
Formation Stability of Multi-Agent Systems with Limited Information

Gajamohan Mohanarajah and Tomohisa Hayakawa

Department of Mechanical and Environmental Informatics

Tokyo Institute of Technology, Tokyo 152-8552, JAPAN

hayakawa@mei.titech.ac.jp

Abstract

Formation control of multi-agent systems in the face of
limitation on the number of communication channels is
considered. The feedback controller switches the commu-
nication structure so that the agents share the information
of all the other agents over certain period. We present
stability analysis for two types of such limitations. For both
cases, it is shown that stability of formation is maintained
by appropriately constructing the switching sequence of
the network structure. Furthermore, we provide stability
conditions for the case where the communication channels
collapse with known probability in the face of channel
constraints placed on the overall system.

1. Introduction

The framework of networked multi-agent systems has va-
riety of applications [1–4] and a whole range of approaches
to control [5–8]. However, most of the approaches in the lit-
erature are aimed at providing full-state feedback controllers
to achieve control objectives. The problem of information
limitation appears to be fairly neglected, a problem which
is very much likely to occur during the implementation of
multi-agent systems.

In a recent paper [9], we developed a formation control
framework for multiple agents with intermittent information
exchange between the agents. Specifically, we derived the
relationship between the magnitude of the feedback gain and
the rate of information exchange. Even though emulation of
a mass-spring-damper system is a trivial approach to stabilize
the multi-agent systems [5,6] for the continuous-time case , it
does not apply to the case of sampled-data setting [10]. In [9]
we ended up obtaining a simple, low-dimensional criterion
whereby formation stability of the (large number of) agents
is shown to be guaranteed.

In this paper, we consider the case where the number of
communication channels that can be used at each time instant
is limited. Specifically, when there is not enough number of
communication channels, information network of the multi-
agent system cannot be connected and a group of agents may
be isolated from the other agents at any time instant. Hence, a
switching sequence of communication topologies should be
appropriately constructed to stabilize the multi-agent system.
In particular, we consider two cases; one where the chan-
nel constraint is placed on each agents and the other where
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the overall multi-agent system has constrains. Under these
cases we analyze stability of the multi-agent system for var-
ious switching sequences. Furthermore, we provide stability
conditions for the case where the communication channels
collapse with known probability in the face of channel con-
straints placed on the overall system.

The notation used in this paper is fairly standard. Specif-
ically, R denotes the set of real numbers, R

n denotes the set
of n × 1 real column vectors, and N0 denotes the set of non-
negative integers. Furthermore, we write (·)T for transpose,
xi:j for the sub-vector of x ∈ R

n having the ith to the jth
elements of x, 0n for the n × n-dimensional zero matrix, In

for the identity matrix of dimension n, X(i,j) for the (i, j)th
element of matrix X , rowi:j(X) for the sub-matrix of X con-
sisting of all the rows from i to j of X , ⊗ for the Kronecker
product, spec(A) for the spectrum of the matrix A, 1n for the
vector [1, . . . , 1]T ∈ R

n, ‖ · ‖ for the Euclidean vector norm,
mod(a, b) for the remainder on division of a by b, and |N |
for the cardinal number of the finite set N .

2. Motivation and Problem Setting

In this section we begin by considering the problem of
characterizing formation control laws for multi-agent sys-
tems. Specifically, we assume that each agent is a normalized
point mass and is subject to the force input. For simplicity of
exposition, we assume that the agents are collision-free and
allowed to move in a one-dimensional space. The extension
to multi-dimensional systems is straightforward. The con-
trol objective is to regulate each agent’s position and velocity
such that all the agents travel with asymptotic zero relative
positions and common velocities.

