
Las Vegas randomized algorithms in distributed consensus problems

Hideaki Ishii

Department of Computational Intelligence & Systems Science

Tokyo Institute of Technology, Yokohama 226-8502, Japan

Email: ishii@dis.titech.ac.jp

Roberto Tempo

IEIIT-CNR, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Email: roberto.tempo@polito.it

Abstract— We consider distributed consensus problems
from the viewpoint of probabilistic algorithms. In particular,
we provide an overview on some specific problems where
randomization is critical in achieving consensus among multi-
ple agents. Further, we show that the randomized algorithms
which are used in this setting are the so-called Las Vegas
randomized algorithms (e.g. [24]). This class is different from
that of Monte Carlo type, which has been recently successfully
employed for various computationally difficult problems in
systems and control. The objective of this paper is therefore to
show the link between various distributed consensus problems
and randomized algorithms for systems and control.

I. INTRODUCTION

In recent years, distributed consensus, agreement, and

flocking problems have gained much attention in the sys-

tems and control community. Control theoretic approaches

have proven to be useful in the analysis of distributed

systems for specifications such as stability and agreement.

Recent references include [3], [4], [6], [7], [10], [12], [16],

[18], [20], [21], [25], [27]. For additional details, we refer

to [5] which gives a summary of the development of such

problems along with some new results and to the special

issue [1] which describes current research on this topic.

In particular, we consider the average consensus prob-

lems, which can be described as follows: There is a set of N
agents that possess numerical values and communicate their

values with their neighbors in an iterative way. The goal is

that all agents eventually reach a common value, which is

the average of the initial values of all agents. Such problems

arise in applications related to multi-vehicle coordination,

load balancing, and sensor networks.

The objective of this paper is to present the average

consensus problems from the unifying viewpoint of proba-

bilistic and Las Vegas algorithms. Recently, in the field of

systems and control, techniques based on randomized algo-

rithms have been developed (see, e.g, [23], [26]); however,

we will see how the classes of algorithms there and those

in the consensus problems perform differently. According

to a formal definition used in computer science [17], a

randomized algorithm is an algorithm that makes random

choices during its execution to produce a result. This implies

that even for the same input, the algorithm might produce

different results at different runs, and moreover the results

may even be incorrect.

More specifically, in this paper, we aim at clarifying two

points: One is to introduce randomized algorithms appear-

This work was supported in part by the Ministry of Education, Culture,
Sports, Science and Technology, Japan, under Grant-in-Aid for Scientific
Research No. 17760344.

ing in several variations of average consensus problems.

Such techniques are shown to be useful and can be crucial.

Indeed, in some cases, there are even stronger results im-

plying that no deterministic method can efficiently achieve

consensus [9], [17]. The other is to show the difference in

the classes of algorithms appearing in consensus problems

and those in the probabilistic approach in control. To this

end, we provide an overview on the probabilistic approach

in control and see that the main algorithms there are the

Monte Carlo type. Then, we show that the algorithms in

the average consensus belong to the class of Las Vegas

type algorithms. This class has recently been exploited for

problems related to systems and control [11], [24].

The paper is organized as follows. In Section II, we

present a general robustness analysis problem. In Sec-

tion III, randomized algorithms of Monte Carlo type for

such problems are discussed. In Section IV, we provide

an introduction to Las Vegas algorithms. In Section V, we

discuss three cases of average consensus problems and show

the importance of probabilistic techniques. We conclude the

paper in Section VI.

II. PROBABILISTIC APPROACH TO UNCERTAIN SYSTEMS

In the past decade, probabilistic methods for systems

and control have significantly progressed. This research

has been also motivated by results showing that many

problems naturally arising in control are computationally

difficult and are in fact NP-hard. Such problems can be

found in areas including uncertain and hybrid systems. The

development and application of probabilistic techniques to

analysis and synthesis control problems have been proven

effective yielding computationally efficient algorithms. For

a detailed account on this topic, we refer to [23], [26].

