placed on a mobile platform, with n degrees of freedom, 
and a fixed base linked together by at least two 
independent kinematic chains [4]. Actuation takes place 
through m simple actuators.  
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    Similar to serial robots, kinematic analysis of parallel 
manipulators contains two problems: forward kinematics 
problem (FKP) and inverse kinematics problem (IKP). In 
parallel robots unlike serial robots, solution to IKP is    
usually straightforward but their FKP is complicated. FKP 
involves a system of nonlinear equations that usually has 
no closed form solution [5]. 
    Traditional methods to solve FKP of parallel robots 
have focused on using algebraic formulations to generate 
a high degree polynomial or a set of nonlinear equations. 
Then, methods such as interval analysis [6], algebraic 
elimination [7], Groebner basis approach [8] and 
continuation [9] are used to find the roots of the 
polynomials or solve nonlinear equations. The FKP is not 
fully solved just by finding all the possible solutions. 
Schemes are further needed to find a unique actual 
position of the platform among all the possible solutions. 
Use of iterative numerical procedures [10] and auxiliary 
sensors [11] are the two commonly adopted schemes to 
further lead to a unique solution. Numerical iteration is 
usually sensitive to the choice of initial values and nature 
of the resulting constraint equations. The auxiliary sensors 
approach has practical limitations, such as cost and 
measurement errors. No matter how the forward 
kinematics problem may be solved, direct determination 
of a unique solution is still a challenging problem. 
     Artificial neural networks (ANNs) are computational 
models comprising numerous nonlinear processing 
elements arranged in patterns similar to biological neural 
networks. These computational models have now become 
exciting alternatives to conventional approaches in 
solving a variety of engineering and scientific problems. 
Some researchers have tried using neural networks for 
solving the FKP of parallel robots [12-13]. Almost all 
prior researches have focused on using ANNs approach to 
solve FKP of Stewart platform. Few of them have also 
applied this method to solve FKP of other parallel robot 
[14-15]. 
     In this paper, we focus on HEXA parallel robot, first 
presented by Pierrot [16], whose platform is coupled to 
the base by 6 RUS-limbs, where R stands for revolute 
joint, U stands for universal joint and S stands for 
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spherical joint. Complete description of HEXA robot is 
presented in Section 2.  
  The solution of IKP of HEXA was first presented in [16] 
by F. Pierrrot who solved the system of nonlinear 
equations and obtained a unique solution for the problem.  
A numerical solution for FKP of parallel robot was 
presented by J.P. Merlet in [5]. FKP of this robot has no 
closed form solution and at most 40 assembly modes 
(assembly modes are different configurations of the end-
effecter with given values of joint variables) exist for this 
problem. He suggested iterative methods for solving 
HEXA FKP. But, these methods have some drawbacks, 
such as being lengthy procedures and giving incorrect 
answers [5]. Utilization of the passive joint sensors; 
however, enables one to find closed form solutions. In 
[17] it has been shown that a minimum number of three 
passive joint sensors are needed for solving the FKP 
analytically. 
      In this paper, neural network approach is used to solve 
FKP of HEXA robot. To carry out this task, we first 
estimate the IKP in some positions and orientations of the 
workspace of the robot. Then a multilayer perceptron 
(MLP) network is trained with data obtained by solving 
IKP. Finally, we test the network in the other positions 
and orientations of the workspace.  
     The rest of the paper is organized as follows: Section 2 
contains HEXA mechanism description. Kinematic 
modeling of the manipulator is discussed in Section 3 
where inverse and forward kinematics are studied and the 
need for appropriate method to solve forward kinematics 
is justified. Neural network method to solve FKP is 
discussed in Section 4. In Section 5 the results of solving 
FKP for HEXA robot are presented.  
 

ІІ. MECHANISM DESCRIPTION 
     There are different classes of parallel robots. 
Undoubtedly, the most popular member of the 6-RUS 
class is the HEXA robot [16], of which an improved 
version is already available. The first to propose this 
architecture, however, was Hunt in 1983 [18]. Some other 
prototypes have been constructed by Sarkissian [19], by 
Zamanov [20] and by Mimura [21]. The latter has even 
performed a detailed set of analyses on this type of 
manipulator. Two other designs are also commercially 
available by Servos & Simulation Inc. as motion 
simulation systems [5]. Finally, a more recent and more 
peculiar design has been introduced by Hexel Corp., 
dubbed as the “Rotary Hexapod” [5]. Among these 
different versions, Pierrrot’s HEXA robot is considered in 
this paper. 
    All types of HEXA robots are 6-DOF parallel 
manipulators that have the following characteristics: 
a) With multiple closed chains, it can realize a greater 
structural stiffness. 
b) To prevent the angular error of each motor from 
accumulating, it can realize a higher accuracy of the end-
effecter position. 
c) As all the actuators can be placed collectively on the 
base, it can realize a very light mechanism.  

    Consequently, HEXA enjoys the advantages of faster 
motions, better accuracy, higher stiffness and greater 
loading capacities over the serial manipulators [22]. 
                  