To this end, consider the dynamics of n identical agents
given by

q̇i(t) = pi(t), qi(0) = qi0, t ≥ 0,

ṗi(t) = ui(t), pi(0) = pi0, (1)

where i = 1, · · · , n, qi ∈ R and pi ∈ R are the position and
the velocity, respectively, and ui ∈ R is the force input of the
ith agent. With this notation the control objective mentioned
above can be written as

lim
t→∞

(qi(t) − qj(t)) = 0, lim
t→∞

(pi(t) − pj(t)) = 0,

i, j = 1, · · · , n, i 6= j. (2)

In the preceding work [5, 6], Tanner et al. considered an
energy-based controller that emulates forces due to springs
and dampers in the continuous-time setting. In particular,
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their control law has the form of

ui(t) = [−1,−1]
∑

j∈Ni

[

qi(t) − qj(t)
pi(t) − pj(t)

]

,

i = 1, . . . , n, (3)

where Ni ⊂ {1, . . . , n}\{i} represents the set of agents
which the agent i can communicate with. It is also assumed
that if the agent i knows its relative state with respect to
agent j, then the agent j also knows its relative state with
respect to agent i. Note that the control law (3) has the form
of

u(t) = −Lq(t) − Lp(t), (4)

where q(t) , [q1(t), . . . , qn(t)]T, p(t) , [p1(t), . . . ,

pn(t)]T, u(t) , [u1(t), . . . , un(t)]T, and L is the symmetric
Laplacian matrix defined as

L(i,j) ,











|Ni|, i = j,

−1, j ∈ Ni,

0, otherwise,

(5)

which in a way represents the communication architecture.

In this paper, we consider a more realistic case than the
continuous-time setting presented above. In particular, we
assume that each controller can simultaneously receive the
information of relative positions and relative velocities of
the agents prescribed by N1, . . . ,Nn with time interval T .
This synchronized intermittent information exchange natu-
rally leads to a formulation of sampled-data control.

For applying the control, we employ zero-order hold so
that the control input between the sampling instants is given
by

ui(t) = ui[k], kT ≤ t < (k + 1)T, k ∈ N0,

i = 1, . . . , n, (6)

where ui[k] denotes the input signal of the ith agent com-
puted at the kth sampling instant t = kT . In this case, dis-
cretizing the equations of motion (1) with sampling period
T , we obtain

qi[k + 1] = qi[k] + Tpi[k] + 1
2T 2ui[k], qi[0] = qi0,

pi[k + 1] = pi[k] + Tui[k], pi[0] = pi0,

k ∈ N0, i = 1, . . . , n, (7)

where qi[k] represents (resp., pi[k]) the position (resp., ve-
locity) of the ith agent at the kth sampling instant.

In our earlier work [9] it was shown that if the Laplacian
matrix L represents a connected topology, then the control
input (6) with

u[k] = −Lq[k] − Lp[k], (8)

which is inspired by (4) for the continuous-time case, can
stabilize the discretized multi-agent system in the case where
the sampling period T is sufficiently small. This control law
(6), (8) is time invariant in the sense that the communication
topology does not change over time. Conversely, when there

is a limitation on the available number of channels so that a
connected topology cannot be produced, the control objective
(2) is not achievable with the constant feedback gain as used
in (8). Hence, we need to construct a control framework that
requires switching of the communication network.

In this paper, we consider the time-varying form of (8)
which is given by

u[k] = −Lξ(k)q[k] − Lξ(k)p[k], (9)

where ξ ∈ N is used to index the network topology satisfying
the limitation on the allowable number of channels and Lξ is
the Laplacian matrix corresponding to the network topology
indexed by ξ. Specifically, we derive an r ∈ N periodic
switching sequence Lξ(k), where ξ(k) = 1 + mod(k, r),
such that the closed-loop system achieves formation stabil-
ity given by (2). In the following sections we consider two
types of such limitations; one where each agent is allowed
only a single channel at each sampling instant and the other
where the overall multi-agent system is allowed only a lim-
ited number of channels which is not sufficient to produce a
connected topology.

Now, defining x[k] ,
[

xT
1 [k], . . . , xT

n [k]
]T

, where xi[k] =

[qi[k], pi[k]]T, the closed-loop system (1), (6), (9) becomes

x[k + 1] = Âξ(k)(T )x[k], x[0] = x0, k ∈ N0, (10)

where

Âξ(T ) , In ⊗ A(T ) + Lξ ⊗ (B(T )K),

A(T ) =

[

1 T

0 1

]

, B(T ) =

[

1
2T 2

T

]

, K = [−1,−1].

Note that (10) is viewed as a jump linear system.

3. Equivalence of the Control Objective

In this section, we consider the closed-loop system given
by (10) and derive an equivalent statement of the control ob-
jective (2) for this system.