In this section, we introduce a robustness analysis prob-

lem where various uncertainties can be represented. Given

a system containing uncertain components, the objective

of robustness analysis is to find whether certain control

properties hold for all uncertainties. This general problem

can be formulated as follows.

We first assume that the uncertainty in the system is

represented by a real/complex matrix ∆ and further that

∆ belongs to a bounded set B. On the other hand, the

system property is measured by the performance function

J : B → R. The function J is assumed to be a measurable

function. A general robustness analysis problem is to check

whether a certain performance level γ is guaranteed for

all possible uncertainties ∆ ∈ B. In other words, we are

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThB04.1

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 2579

interested in finding if

J(∆) ≤ γ for all ∆ ∈ B. (1)

If the uncertainty ∆ is of general form, there are barri-

ers in terms of computational complexity for solving this

problem. We follow a probabilistic approach and shift the

meaning of robustness from the deterministic sense as in

(1) to a probabilistic one.

In the probabilistic approach, we assume that the uncer-

tainty matrix ∆ ∈ B is a random matrix; here, random

variables are denoted in boldface letters. Let Prob∆(·) be

the corresponding probability measure associated to ∆.

We consider two specific performance criteria using

J(∆). The first is the worst-case performance defined by

Jmax := sup
∆∈B

J(∆). (2)

The other is the average-case performance

Jave := E∆(J(∆)),

where E∆(J(∆)) denotes the expected value of the per-

formance function with respect to the uncertainty set B.

A performance function commonly employed in robust-

ness analysis is the H∞ norm of a closed-loop system. In

this case, let the function J(∆) be the norm of the system

from the disturbance to the controlled output. Depending on

the criterion of interest, we may choose to work with the

worst-case performance or the average-case performance.

In this setting, a decision problem refers to a situation

whose answer to an instance is either yes or no. Here,

we address two uncertain decision problems: For a given

performance level γ > 0, check if Jmax ≤ γ and Jave ≤ γ.

We next show that these problems can be efficiently solved

in a probabilistic sense.

III. MONTE CARLO RANDOMIZED ALGORITHMS

We now introduce Monte Carlo randomized algorithms.

Most probabilistic results derived in systems and control

are based on this type of algorithms. We will see later that

this class is different from the one appearing in consensus

problems. The definition is as follows [17].

Definition 1: A Monte Carlo randomized algorithm

(MCRA) is a randomized algorithm that may produce a

result that is incorrect (in the deterministic sense), but the

probability of such an incorrect result is bounded.

In general, for an MCRA, the results and the running

times would be different from one run to another since the

algorithm is based on random sampling. As a consequence,

the computational performance of such algorithms is usually

measured by their expected running times. An MCRA is

said to be efficient if the expected running time is of

polynomial order in the problem size.

For decision problems, MCRAs can be divided into two

classes based on how the error of the outputs are evaluated.

An MCRA for a decision problem is said to have one-

sided error if it always provides a correct solution in one

∆∆
(1)

∆
(2)

∆
(5)

∆
(6)

Jmax

J(∆)

γ

∆
(4)

∆
(3)

Ĵmax

Fig. 1. One-sided MCRA: The worst-case performance when Ĵmax <

γ < Jmax

of the possible instances, but may provide a wrong solution

for the other one [17].

The MCRA for the worst-case performance belongs to

this class. This algorithm involves the computation of the

empirical maximum, which is defined by

Ĵmax := max
i=1,2,...,N

J(∆(i)),

where ∆
(i) ∈ B, i = 1, . . . , N , are independent and identi-

cally distributed (i.i.d.) samples of the random uncertainty

matrix ∆ generated according to the probability measure

Prob∆. Notice that the empirical maximum Ĵmax is a

random variable itself since its value depends on the random

samples chosen for its computation. Fig. 1 shows a plot of

J(∆) and illustrates the concept for this problem.

