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Abstract— The multimodel approach is recently developed in
order to resolve the problems of the increasing complexity of
many industrial processes. In this paper we propose a multi-
model generalized predictive control based on a commutation
algorithm. This commutation is controlled by partial predictors
associated to the local controllers. These predictors constitute
the supervisor. The control law is established to ensure the
desired performances in closed loop in the presence of a
highly non stationary system. The obtained results are very
satisfactory and show a very good precision relatively to the
case in which the classical direct adaptive generalized predictive
control is adopted.

I. INTRODUCTION

With the successive developments of the modern automa-

tion, we perceived that a ’fixed’ regulator could not always

provide an acceptable behavior of the system in all situations.

The control of dynamic systems in the presence of large

uncertainties and constraints is of great interest for several

applications [1], [3], [6]. In such cases, the controller has

to determine the specific situation that exists at any instant

and take the appropriate control action. Accomplishing this

rapidly, accurately and in stable fashion is the objective in

control design.

The direct adaptive generalized predictive control (DAGPC)

is one of the few techniques that are able to cope with

constraints and modelling errors in an explicit manner [1],

[6]. It has proved to be efficient and successful for industrial

applications. Moreover, for systems with time-varying pa-

rameters, acceptable performances may be maintained with

adaptive controllers.

In addition, the presence of complex processes involve

modelling and robustness problems, while using the Direct

adaptive generalized predictive control.

To overcome this problem, it is necessary to introduce an

intelligent modelling and control strategies. Indeed, multi-

model and multicontrol approaches are considered to be very

suitable and able to identify and control complex systems

with high performances.

The multimodel and multicontrol approaches are known as

powerful techniques to overcome difficulties encountered

in conventional modelling and control techniques. These

approaches are useful for the industrial processes which are,

often, complex (nonlinear or/and non stationary). The basic

idea of the above approaches is the decomposition of the full

operation range of the process into a number of operating
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regimes. In each operating regime, a simple local model

or controller is applied. These local models called model’s

library and controllers are then combined in some way to

yield a global model or controller [4], [5], [8], [11], [19],

[23].

To overcome the problem of direct adaptive generalized

predictive control, we propose, in this work, the multimodel

and multicontrol approaches.

For each local model, a generalized predictive control law is

elaborated. The effective control law applied to the process is

a switching between all these elementary laws. At any given

instant during the operation of the system, the main task will

be to determine which model approximates at the best the

plant in order to apply the corresponding controller. Three

inherent parts are necessary in the multicontrol approach:

the first one is a set of local controllers; the second one is a

’switching system’ whose task is to design the control law

from the set of local controllers and the last one is a supervi-

sory system which controls the ’switching system’ and more

precisely, it indicates the most appropriate controller to the

latter.

Firstly, we present in this paper the development of the direct

adaptive generalized predictive control. An example of simu-

lation is given thereafter to show the limits of this control law

in the presence of a highly non stationary system. In a second

part, we propose a solution for these problems through

the synthesis of a multimodel generalized predictive control

law with a supervisor. A simulation example is proposed,

illustrating that the proposed multicontrol approach is more

precisely and presents good performances by comparison

with the control without supervisor.

II. DIRECT ADAPTATIVE GENERALIZED PREDICTIVE

CONTROL LAW (DAGPC)

Let’s consider the CARIMA model (Controller Auto-

Regressive Integrated Moving Average).

A(q−1)y(k) = q−dB(q−1)u(k) + C(q−1)
v(k)

D(q−1)
. (1)

with:

A(q−1) = 1 + a1q
−1 + a2q

−2 + ... + anA
q−nA.

B(q−1) = b0 + b1q
−1 + b2q

−2 + ... + bnB
q−nB .

C(q−1) = 1 + c1q
−1 + ... + cnC

q−nc.

D(q−1) = 1 − q−1.
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From the previous model (1) we can write:

y (k + j) = q−d
B

(
q−1

)
A (q−1)D (q−1)

D
(
q−1

)
u (k + j)

+
C

(
q−1

)
A (q−1)D (q−1)

v(k + j)

(2)

The j step predictor ŷ(k + j/k) is calculated by minimizing

a simple criterion function J given by (3):

J = E
{
[y(k + j) − ŷ(k + j/k)]2/Mk

}
. (3)

with Mk is a set of known measures at instant k.