Since Li, i = 1, . . . , r, are symmetric and nonnega-
tive definite, it follows from the Schur decomposition that
there exists an orthogonal matrix S such that STL1S =
diag[λ1, . . . , λn] , U and col1(S) = 1√

n
1n, implying

λ1 = 0. Now, consider the coordinate transformation

x̃[k] = (S ⊗ I2)
Tx[k]. (11)

Using Lemma 4.1 in [9], (10) becomes

x̃[k + 1] = Λξ(k)(T )x̃[k], x̃[0] = (S ⊗ I2)
Tx0, k ∈ N0,

(12)
where

Λξ , (S ⊗ I2)
T (In ⊗ A + Lξ ⊗ (BK)) (S ⊗ I2)

= In ⊗ A + (STLξS) ⊗ (BK)

=











A 02 · · · 02

02 A
...

. . .

02 A











+











02 02 · · · 02

02

... Ũξ ⊗ (BK)
02










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=











A 02 · · · 02

02

... Λ̂ξ

02











, (13)

Λ̂ξ , In−1 ⊗ A + Ũξ ⊗ (BK), (14)

and Ũξ ∈ R
(n−1)×(n−1) is a symmetric matrix such that

STLξS =











0 0 · · · 0
0
... Ũξ

0











. (15)

The block-diagonal structure of (13) implies that the closed-
loop dynamics of the multi-agent system given by (12) can
be decoupled into

x̃1:2[k + 1] = A(T )x̃1:2[k], (16)

x̃3:2n[k + 1] = Λ̂ξ(k)(T )x̃3:2n[k]. (17)

Here note that

x̃3:2n[k] = (row3:2n(ST ⊗ I2))x[k]

= (row2:n(ST) ⊗ I2)x[k]

= (row2:n(ST) ⊗ I2)

· (q[k] ⊗ [1, 0]T + p[k] ⊗ [0, 1]T)

= (row2:n(ST))q[k] ⊗ [1, 0]T

+ (row2:n(ST))p[k] ⊗ [0, 1]T. (18)

Therefore, limk→∞ x̃3:2n[k] = 0 if and only if

lim
k→∞

(row2:n(ST))q[k] = 0 and

lim
k→∞

(row2:n(ST))p[k] = 0. (19)

Meanwhile, since S is orthogonal and col1(S) = 1√
n
1n, it

follows that row2:n(ST)1n = 0. Hence, (19) holds if and
only if

lim
k→∞

q[k] ∈ {m11n : m1 ∈ R} and

lim
k→∞

p[k] ∈ {m21n : m2 ∈ R}, (20)

i.e.,

lim
k→∞

(qi[k] − qj [k]) = 0 and lim
k→∞

(pi[k] − pj [k]) = 0,

i, j = 1, . . . , n, i 6= j. (21)

Thus, it follows that the agents travel with asymptotic zero
relative positions and common velocities if and only if (17)
is asymptotically stable for the jump linear system given by
(10).

4. Stability Conditions with Limited Information

4.1. Agent-wise Limited Information

In this section, we consider the case where only a single
communication channel is allowed for each agent at every
sampling instant. This consideration is due to the fact that if
more than one channel is allowed per agent, then a connected
topology can be created at every sampling instant, which sim-
plifies the process of achieving the control objective. Fur-
thermore, we assume that only the topologies which use the
maximum number of allowable channels in total are used in
the switching sequence, i.e., the total number of channels are
always n

2 if n is even and n−1
2 if n is odd. Thus, a multi-

agent system consisting of n agents may take n!

2
n
2 n

2 !
possible

combinations of topologies if n is even and
(n+1)!

2
n+1

2 n+1
2 !

if n is

odd. Here we let Cn represent this possible number of com-
binations.

Now, consider an r-periodic switching sequence out of the
above topologies. In this case, (17) yields

ỹ[κ + 1] = Λ̃ỹ[κ], k ∈ N0, (22)

where ỹ[κ] = x̃3:2n[κr] and Λ̃ , Λ̂r · · · Λ̂1. Therefore, it
follows that the agents travel with asymptotic zero relative

positions and common velocities if and only if Λ̃ is asymp-

totically stable, i.e., the moduli of the eigenvalues of Λ̃ are
all less than one.

4.2. System-wise Limited Information

In this section, we consider the case where at any sam-
pling instant the overall multi-agent system is allowed only
a limited number of channels which are not sufficient to pro-
duce a connected network topology. Again, we assume that
only the topologies which consist of the maximum number of
allowable channels are used in the switching sequence, and
hence the possible number of combinations Cn of the net-

work topologies is given by na!
(na−nc)!nc!