This algorithm is a one-sided MCRA in the following

sense. For a given performance level γ > 0, if Jmax ≤ γ,

then clearly the probability that the algorithm outputs the

correct answer is one. Hence, this algorithm always provides

a correct solution for this instance. On the other hand, if

Jmax > γ, then the probability of obtaining Ĵmax ≤ γ is

nonzero. This implies that, for this instance, the algorithm

can give an erroneous result with a nonzero probability.

Now, noticing that the empirical maximum Ĵmax is

always smaller than Jmax, we shall pose a natural question,

how well does Ĵmax estimate the true maximum? Under a

sufficiently large sample size N , a probabilistic statement

can be made; see, e.g., [22], [23].

Another class of MCRAs for decision problems is that of

two-sided error algorithms. Such algorithms may produce

a wrong solution for both instances when the answer is yes

and no [17]. The average-case problem is an example of a

two-sided MCRA; for details, we refer to [24].

IV. LAS VEGAS RANDOMIZED ALGORITHMS

We introduce the Las Vegas algorithms and its basic

properties. This type has not been employed much in the

context of control, but is important for consensus problems.

A. Preliminaries

The formal definition is given in [17] as follows:

Definition 2: Las Vegas randomized algorithms (LVRA)

are randomized algorithms which always give the correct

2580

answer. The only difference from one run to another is the

running time.

For obvious reasons, such algorithms are also called zero-

sided error Monte Carlo. Because of randomization, the

running time is random (similarly to MCRA) and may be

different in each execution. Hence, the expected running

time is of interest. We note that the expectation is with

respect to the random samples generated during each run

and not to the input of the algorithm. Furthermore, if the

expected running time is of polynomial order in the problem

size, the algorithm is said to be efficient.

A well-known example is the Randomized Quick Sort

(RQS) [14], [17] described in the following.

Example 1: Given a set S1 = {x1, . . . , xN} of N real

numbers, consider the problem of sorting the numbers in an

increasing order. The RQS is a randomized algorithm that

solves this problem in a computationally efficient way. The

outline of the algorithm is as follows

1) Randomly select a number x(1) in the set S1.

2) Perform deterministic comparisons between x(1) and

other elements in S1. Let S
(2) be the set of numbers

smaller than x(1), and let S
(3) be the set of numbers

larger than x(1).

3) Recursively apply the two steps above to the sets S
(2)

and S
(3). Output the sorted version of S

(2), x(1), and

then the sorted version of S
(3).

The rationale for randomization in 1) is as follows:

The algorithm would be most efficient if the original set

S1 is divided into two sets having the same cardinalities.

However, this requires the median of S1 as x(1), which is

costly to find. To randomly choose x(1) is a simple strategy,

but on average provides a good estimate of the median.

In a formal analysis, the running time is measured by the

number of comparisons. It follows that the expected running

time is of order O(N log N); in fact, the running time is of

this order with high probability, at least 1− 1/N [15]. The

RQS is more efficient than, for example, a deterministic

brute-force approach, which has complexity O(N2).
For the RQS, the worst case is when the randomly chosen

number in 1) always happens to be either the smallest or

the largest in the set. Then, the running time achieves the

order O(N2). The RQS is, however, recognized as one of

the most useful general purpose sorting algorithms [14]. ▽
As mentioned above, Las Vegas algorithms are ran-

domized algorithms that always produce correct results.

It is clear that this feature can be expected for only a

limited number of Monte Carlo type algorithms. Hence,

their application is naturally limited. One such algorithm

is developed for a switched systems problem in [11].

B. LVRAs for uncertain decision problems

We now present a discussion parallel to that on uncertain

systems in Sections II and III for Las Vegas algorithms.

First, as the uncertainty set, we take a finite subset B̃ of

B with N elements given as

B̃ =
{

∆̃1, ∆̃2, . . . , ∆̃N

}

⊂ B.