A. Matrix formulation of the predictor

The minimization of equation (3) written in a matrix form

provides the future control sequence, for j ∈ [HI, HP ]; (HI
and HP are, respectively, the horizons of initialisation and

prediction):

Ŷ = R∗∗DU + G∗∗Y + Q∗∗DUp (4)

with :

Ŷ = [ŷ(k + HI/k) . . . ŷ(k + HP/k)]T

DU = [Du(k − 1) . . . Du(k − nB)]T

Y = [y(k) . . . y(k − nA)]T

DUp = [Du(k) . . . Du(k + HP − 1)]T ;

dim[Ŷ ] = (HP − HI + 1, 1) ; dim[DU ] = (nB , 1) ;

dim[Y ] = (nA + 1, 1) ; dim[DUp] = (HP, 1) ;

dim[R∗∗] = (HP − HI + 1, nB) .

dim[G∗∗] = (HP − HI + 1, nA + 1) .

dim[Q∗∗] = (HP − HI + 1, HP ) .

The matrix R∗∗, G∗∗ et Q∗∗ are derived by solving

diophantine equations, with unique solutions [1]. Let’s define

a vector of prediction which depends on present and past

measurements:

EŶ a = Ŷ a − Y C = R∗∗DU + G∗∗Y − Y C (5)

with:

Ŷ a = R∗∗DU + G∗∗Y : is a vector of prediction relative to

present and past measurements.

Y C = [yc(k + HI) . . . yc(k + HP )]T : is a set point

vector.

dim[Y C] = dim[Ŷ a] = (HP − HI + 1, 1) .

The prediction EŶ p depending on the future control

sequence is defined by:

EŶ p = Q∗∗DUp (6)

B. Calculation of control law

The objective of the direct adaptive generalized predic-

tive control is to calculate the optimal control sequence

[Du(k), Du(k + 1), . . . , Du(k + HC − 1)] by minimizing

the criterion given by relation (7).

J =
1

2

⎧⎨
⎩

HP∑
j=HI

[ŷ(k + j/k) − yc(k + j)]
2
+

λ
HC−1∑

j=0

Du(k + j)2

⎫⎬
⎭

(7)

HC is the horizon of control and λ is a weight factor.

The dimension of the vector DUp is reduced to (HC, 1)
and the (HP − HC) columns of the matrix Q∗∗ are not

taken into account. We obtain the new matrix Q∗.

Taking into account this last definition, the equations (4) and

(6) can be written as follows:

Ŷ = R∗∗DU + G∗∗Y + Q∗DUp

EŶ p = Q∗DUp

(8)

The determination of the vector DUp requires to put the

criterion (7) under a matrix form.The optimal vector DUP

will be:

DUP = −M [R∗∗DU + G∗∗Y − Y C] (9)

with:

M = [QT
∗
Q∗ + λIHC ]−1QT

∗
=

⎡
⎢⎢⎢⎣

m1
T

m2
T

...

mHC
T

⎤
⎥⎥⎥⎦ = ZQT

∗
(10)

with: Z = [QT
∗
Q∗ + λIHC ]−1.

We can write the equation (9) under the following matrix

form:

MY C = MG∗∗Y + DUP + M R∗∗DU = θT φ(k) (11)

with:

θT = [MG∗∗ IHC MR∗∗]
φ (k) =

[
y (k) ...y (k − nA) DUT

p

Du (k − 1) ... Du (k − nB)
T
]T

θ, φ(k) are, respectively, the matrix of parameters

with dimension (nA + nB + 1 + HC, HC) and the

input-output measurements vector with dimension

(nA + HC + nB + 1, 1).
In a classic way, for the direct adaptive generalized

predictive control, only the first element of vector DUP is

considered. The control law applied to the process at each

iteration k will be deducted from this last vector as follows:

Du(k) = −m1
T (R∗∗DU + G∗∗Y − Y C) (12)
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C. RST structure of the DAGPC control

This particular structure of the generalized predictive

control law synthesizes an equivalent polynomial control law

form with the three polynomials R, S and T [1], [6].