                     ІІІ. KINEMATIC MODELING 
     As in the case of conventional serial robots, kinematics 
analysis of parallel manipulators is also performed in two 
phases. In forward or direct kinematics the position and 
orientation of the mobile platform is determined given the 
leg lengths. This is done with respect to a base reference 
frame. In inverse kinematics we use position and 
orientation of the mobile platform to determine actuator 
lengths. For all types of parallel robots, IKP is easily 
solved. For HEXA parallel robot this problem was solved 
by Pierrrot [16]. Brief solution of IKP is presented by 
Bruyninckx in [23]. 
     Fig.  1 shows one mechanical chain in HEXA design. 
In each chain, M specifies the length of the crank which is 
the mechanical link between the revolute and universal 
joints, and L gives the length of the rod which connects 
universal and spherical joints. Other parameters, H and h, 
are introduced as shown in Fig.  1; a is the length of a side 
of the traveling platform, The relationship between the 
joint angles Өi,j (i=1,2,3 and j=1,2), robot parameters and 
position and orientation of the end-effector can be 
obtained from the following procedure. The joint angle 
Өi,j moves the end point of crank of ith leg to the position 
pi given by 
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    In this equation, the joint angle Өi,j is the only unknown 
variable. The positions pi are connected to a mobile 
platform pivot point ti by links of known length L. Matrix 

i
ibR  is the rotation matrix between the base frame {bs} 

and a reference frame constructed in the actuated R joint, 
with X-axis along the joint axis and the Z-axis along the 
direction of the first link corresponding to a zero joint 
angle Өi,j (see Fig. 1). Matrix R(X, Өi,j) is the rotation 
matrix corresponding to a rotation about the X axis by the 
angle Өi,j:  
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     In each chain, a loop closure formulation can be 
adopted as follows (see Fig.  1): 
 iiiiii bpptbt +=                                                        (3) 
with 

Mpb ii =                                                                 (4) 

Lpt ii =                                                                    (5) 
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By substitution of cos(Өi,j) = (1 − t^2)/(1+ t^2)  and 
sin(Өi,j) = 2t/(1 + t^2) in the above equations, it is possible 
to solve (3), (4), (5), for Өi,j  : 
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Fig. 1. A typical chain of the HEXA design. The joint angle Өi,j is 
variable and measured; the lengths L and M of the “base” and “top” 
limbs of each chain are constant; the angles of all other joints are 
variable but not measured.  
 
and [ ]Tjijiji 1,,, µρλ  is the position vector of the pivot 
point ti in the reference frame constructed in the actuated 
R joint [16].The same equations can be used to derive the 
HEXA forward kinematic model, but the closed form 
solution to FKP can not be found. So, we propose to use 
numerical schemes by neural network approach for 
solving FKP in the workspace of the robot. 
 

IV. ARTIFICIAL NEURAL NETWORK 
     The inspiration for neural networks comes from 
researches in biological neural networks of the human 
brains. Artificial neural network (ANN) is one of those 
approaches that permit imitating of the mechanisms of 
learning and problem solving functions of the human 
brain which are flexible, highly parallel, robust, and fault 
tolerant. In artificial neural networks implementation, 

knowledge is represented as numeric weights, which are 
used to gather the relationships within data that are 
difficult to relate analytically, and this iteratively adjusts 
the network parameters to minimize the sum of squared 
approximation errors using a gradient descent method. 
Neural networks can be used to model complex 
relationship without using simplifying assumptions, 
which are commonly used in linear approaches. One of its 
implementation types is back propagation network that is 
trained with supervision, using gradient-descent training 
technique which minimizes the squared error between the 
actual outputs of the network and the desired outputs. 
 
     Multilayer perceptron (MLP)  
     Multilayer perceptron neural networks with 
sufficiently many nonlinear units in a single hidden layer 
have been established as universal function 
approximators. MLP have several significant advantages 
over conventional approximations. First, MLP basis 
functions (hidden unit outputs) change adaptively during 
training, making it unnecessary for the user to choose 
them beforehand. Second, the number of free parameters 
in the MLP can be unambiguously increased in small 
increments by simply increasing the number of hidden 
units. Third, MLP basis functions are bounded which 
make round-off and overflow errors unlikely, [24]. 
     The MLP is one of the typical back propagation ANNs 
and consists of an input layer, some hidden layers and an 
output layer, as shown in Fig.  2.      
  

 
            Fig.  2. Schematic of the MLP network [12]. 
 
      MLP is trained by back propagation of errors between 
desired values and outputs of the network using gradient 
descent or conjugate gradient algorithms. The network 
starts training after the weight factors are initialized 
randomly. Valid data consisting of the input vector and 
the corresponding desired output vector is fed to the 
network and the difference between the output layer result 
and the corresponding desired output result is used to 
adjust the weights by back propagation of the errors. This 
procedure continues until errors are small enough or no 
more weight changes occur. A first challenge in training 
the back propagation neural network is the choice of the 
appropriate network architecture, i.e. number of hidden 
layers and number of nodes of each layer. There is no 
available theoretical result which such choice may rely 
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on. This can only be determined by user’s experience 
[24]. 
 