∆

J(∆)

∆
(4)

∆
(6)

γ

∆
(1)

∆
(2)

∆
(3)

∆
(5)

Jmax = Ĵmax

Fig. 2. LVRA: The worst-case performance when Jmax = Ĵmax < γ

Assuming that the uncertain matrices in B̃ are random

variables, we consider a discrete probability measure; as

in Section II, this measure is denoted by Prob∆. Similarly,

let the performance function be J : B̃ → R. The general

robustness analysis problem is to find whether, for a given

performance level γ > 0, J(∆) ≤ γ for all ∆ ∈ B̃. The

corresponding worst-case performance is

Jmax := max
∆∈B̃

J(∆), (3)

and the average case performance is

Jave := E∆[J(∆)] =

N
∑

i=1

J(∆̃i)Prob∆(∆̃i).

We now consider the uncertain decision problem for

the worst-case performance. Given a scalar γ > 0, check

whether Jmax ≤ γ. The LVRA for this case is as follows:

Let B̃0 = B̃ and let k = 1. Also, let J̄ (0) = −∞. At the kth

step, randomly select a sample ∆
(k) from B̃k−1. Then, set

J̄
(k)

= max{J(∆(k)), J̄
(k−1)

} and B̃k = B̃k−1 \ {∆
(k)},

and go to the next step. After the N th step, the maximum

performance over the samples is given by Ĵmax = J̄
(N)

.

This algorithm always outputs the correct answer and

hence is a Las Vegas type. For either problem instance

(Jmax ≤ γ or Jmax > γ), the value Ĵmax that the

algorithm produces coincides with the true value Jmax. This

is illustrated in Fig. 2.

When N is large, the computational complexity can be

relaxed by modifying the algorithm just described. The

resulting algorithm is a Monte Carlo type. This can be done

by stopping at the kth step with k < N and by computing

the maximum performance over the k samples. In fact,

the resulting algorithm becomes a one-sided MCRA. We

remark that this approach is closely related to the ordinal

optimization; see, e.g., [8]. The objective there is to find

not the maximum performance value but the value that is

at least within the mth largest.

The average-case performance can be similarly discussed.

V. LAS VEGAS RANDOMIZED ALGORITHMS FOR

DISTRIBUTED AVERAGE CONSENSUS

In this section, we present several problems in distributed

average consensus where the application of Las Vegas type

algorithms can be effective and sometimes in fact crucial.

2581

A. General problem setup

Consider a network of N nodes specified by the graph

(V, E), where V := {1, 2, . . . , N} is the set of nodes and E
is the set of edges. The graph is assumed to be undirected

and connected (see, e.g., [17] for an introduction to random

graph theory); this means that the edges are not associated

with directions and that for any i, j ∈ V , there is a path

that connects the nodes i and j. At time k, each node i has

a scalar value xi(k) whose initial value is xi(0).
The goal is to provide an algorithm such that (i) the

nodes update their values xi(k) using the information

communicated from their neighbors and (ii) the values of

the nodes eventually converge to the average of the initial

values. To this end, for a consensus algorithm, there are

two elements that need to be determined: The rules for the

nodes to update their values and the neighbors with which

each node should communicate.

This problem is a particular version of distributed con-

sensus. In general, consensus problems do not require to

which number the values of the nodes must converge, but

only that the number should be the same for all nodes. In

the following, we consider three cases of this problem. The

difference is in the range of the node values: Real numbers,

integer (quantized) numbers, and binary numbers.

We introduce some notation that will be used throughout

this section. Let the N -dimensional vector consisting of all

node values at time k be x(k) = [x1(k) · · · xN (k)]T . The

communication pattern for the nodes at time k is specified

by the edge set Ẽ(k) ⊂ E , i.e., if {i, j} ∈ Ẽ(k), then xi(k) is

updated using xj(k) and vice versa; in this case, the nodes

i and j are neighbors of each other at this time. In general,

neighbors of a node may change over the time.