From the equation (12), we can write:

Du(k) = −m1
T q−1R∗∗[1 . . . q−nB+1]T Du(k)

−m1
T G∗∗[1 . . . q−nA ]T y(k)

+m1
T [yc(k + HI) . . . yc(k + HP )]T

(13)

and also if we make:

R∗∗(q−1) = R∗∗[1 . . . q−nB+1]T ;

G∗∗(q−1) = G∗∗[1 . . . q−nA ]T ;

we get:

D(q−1)u(k)
[
1 + m1

T R∗∗(q−1) q−1
]

=

−m1
T G∗∗(q−1)y(k) + m1

T
[
qHI . . . qHP

]T
yc(k)

(14)

This relation must correspond to the following equation:

S(q−1)D(q−1)u(k) = −R(q−1)y(k) + T (q)yc(k) (15)

By identification, the three polynomials R(q−1), S(q−1) and

T (q−1) are:

S(q−1) = 1 + q−1m1
T R∗∗(q−1) = 1 + q−1S∗(q−1),

R(q−1) = m1
T G∗∗(q−1);

T (q) = m1
T [qHI . . . qHP ]T ;

deg(S(q−1)) = nB ; deg(R(q−1)) = nA; deg(T (q)) = HP .

D. performances error and performances index

We define the prediction vector Xp(k + HP ), which

contains the predicted output and the future control sequence

[6]:

Xp(k + HP ) = [Ŷ
T
DUT

p ]T (16)

dim[Xp]=(HP − HI + HC + 1, 1).

We also define the target vector Xc(k + HP ) from

Xp(k + HP ), with the same dimension, composed of refer-

ence vector Y C and zero vector Φ. Considering the fact that

the output vector Ŷ has to converge to the reference vector

while the control signal DUP has to tend to zero, we have:

Xc(k + HP ) = [Y CT ΦT ]T (17)

Therefore, the error of ” reaching target ” can be defined as

follows:

e(k + HP ) = [Xp(k + HP ) − Xc(k + HP )] (18)

The introduction of a weighting matrix L with dimension

(HP −HI +HC +1,HC) to create a dynamic cancellation

of the error defined previously, yields to a new error called

”performances error ” defined as follows:

ef (k + HP ) = LT e(k + HP )
= LT [Xp(k + HP ) − Xc(k + HP )]
= LT Xp(k + HP ) − LT Xc(k + HP )
= Ipr(k + HP ) − Ipd(k + HP )

(19)

with: LT = [M λZ].
This L matrix imposes the tracking dynamic for the output

and a weighting factor on the control values.

The relation (19) introducing the notion of the performances

error is presented by the difference of two entities

Ipr(k+HP ) and Ipd(k+HP ). The first one is an indication

of the measured performances and the second one is an

evaluation of the desired performances [6].

These two indicators serve to measure the changing of the

process behavior at the instant (k+HP ). Indeed, in the case

when the system does not evolve, the error of ”reaching

target” e(k + HP ) is equal to zero, that results in the

convergence of the measured performances indicator toward

the desired performances.

However, the parametric variation generates a difference

between the measured performances indicator of the present

model and the initial model, controlled by the same control

law. Consequently, that the desired performances indicator

of the process must be equal to the initial at every instant.

Ipr(k + HP ) = MY C = θT φ(k) (20)

The performances index to be minimized is a quadratic cost

function � defined by [6] :

� (k + HP ) = ef (k + Hp)T ef (k + Hp)

=
[
Ipr(k + HP ) − θ̂T (k + HP − 1)φ(k)

]T

×
[
Ipr(k + HP ) − θ̂T (k + HP − 1)φ(k)

]

(21)

Including the RST structure and the performances error,

the direct adaptive generalized predictive control (DAGPC)

diagram is represented in figure 1.

ef

1

1

( )

( )

d
q B q

A q

− −

−

R(q
-1
)

T(q)

y
c
(k)

MM

λZ

-+

+

+

+

-

IprIpd

u(k)

y(k)
-1 -1

1

D(q )S(q )

Fig. 1. The Direct Adaptive Generalized Predictive Control structure.

E. Updating of control law

The objective of the direct adaptive generalized predictive

control DAGPC is to identify directly the parameters of the

regulator RST using an adaptive algorithm which minimizes

the performances index (�(k+HP )) at each sampling time.

The control parameters are updating through the gradient

algorithm given by:

θ̂(k + HP ) = θ̂(k + HP − 1) −
Γ

2

∂�(k + HP )

∂θ̂(k + HP − 1)
(22)
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with: Γ is a matrix of adaptation gain.

According to the equation (21), we can write the equation

(22) as follow:

θ̂(k +HP ) = θ̂(k +HP −1)+Γ φ(k) ef (k +HP )T (23)

where ef (k + HP ) is the priori performances error.