, where na = n(n−1)
2

and nc(< na) is the total number of communication chan-
nels allowed at the sampling instants. Note that even though
a similar stability analysis as in Section 4.1 can be carried
out, we take a different approach, which can be extended to
the case of stochastic communication channel collapse with
system-wise channel constraint, as discussed in Section 5.

For the statement of the following results, we use pcm(t) ∈
R to represent the velocity of the center of mass of the n
agents and define pcm(t) as

pcm(t) ,
1

n

n
∑

i=1

pi(t). (23)

Theorem 4.1. Consider the multi-agent system of n
agents given by (1) where the sampling period T is predeter-
mined, and the control law given by (6) and (9). If we switch
the communication topology with an r-periodic switching se-
quence Lξ(k), then the agents travel with asymptotic zero rel-
ative positions and common velocities (i.e., (2) is satisfied) if
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and only if Λ̂ is asymptotically stable (Schur), where

Λ̂ =















0 0 · · · 0 Λ̂r

Λ̂1 0 · · · 0 0

0 Λ̂2 0 · · · 0
... 0

. . .
. . .

...

0 0 · · · Λ̂r−1 0















, (24)

and Λ̂i, i = 1, . . . , r, are given by (14). Furthermore,
ṗcm(t) = 0 for all t ≥ 0.

Proof. First, note that the closed-loop system of the multi-
agent system (1) with the control law given by (6) and (9)
takes the form of (12). As stated in Section 3, the agents
travel with asymptotic zero relative positions and common
velocities if and only if (17) is asymptotically stable. Since
(17) falls under the category of a Markov jump linear system
with transition probability one as shown in Figure 4.1, it fol-
lows from [11] that (17) is asymptotically stable if and only
if for all Ri > 0, Ri ∈ R

(2n−2)×(2n−2), i = 1, . . . , r, there
exist Pi > 0, Pi ∈ R

(2n−2)×(2n−2), i = 1, . . . , r, such that
the coupled Lyapunov equations

P1 = Λ̂T
1 P2Λ̂1 + R1,

P2 = Λ̂T
2 P3Λ̂2 + R2,

...

Pr = Λ̂T
r P1Λ̂r + Rr,

or, equivalently,

P = Λ̂TP Λ̂ + R, (25)

are satisfied, where P , block-diag[P1, . . . , Pr] and R ,

block-diag[R1, . . . , Rr] > 0. Finally, (25) is equivalent to

the fact that Λ̂ is asymptotically stable.

To prove ṗcm(t) = 0, using (1), (6), (9), (23), and the fact
that Lξ1n = 0, ξ = 1, . . . , r, it follows that

ṗcm(t) =
1

n

n
∑

i=1

ṗi(t) =
1

n

n
∑

i=1

ui(t)

=
1

n

n
∑

i=1

ui[k]

=
1

n
1T

n (−Lξ(k)q[k] − Lξ(k)p[k])

= 0, kT ≤ t < (k + 1)T, k ∈ N0. (26)

¤

Note that a similar expression as in (24) is derived in
[12, 13] by expressing the discrete-time periodic switching
system (17) as a time-invarient system of higher dimension.

5. Switching Controller with Stochastic Communica-
tion Channel Collapse

During the implementation of multi-agent systems, due to
various physical reasons, the communication channels be-
tween the agents may collapse, preventing the state informa-
tion from being shared between the agents. In this section,

Λ̂1

Λ̂2

. . .

Λ̂r Λ̂r−1

Figure 4.1: Periodic switching controller

we take the multi-agent system from the previous section
which has a limitation on the number of channels and attains
consensus by switching the network topologies. Specifically,
assume that the communication channel between the agents
i and j of this system collapses at the sampling instants with
a known probability eij(= eji), j ∈ Ni, i ∈ {1, . . . , n}.

It is also assumed that if the controller of the agent i detects
that the communication channel with the agent j ∈ Ni is
missing, i.e., if the controller of the agent i cannot sense its
relative state with the agent j, then it excludes the state of
agent j in calculating the control input ui, i.e., j 6∈ Ni in (3).