B. Real-valued case

We first present the case when the node values take real

numbers which is studied in [28]. We say that average

consensus (in a deterministic sense) is achieved if the

following condition is satisfied:

lim
k→∞

xi(k) =
1

N

N
∑

j=1

xj(0) for all i = 1, . . . , N. (4)

The update rule for the node i takes a linear form as

xi(k + 1) = Wii(k)xi(k) +
∑

j∈Ni(k)

Wij(k)xj(k), (5)

where Ni(k) := {j : {i, j} ∈ Ẽ(k)} is the set of neighbors

for node i at time k, and Wij(k) are the weights. The

weights are time varying and are specified by

Wij(k) =

1
1+max{di(k), dj(k)} if {i, j} ∈ Ẽ(k),

1 −
∑

l∈Ni(k) Wil(k) if i = j,

0 otherwise,

(6)

where di(k) denotes the cardinality of Ni(k), that is, the

number of neighbors for the node i. Notice that the sum

of the weights at each node is one; this makes the matrix

W a stochastic one. In [28], it is remarked that the weights

Wij(k) in (6) are adopted from the Metropolis algorithm

used in Markov chain Monte Carlo.

The update rule in (5) can be implemented in a distributed

and causal manner. This is because the nodes only require

the information of the values coming from their neighbors

at the time. Regarding the communication pattern specified

by Ẽ(k), k ∈ Z+, the assumption is as follows: The graph

(V,∪s≥kẼ(s)) is a connected graph for all k. In words,

this says that the collection of edge sets occurring infinitely

often over the time makes it a connected graph.

The following is the main result of [28].

Theorem 1: Under the update rule in (5) and the com-

munication pattern satisfying the condition that the graph

(V,∪s≥kẼ(s)) is a connected graph for all k, distributed

average consensus in the sense of (4) is achieved for each

initial condition x(0) ∈ R
N .

This theorem provides a condition on Ẽ(k) which must

be specified at the time of implementation for the average

consensus in a deterministic sense. Similar conditions are

employed in other schemes in, e.g., [5], [12], [16].

A simple way to implement a communication pattern

with the desired property is to employ randomization: Each

node i communicates with a randomly and independently

chosen neighbor jk satisfying {i, jk} ∈ E at time k. In

particular, we allocate positive probability to each edge

{i, j} in E . Since (V, E) is a connected graph, the condition

on the communication pattern holds probabilistically. That

is, for each k, the probability that the graph (V,∪s≥kẼ(s))
is connected is one. Hence, the resulting algorithm achieves

average consensus in (4) with probability one for any x(0).
A stochastic average consensus scheme is also proposed

in [10], where the graph edges are selected randomly and

independent of each other. The paper provides a probabilis-

tic analysis of the convergence. The scheme is based on a

sampled-data communication protocol and employs weights

that are different from those in (6). Other works exploiting

randomized communication patterns include [7], [21], [27].

C. Quantized-valued case

We next look at the average consensus for the quantized-

valued case. This scheme is proposed in [13]. Here, by

quantized, we mean that the node values are integers. This

consensus problem requires a somewhat different treatment

from the real-valued case. To begin with, the average of the

initial values may not be an integer. Thus, the target value

is an integer approximation of the true average and is not

necessarily unique. Moreover, consensus can be achieved

in finite time because the nodes are updated in integers at

each time instant.

More specifically, the algorithm is said to achieve quan-

tized average consensus if the following conditions hold:

(i) The values are integers at all times: xi(k) ∈ Z, ∀i, k.

(ii) The sum of the node values remains constant:
∑N

i=1 xi(k) =
∑N

i=1 xi(0) for all k.

2582

1

2 3

Fig. 3. A graph of 3 nodes

(iii) All values converge to the quantized average: There

exists k∗ such that xi(k) ∈ {x̄, x̄+1} for all k > k∗

and i, where x̄ =
⌊

∑N

i=1 xi(0)/N
⌋

.