III. SIMULATION EXAMPLE

Let us consider a second order non stationary system

described by the following equation:

y(k) = −a1(k) y(k − 1) − a2(k) y(k − 2) + b1(k) u(k − 1)
+ b2(k)u(k − 2)

(24)

The parameters ai(k) and bi(k) are a time varying

parameters. with:

ai(k) = ai0 + Δai sin (wk)

bi(k) = bi0 + Δbi sin (wk)

w : is a pulsation, chosen for the parameters variation of the

system. ( ai0 and bi0 are the mean values of the parameters):

a10 = −0.5, a20 = 0.1, b10 = 0.1 and b20 = 0.2.

The degrees of parameters variation (Δai, Δbi) are:

Δai =
dai

100
|ai0| ; Δbi =

dbi

100
|bi0| ; i = 1, 2

A. Case of faintly non stationary system

In a first case, we consider a faintly variation of the

parameters (ai(k), bi(k)). A direct adaptive generalized pre-

dictive control, with a given synthesis parameters (HP = 8,

HC = 2, HI = 1, λ=1) is synthesized. The application of

this control law to the considered system gave the results

represented by the following figure (figure 2). This figure

illustrates the evolutions of the faintly non stationary system

output y(k) and of the reference trajectory yc(k). We remark

that the system output follows with precision the desired

reference trajectory.

50 100 150 200 250 300 350 400 450 500 550 600
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
 y(k) 

k

 y
c
(k) , 

Fig. 2. The evolutions of the desired and the real outputs.

B. Case of highly non stationary system

In presence of a highly non stationary system the per-

formances of direct adaptive generalized predictive control

DAGPC is considerably deteriorated. It is due to the inability

of this control law to act according to parametric variations

and to the modelling errors. This is illustrated by figure 3

which lets appear a big error between the process output and

the desired reference trajectory.

50 100 150 200 250 300 350 400 450 500 550 600
0.2

0.4

0.6

0.8

1

1.2

k

y(k)

y
c
(k)

Fig. 3. The evolutions of the desired and the real outputs.

In order to overcome these problems, we propose to

apply the multimodel approach. In this way, the highly non

stationary system can be represented by a set of N local

models called models’base. We associate to each model a

local Generalized Predictive Control.

The effective control u(k), applied to the process, can be a

result of a switching strategy between all these control laws

ui(k).

IV. THE PROPOSED CONCEPT OF THE MULTIMODEL

GENERALIZED PREDICTIVE CONTROL WITH SUPERVISOR

The idea of this proposed strategy is to associate a predic-

tor and a controller to each operating regimes of the system.

Therefore a set of predictors constituting the supervisor will

be used to describe its full operating range.

Three inherent parts are necessary in the multicontrol ap-

proach: the first one is a set of local controllers; the second

one is a ’switching system’ and the last one is a supervision

system which controls the switching system and more pre-

cisely, it indicates the most appropriate controller [19]. The

general diagram of the proposed concept is given by figure

4.

-

u(k)
Process

y(k)

Predictor N

Performances

evaluator and 

switching logic

Predictor 2

Predictor 1+

-
+

-
+

u1(k)

u2(k)

uN(k)

Library of
Regulators

DGPC 1

DGPC 2

DGPC N

( )ˆ
1y k

( )2ŷ k

( )ˆ
Ny k

Commutator

Supervisor

Fig. 4. A general architecture for multimodel switching control with
supervisor.
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For each local model, we are able to calculate a local

controller satisfying the closed loop local objectives.

The supervisor structure is given in figure 4. It consists of

a bank of predictors and a block denoted by Performances

evaluator and switching logic. The supervision mission

consists in selecting the predictor i and then applying the

corresponding controller (DGPCi).

The supervisor task is achieved by comparing a performance

criterion Ji(k), based on the error ei(k), of each predictor,

and choosing the controller that corresponds to the minimum

at each step [9], [17], [19].

The switching algorithm is based on the minimization of a

criterion Ji(k):

Ji(k) = αe2
i (k)+β

k∑
j=1

e−λ(k−j)e2
i (k). i = 1..N (25)

with:

ei(k) = y(k) − ŷi(k).
N is the number of local controllers.

ŷi(k) is the output of the ith predictor.

α ,β and λ are positive tuning parameters.

Where α and β are weighting factors of the terms that in-

corporate instantaneous and long-term measures of accuracy.

The forgetting factor λ determines the memory of the index.

In this work a multimodel generalized predictive control is

synthesized. The local predictors are given by the inversion

of the correspondent local controllers (local generalized

predictive control). The supervisor is constituted of the set

of local predictors. ei(k) is the identification error calculated

between the output of the ith predictor and the plant output.