Since we assume that only the topologies which employ
the maximum number nc of channels are used in the switch-
ing sequence, there are 2nc possible combinations of network
topologies at every sampling instant k due to the stochas-
tic communication channel collapse. Here, we use θξ ∈
{1, . . . , 2nc}, ξ = 1, . . . , r, to index the above combinations
of network topologies arising from Lξ, the network topol-
ogy when there is no communication channel collapse. Now,
let Lξ(k),θξ(k)

denote the network topology at the sampling

instant k, where ξ(k) = mod(k, r) + 1. Furthermore, let
p(ξ, θξ), ξ ∈ {1, . . . , r}, θξ ∈ {1, . . . , 2nc}, represent the
probability distribution of Lξ,θξ

with respect to the random
variable θξ, which can be readily calculated using the given

eij’s. Note that
∑2nc

θξ=1 p(ξ, θξ) = 1, ξ ∈ {1, . . . , r}.

Now, using the fact that the above multi-agent system with
the switching controller and the stochastic communication
channel collapses can be seen as a Markov jump linear sys-
tem shown in Figure 5.1, we state the theorem on the stability
of this system.

Theorem 5.1. Consider the multi-agent system of n
agents given by (1) where the sampling period T is prede-
termined, and the control law given by (6) and (9). Sup-
pose that the communication channels between the agents
collapse at the sampling instants with known probability,
i.e, the structure of the interconnection Lξ,θξ

is a random
variable with a known probability mass function p(ξ, θξ).
Then the relative states of the multi-agent system is mean-
square stable (see Appendix A) if and only if for all

R , block-diag[R1, . . . , Rr] > 0 there exists P ,

block-diag[P1, . . . , Pr] > 0 such that

P = rE

[

∆T
ξ,θξ

P∆ξ,θξ

]

+ R, (27)
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Λ̂1,1

Λ̂1,2 . . .

Λ̂1,2nc

Λ̂2,1

Λ̂2,2 . . .

Λ̂2,2nc

. . .

Λ̂r,1

Λ̂r,2 . . .

Λ̂r,2nc

Λ̂r−1,1

Λ̂r−1,2 . . .

Λ̂r−1,2nc

mod(k, r) + 1 = 1

mod(k, r) + 1 = r − 1mod(k, r) + 1 = r
Figure 5.1: Periodic switching controller with stochastic

communication channel collapse

where ∆ξ,θξ
, Ξ(ξ) ⊗ Λ̂ξ,θξ

, Ξ ∈ R
r×r,

Ξ(i,j)(ξ) ,

{

1, i = mod(ξ + 1, r) and j = ξ,

0, otherwise,
(28)

and E[·] is the expected value with respect to the probability

mass function
p(ξ,θξ)

r
. Furthermore, ṗcm(t) = 0 for all t ≥ 0.

Proof. First, note that the closed-loop system of the multi-
agent system (1) with the control law given by (6) and (9) and
the added assumption of stochastic communication channel
collapse becomes a Markov jump linear system described by

x[k + 1] = Âξ(k),θξ(k)
x[k], (29)

where Âξ,θξ
, In ⊗ A(T ) + Lξ,θξ

⊗ (B(T )K). Using the
same techniques as in Section 3 and decoupling off the rela-
tive state dynamics from (29), it follows that

x̃[k + 1] = Λ̂ξ(k),θξ(k)
x̃[k]. (30)

Now, since (30) can be seen as a Markov jump linear system
given by Figure 5.1 and using the fact that the probability of
the current network topology does not depend on the prob-
ability of the previous network topology it follows that the
the relative states of the multi-agent system is mean-square
stable if and only if for all Ri > 0, i = 1, . . . , r, there exist
Pi > 0, i = 1, . . . , r, such that the coupled Lyapunov-like
equations

P1 = E1

[

Λ̂T
1,θ1

P2Λ̂1,θ1

]

+ R1,

P2 = E2

[

Λ̂T
2,θ2

P3Λ̂2,θ2

]

+ R2,

...

Pr = Er

[

Λ̂T
r,θr

P1Λ̂r,θr

]

+ Rr,

are satisfied, where Ei[·] denotes the expected value with re-
spect to the probability mass function p(i, θi). Now, putting

together the above coupled Lyapunov-like equations gives
(27).