In [13], a class of randomized algorithms called quantized

gossip algorithms is proposed; see also [6]. The following

are the requirements for such algorithms: At time k, one

edge {i, j} ∈ E is selected at random in an i.i.d. fashion.

Let Dij(k) = |xi(k) − xj(k)|.

(a) If Dij(k) = 0, then the values of the nodes i and j

remain the same for time k + 1.

(b) If Dij(k) = 1, then the values are exchanged, or

swapped, by

xi(k + 1) = xj(k) and xj(k + 1) = xi(k). (7)

(c) Otherwise, the updates in the values satisfy

xi(k + 1) + xj(k + 1) = xi(k) + xj(k),

Dij(k + 1) < Dij(k).

Notice that algorithms in this class are by definition

randomized. One way of specifying the distribution for

choosing the edges is to allocate positive probabilities to all

edges in the graph. We refer the readers to [13] for several

explicit quantized gossip algorithms that ensure the require-

ments above. We also emphasize that these algorithms are

different from the one for the real-valued case in Section V-

B. Especially, the swapping in (7) becomes crucial when the

node values are close to the average.

The next result applies to any such algorithm [13].

Theorem 2: For each initial condition x(0) ∈ Z
N , a

quantized gossip algorithm achieves quantized average con-

sensus in a finite number of steps with probability one.

An interesting aspect of this algorithm is that randomiza-

tion is essential. This can be illustrated through an example

given in [13]. Consider the graph with three nodes in Fig. 3.

Initially, the node i is given the value i for i = 1, 2, 3 and,

thus, the average value is 2. Suppose that we employ a

deterministic, periodic scheme for the edge selection with

period 3 by following {1, 2}, {1, 3}, {3, 2}, {1, 2},
Under this scheme, it is clear that only swapping in (7)

will take place for all times. Hence, the set of node values

remains 1, 2, and 3 and will never reach the consensus

values. In contrast, by randomly choosing the edges, average

consensus is possible in a matter of a few steps. This is an

attractive communication scheme for its simplicity.

We remark that in [13] further probabilistic analysis is

given on the expected running time for achieving quan-

tized consensus. In particular, if the graph is either fully

connected or linear (i.e., the nodes are connected as 1 –

2 –· · · – N), then the expected running time is polynomial

with respect to the number of nodes. Hence, this algorithm

is an example of an efficient Las Vegas algorithm. This is

in contrast with the real valued case in Section V-B, where

in general convergence of the node values to the average is

guaranteed only asymptotically.

D. Binary-valued case

The third consensus problem we study is when the agents

take binary values xi(k) ∈ {0, 1} for all i, k. In particular,

the problem we discuss here is known as the Byzantine

agreement problem in the field of distributed computing,

see e.g. [17]. We will show that in this case even stronger

results in favor of randomized schemes can be obtained.

A distinct feature of this problem is that some of the

N agents are faulty. Such agents may try to deceive the

nonfaulty agents and may even communicate to each other

secretly. We assume that there are Nf such agents, which

are fixed but their identity is not known to the nonfaulty

ones. Regarding the communication pattern, the graph is

fully connected. Each agent sends a message to all others

at each time k; faulty agents may send different messages

to others. Randomization hence takes part not in the com-

munication pattern. Instead, a global coin toss is performed

by a trusted party who sends the (true) result to all agents

at each k.

The objective is to achieve a form of average consensus

even in the worst case. We say that binary consensus is

achieved if each agent i determines the decision value yi ∈
{0, 1} such that

(i) all nonfaulty agents arrive at the same decision value;

(ii) if all nonfaulty agents have the same initial value

xi(0), then they finish with yi = xi(0).

We consider the simple case where N is a multiple of 8

and Nf < N/8. We also let

L := 5N/8 + 1, H := 3N/4 + 1, G := 7N/8.