A. Synthesis of supervisor

For the direct adaptive generalized predictive control, only

the first element of vector DUP is considered. The control

at the instant k applied to the process will be deduced from

the vector given by equation (13):

Du(k) = −m1
T (R∗∗DU + G∗∗Y − Y C) (26)

At each iteration, from u(k) and y(k), it is possible to

rebuild the reference signal yc(k). Taking into account the

last equation, we can write:

Y C = (m1m
T
1 )−1m1Du(k) + R∗∗DU + G∗∗Y (27)

Therefore, to find the parameters of the local predictor

Ŷi from the controller’s structure and while applying the

principle of certain equivalence [19], it is sufficient to express

Ŷi according to the control law and the output of the process.

The output of the predictor can be written by the following

equation:

Ŷi = (m1im
T
1i)

−1m1iDu(k)+R∗∗

i DU+G∗∗

i Y i = 1..N
(28)

with:

Y =

⎡
⎢⎢⎣

y (k)
y (k − 1)

y (k − nA)

⎤
⎥⎥⎦ ; DU =

⎡
⎢⎢⎣

Du (k − 1)
Du (k − 2)

Du (k − nB − d + 1)

⎤
⎥⎥⎦

We only have needed the first element:

ŷi(k) = q−HI Ŷi(1) i = 1..N (29)

The proposed local predictor structure is illustrated by figure

5.

u(k)
 Process

y(k)

++

ˆ ( )iy k

+
-

( )ie k

îY

q
-HI

D (q
-1

) [(m1i m1i
T
)

-1
m1i+ q

-1
[1 q

-1
… q

-n
B

-d+1
]

T
Ri

**
] q

-HI
Gi

**
[ 1 q

-1
… q

-nA]
T

Fig. 5. The proposed local predictor structure.

B. Simulation Example

In order to show the considerable contribution in perfor-

mances of the multimodel generalized predictive control with

a supervisor; we consider the same highly non stationary

process described by the equation (24), while preserving

the same parametric variations and the same simulation

conditions.

1) Determination of a models’base: The determination

of a models’library is confided to the method based on

the Kohonen networks [22], [23]. The application of this

approach requires firstly to determine the number of clusters.

The classification of an identification data set is the second

stage. Then, there is a stage of structural and parametric

estimation in order to determine the local models that can

reproduce the behavior of the process [13], [22], [23].

The application of this method to an identification data

set, picked out on the highly non stationary system, yields

to three second-order systems described by the following

transfer functions:

H1(q
−1) =

0.1003q−1 + 0.1992q−2

1 − 0.5108q−1 + 0.1111q−2
(30)

H2(q
−1) =

0.0995q−1 + 0.1856q−2

1 − 0.5425q−1 + 0.1140q−2
(31)

H3(q
−1) =

0.1009q−1 + 0.1739q−2

1 − 0.60148q−1 + 0.1442q−2
(32)

A local generalized predictive control (DGPCi) is synthe-

sized for each model. The multimodel generalized predictive

control law with supervisor synthesized as previously is

applied to the considered system.

The figure 6 presents the evolutions of the desired reference

trajectory yc(k) and the system output y(k). It shows the

results of the application of the multimodel generalized

predictive control with supervision to the highly non station-

ary system. This figure shows a very satisfactory tracking

performance.
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Fig. 6. The evolutions of the desired and the real outputs.

The evolution of the control law is given in figure 7. The

state of the commutation of controllers is given in figure 8.

The obtained results are very satisfactory and show a very

good performances relatively to the case in which the classi-

cal direct adaptive generalized predictive control is adopted.

50 100 150 200 250 300 350 400 450 500 550 600
0.8

1

1.2

1.4

1.6

1.8

2

2.2 u(k)

k

Fig. 7. The control signal.

0 100 200 300 400 500 600

DGPC 1

DGPC 2

DGPC 3

k

Fig. 8. Illustration of the controllers commutation.

V. CONCLUSION

In this paper, we have elaborated a multimodel generalized

predictive control with supervisor for highly non stationary

system. This control law is obtained from a switching

between elementary control signals generated by the base’s

local controllers. We also compared the performances of this

proposed strategy to the classical adaptive generalized pre-

dictive control. The simulation results show clearly that the

proposed strategy leads to a good closed loop performances

in the presence of a high parametric variation.
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