Furthermore, the proof of ṗcm(t) = 0 is similar to the
proof of Theorem 4.1 by replacing Lξ with Lξ,θξ

. ¤

Here, note that the condition for mean-square stability in
the Theorem 5.1 is equivalent to a feasible solution P > 0
existing for the linear matrix inequalities

0 > rE

[

∆T
ξ,θξ

P∆ξ,θξ

]

− P. (31)

Furthermore, note that the mean-square stability of the rel-
ative states implies almost sureness of the control objective
given by (2).

6. Illustrative Numerical Example

Consider the multi-agent system (1) where the number of
agents is n = 4 and the maximum number of communica-
tion channels allowed at each sampling instant is nc = 2.
Since a connected topology cannot be created between the 4
agents using only 2 communication channels, we employ the
2-periodic switching controller given by (9) with

L1 =









1 −1 0 0
−1 2 −1 0
0 −1 1 0
0 0 0 0









(32)

and

L2 =









1 −1 0 0
−1 2 0 −1
0 0 0 0
0 −1 0 1









. (33)

Furthermore, assume that the communication channels col-
lapse with an independent but equal probability pc. In this
case, it can be easily deduced that there are 22 = 4 possible
combinations of network topologies at each sampling instant
and the probability of a certain network topology occurring
can be calculated using pc. It follows from Theorem 5.1 that
the stability of the multi-agent system under the above set-
tings can be determined by solving the linear matrix inequal-
ities (31) and P > 0 and showing whether a feasible solution
P exists.

With the initial condition x0 = [1, 1, 0, 0, 0, 0, 0, 0]T and
T = 0.1, Figures 6.1 and 6.2 show the simulated results of
the above multi-agent system with different channel collapse
probabilities pc. In Figure 6.1, where the communication
channel collapse probability is low (pc = 0.2), the control
objective is achieved. In this case, a feasible solution P > 0
exists for (31). On the other hand, when the communication
channel collapse probability is high (pc = 0.8), the control
objective is not achieved as shown in Figure 6.2. Indeed, a
feasible solution P > 0 does not exist for (31).

7. Conclusion

In this paper we considered a sampled-data control frame-
work for formation control of multi-agent systems in the face
of the limitation on the number of communication channels
available for the agents. Specifically, we constructed peri-
odic switching controllers that change the network topology
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Figure 6.1: State trajectories versus time for pc = 0.2

0 1 2 3 4 5 6 7 8 9 10
-10

-5

0

5

10

Time [sec]

P
o

si
ti

o
n

s 
q

(t
)

 

 

agent 1

agent 2

agent 3

agent 4

0 1 2 3 4 5 6 7 8 9 10
-10

-5

0

5

10

15

Time [sec]

V
e

lo
ci

ti
e

s 
p

(t
)

 

 

agent 1

agent 2

agent 3

agent 4

Figure 6.2: State trajectories versus time for pc = 0.8

at every sampling instant. For the case where there is a limi-
tation on the total number of communication channels, it was
shown that formation stability can be determined through
coupled Lyapunov equations. In addition, we derived the sta-
bility conditions for the case where the communication chan-
nels collapse with a known probability mass function.
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Appendix

A. Stability Notions in Stochastic Systems

Consider the Markov jump linear systems given by

x[k + 1] = Λθ(k)x[k], x[0] = x0, k ∈ N0, (34)

where the matrix Λθ is a function of θ, which takes values

from a finite set {1, . . . ,Θ} with probability p(θ). In this

section we first define stochastic stability, mean-square sta-

bility and exponential mean-square stability with respect to

the system given by (34). And then show that these three no-

tions of stability are equivalent in the case of a Markov jump

linear systems given by (34).

Definition. For the above system given by (34), the equi-

librium point x = 0 is

i) stochastically stable if for every initial state x[0],

E

[ ∞
∑

k=0

‖x[k]‖2

]

< ∞. (35)

ii) mean-square stable if for every initial state x[0],

lim
k→∞

E
[

‖x[k]‖2
]

= 0. (36)

Note that here E[ · ] denotes the expected value with respect

to the probability distribution p : {1, . . . ,Θ} × R
n → [0, 1],

∑Θ
θ=1 p(θ) = 1.

Theorem A.1. For the Markov jump linear systems given

by (34), it follows that stochastic stability and mean-square

stability are equivalent.

Proof. see [14].
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