V. NEURAL NETWORK SOLUTION FOR FKP 
     In order to model the FKP with ANNs, first, typical 
workspace of the robot is determined. Then, IKP is solved 
in some poses of the workspace and finally ANNs is 
trained with the data of IKP solution in typical robot 
workspace.  

                A. Workspace analysis 
      It is well known that parallel manipulators have a 
rather limited and complex workspace. Six parameters 
consisting of three coordinates of position of center of 
mass of mobile platform in the base frame (X, Y, Z) and 
three RPY orientation angles of mobile platform with 
respect to the base frame (three angles of mobile platform 
orientation in space consist of φ, ψ and Ө angles, see Fig.  
3) vary in the HEXA workspace. 
     Complete analysis of HEXA workspace is presented in 
[25] by A. Bonev. We use a typical workspace in which 
end-effector can move 300 millimeters in both directions 
of X and Y axes; also it can move 600 millimeters in 
positive Z direction. In all positions of the workspace, 
mobile platform can rotate in the range of [-π/3 π/3] by φ, 
ψ and Ө angles. The geometric parameters of the robot 
were  given in Table 1. 

Table 1. Geometric parameter of HEXA parallel robot 
H H M L A 

360mm 51mm 220mm 280mm 51mm 
 

     B. Neural network solution for FKP 
     Now MLP network will be trained with the data 
generated by solution of IKP. In order to model the FKP 
in terms of 6 variables of position and orientation of the 
mobile platform, an MLP neural network with 
configuration of 6×13×13×13×13×13×6 has been found 
to have the smallest error and has been used to model 
FKP. In other words, the ANN model has 6 inputs 
consisting of 6 joint angles, 5 hidden layers which have 
13 neurons and 6 neurons in the output layer. Note that 
the activation functions used in the hidden layers and 
output layer are logarithmic and pure linear, respectively. 
The number of patterns used for training and test are 
17500 and 35000, respectively. The network is trained 

over 1200 epochs with error back propagation training. 
Each network is evaluated by comparing the predictions 
to the true outputs, resulting in a prediction error for each 
orientation angle. The autocorrelation coefficients are also 
computed for the predicted error of each orientation 
angle. It should be noted that in order to avoid local 
minima, the trained weights in the last step are used in 
each step. 
     C. Modeling results 
     Fig. 3 and Fig. 4 show the results of FKP solution by 
MLP; Table 2 shows the resulted errors of FKP modeling. 
It is apparent from Table 2 that  mse, mae  and nrmse in 
all joints are less than 2e-5, 0.01 and 0.01 respectively, in 
test data. mae indicates maximum absolute error of 
modeling; therefore, maximum error of position and 
orientation of mobile platform is not bigger than 1 
millimeter in position and 0.1 degrees in orientation in 
worse case. mse shows the maximum of the average of 
errors in all points and so the average error of FKP 
solution in the typical workspace is less than 2e-5. R in 
table 2 indicates linear regression between output of the 
network and target data. The closer regression to 1, the 
better the modeling is. The linear regression of all joints is 
more than 0.99 which shows very good modeling results. 
Fig. 4 shows the error of modeling in 1000 sample test 
points of typical workspace. For these sample points the 
errors of modeling in position and orientation are very 
small and can be neglected. 
 

VI. CONCLUSION 
      In this paper, artificial neural network (MLP network) 
is used for FKP solution of HEXA parallel robot which 
can be elaborated to generate the best estimation of 
orientation and position of the mobile platform. The 
research results in this paper are interesting because they 
solve a problem for which, there is no known closed form 
solution. So ANNs improve the parallel robot pose 
accuracy. Since, a back propagation network can learn 
highly nonlinear functions and has been applied 
successfully to approximate the complex mapping 
between robot positions and orientations and robot joints 
angles. 
 

 
      Table 2. The resulted errors of FKP modeling by test data 

 
 Variable    mse       mae      nrmse      R 

  X 1.3232e-005 0.0089 0.01 0.999 

  Y 5.76992e-006 0.0076 0.0094  0.999 

  Z 1.79034e-005 0.0091 0.0045  0.999 

  φ 5.77768e-006         0.01 0.0073  0.988 

  Ө   1.20364e-006         0.009        0.0034         0.988 

  ψ  2.1676e-006         0.0087        0.0045         0.999 
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                                   Fig.  3-a 

 
                                 Fig.  3-b 

 
                                 Fig. 3-c 

 
                Fig.  3-d                        

 
                        Fig.  3-e                                 

  
                     Fig.  3-f                                    

                     Fig.  3. The results of HEXA parallel robot modeling with ANN for X,Y,Z axes and φ, ψ , Ө angles, respectively from 3-a to 3-f.  
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Fig.  4-a 
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Fig.  4-c 
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Fig.  4-d 

0 200 400 600 800 1000 1200
-10

-8

-6

-4

-2

0

2

4

6

8
x 10-3

Samples number

er
ro

r o
f m

od
el

in
g

Error of modeling position in TETA angle 

 
Fig. 4-e 
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Fig.  4-f 

Fig. 4. The error of HEXA parallel robot modeling with ANN for X,Y,Z axes and φ, ψ , Ө angles, respectively from 4-a to 4-f.
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