The algorithm for each agent i we now present is due to

[19]; basically, the agent sends its value and decides on the

majority of the values that it receives.

1) At time k, send the value xi(k) to other agents and

receive xj(k), j
= i, from them.

2) Set the majority value mi(k) ∈ {0, 1} to what the

majority of agents sent as their values. Then, set the

tally ti(k) equal to the number of agents whose values

are the same as mi(k).
3) Now, depending on the result of the coin toss, let the

threshold t̄(k) be L if the coin shows heads and H
otherwise (note that the threshold is the same for all

agents).

4) Set the value xi(k) to the majority value mi(k) if

ti(k) ≥ t̄(k) and to 0 otherwise.

5) If the tally satisfies ti(k) ≥ G, then let the decision

value yi be equal to mi(k).

There are two simple situations. (a) When all nonfaulty

agents have the same value at one point, all of them will

2583

finish with this value as their decision values in a constant

number of steps. (b) When two nonfaulty agents have

different majority values; then, all values xi(k) will become

0 during this step because none of the tallies exceeds the

threshold (in step 4 above).

The interesting case is when all nonfaulty agents have

the same majority value. Then, the faulty agents have a

chance to confuse them. This can be done by making some

nonfaulty agents have tallies exceeding the threshold and

others have tallies smaller than the threshold. However,

under the scheme, the chance is limited. Since H−L ≥ Nf ,

the faulty agents can deceive any agent only for one of the

threshold values, L or H . Further, the threshold randomly

varies over L and H because of the coin toss. Consequently,

the probability of deceiving is 1/2. On the other hand, when

they fail to deceive, all nonfaulty agents take the same value,

which leads to consensus.

The main result concerning the Byzantine agreement

problem is given below [17].

Theorem 3: For the algorithm presented above, binary

consensus is achieved with probability one for each initial

condition x(0) ∈ {0, 1}N . Moreover, the expected number

of steps required is a constant.

This theorem implies that the consensus algorithm is an

efficient Las Vegas type. In contrast, it is known that any

deterministic algorithm requires Nf + 1 steps [17]. It is

emphasized that even stronger results have been obtained

in the area of distributed computing. One is the so-called

impossible result for an asynchronous version of the binary

consensus problem [9]. This result states that if there is no

synchronized clock owned by the agents and if there is no

assumption on the sampling periods of the agents (i.e., the

processing speed may be different), for any deterministic

algorithm, it is impossible to achieve consensus. Random-

ized schemes such as using a global coin toss have been

shown to be effective in this case as well. For a survey on

this topic, which also includes many recent improvements

on the original algorithm, we refer to [2].

VI. CONCLUSION

In this paper, we discussed several variations of the

average consensus problem and the role of probabilistic

algorithms in this context. The class of Las Vegas random-

ized algorithms, which has been recently employed in the

field of systems and control [11], [24], has been shown

to be effective and sometimes crucial. Future research will

deal with other consensus problems where the agents take

real/quantized values and may be faulty.

Acknowledgment: The authors would like to thank Teodoro

Alamo, Tamer Başar, Ivan Cibrario Bertolotti, Yasumasa

Fujisaki, Akshay Kashyap, and Sandro Zampieri for the

interesting discussions and for the valuable comments.

REFERENCES

[1] P. J. Antsaklis and J. Baillieul, Guest Editors. Special Issue on the
Technology of Networked Control Systems. Proc. IEEE, 95(1), 2007.

[2] J. Aspnes. Randomized protocols for asynchronous consensus.
Distributed Computing, 16:165–175, 2003.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Com-

putation: Numerical Methods. Prentice-Hall, Englewood Cliffs, NJ,
1989.

[4] D. P. Bertsekas and J. N. Tsitsiklis. Comments on “Coordination of
groups of mobile autonomous agents using nearest neighbor rules”.
IEEE Trans. Autom. Control, 52:968–969, 2007.

[5] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis.
Convergence in multiagent coordination, consensus, and flocking.
In Proc. 44th IEEE Conf. on Decision and Control and European

Control Conf., pages 2996–3000, 2005.
[6] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip

algorithms. IEEE Trans. Information Theory, 52:2508–2530, 2006.
[7] R. Carli, F. Fagnani, M. Focoso, A. Speranzon, and S. Zampieri.

Communication constraints in the average consensus problem. Au-

tomatica, 44:671–684, 2008.
[8] M. Deng and Y.-C. Ho. An ordinal optimization approach to optimal

control problems. Automatica, 35:331–338, 1999.
[9] M. J. Fisher, N. A. Lynch, and M. S. Paterson. Impossibility of

distributed consensus with one faulty processor. J. ACM, 32:374–
382, 1985.

[10] Y. Hatano and M. Mesbahi. Agreement over random networks. IEEE

Trans. Autom. Control, 50:1867–72, 2005.
[11] H. Ishii and R. Tempo. Probabilistic sorting and stabilization of

switched systems. Submitted for publication, 2007.
[12] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of

mobile autonomous agents using nearest neighbor rules. IEEE Trans.

Autom. Control, 48:988–1001, 2003.
[13] A. Kashyap, T. Başar, and R. Srikant. Quantized consensus. Auto-

matica, 43:1192–1203, 2007.
[14] D. E. Knuth. The Art of Computer Programming, 2nd edition, volume

3: Sorting and Searching. Addison-Wesley, Reading, MA, 1998.
[15] M. Mitzenmacher and E. Upfal. Probability and Computing:

Randomized Algorithms and Probabilistic Analysis. Cambridge
University Press, 2005.

[16] L. Moreau. Stability of multiagent systems with time-dependent
communication links. IEEE Trans. Autom. Control, 50:169–182,
2005.

[17] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[18] R. Olfati-Saber and R. Murray. Consensus problems in networks of
agents with switching topology and time-delays. IEEE Trans. Autom.

Control, 49:1520–1533, 2004.
[19] M. O. Rabin. Randomized Byzantin generals. In Proc. Annual Symp.

on Foundations of Computer Science, pages 403–409, 1983.
[20] A. V. Savkin. Coordinated collective motion of groups of autonomous

robots: Analysis of Vicsek’s model. IEEE Trans. Autom. Control,
49:981–983, 2004.

[21] A. Tahbaz-Salehi and A. Jadbabaie. Necessary and sufficient
conditions for consensus over random independent and identically
distributed switching graphs. In Proc. 46th IEEE Conf. on Decision

and Control, pages 4209–4214, 2007.
[22] R. Tempo, E. W. Bai, and F. Dabbene. Probabilistic robustness

analysis: Explicit bounds for the minimum number of samples.
Systems & Control Letters, 30:237–242, 1997.

[23] R. Tempo, G. Calafiore, and F. Dabbene. Randomized Algorithms

for Analysis and Control of Uncertain Systems. Springer, London,
2005.

[24] R. Tempo and H. Ishii. Monte Carlo and Las Vegas randomized
algorithms for systems and control: An introduction. European J.

Control, 13:189–203, 2007.
[25] J. N. Tsitsiklis. Problems in Decentralized Decision Making and

Computation. PhD thesis, Dept. of Electrical Engineering and Com-
puter Science, MIT, 1984. http://web.mit.edu/jnt/www/Papers/PhD-
84-jnt.pdf.

[26] M. Vidyasagar. Statistical learning theory and randomized algorithms
for control. IEEE Control Systems Magazine, 18(6):69–85, 1998.

[27] C. W. Wu. Synchronization and convergence of linear dynamics in
random directed networks. IEEE Trans. Autom. Control, 51:1207–
1210, 2006.

[28] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor
fusion based on average consensus. In Proc. Conf. on Information

Processing in Sensor Networks, pages 63–70, 2005.

2584

