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Abstract— A non-linear iterative learning control algorithm
is used for the application of functional electrical stimulation
to the human arm. The task is to track trajectories in the hori-
zontal plane and stimulation is applied to the triceps muscle. A
model of the system is first produced, and then the equations
required to implement the control law are derived. Practical
considerations are high-lighted and the issue of parameter
selection is discussed. Experimental results are subsequently
presented, and are used to confirm that the algorithm is capable
of exhibiting robustness together with achieving a high level of
performance when practically applied to a control problem.

I. INTRODUCTION

Strokes affect between 174 and 216 people per 100,000

population in the UK each year, and half of all acute

stroke patients starting rehabilitation will have a marked

impairment of function in one arm [1]. Functional electrical

stimulation (FES) can provide the experience of moving for

the patient, which is necessary if sensory-motor function

is to be regained. Recent studies have shown that when

stimulation is associated with a voluntary attempt to move

the limb, improvement is enhanced [2]. Open-loop meth-

ods for the control of FES (see, for example, [3]) have

not provided the high level of performance necessary to

fully promote this association. Closed-loop and model-based

schemes, however, have overwhelmingly concentrated on the

lower rather than the upper limb. Neural networks are one

of the few approaches that have successfully been used to

control FES applied to the arm, but these require extensive

training and have unresolved stability issues due to their

black-box structure [4].

An experimental test facility incorporating a five-link

planar robotic arm and an overhead trajectory projection

system (see [5] for details) has been developed in order to

provide a controlled environment in which to apply electrical

stimulation to stroke patients. The subject is seated with their

arm strapped to the robot, and the task presented to them is

to repeatedly track a number of reaching trajectories using a

combination of voluntary control and surface FES applied to

muscles in their impaired shoulder and arm. The electrical

stimulation is mediated using iterative learning control (ILC),

a technique that is applicable to systems operating in a

cyclical mode. This is one of the few advanced control

techniques which has previously been applied to stimulation
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of the upper limb, although a high level of performance has

not been achieved in practice [6].

In this paper a non-linear ILC algorithm is employed to

control the FES applied to the triceps of an unimpaired

subject who provides no voluntary effort. This not only tests

the controller in the absence of voluntary action (which

may be represented as a repeating disturbance acting on

the system) in order to confirm the efficacy of the system

prior to its use by stroke patients, but also establishes the

performance that may be expected if it were used by hemi-

plegic patients unable to apply such effort. The algorithm

is based on that developed in [7], in which the non-linear

ILC problem is decomposed into a sequence of linear time-

varying ILC problems each of which can be solved by

applying any globally convergent ILC scheme. During each

trial the robot supplies an assistive torque about the shoulder

to allow full reaching tasks to be accomplished in a manner

that is completely driven by the stimulation.

II. WORKSTATION DESCRIPTION

The robotic workstation consists of a five-link planar

robotic arm rigidly connected to an overhead projection

system, and is shown in Figure 1. A subject is strapped to

Fig. 1. Unimpaired subject using the robotic workstation.

the extreme link and a 6 axis force/torque sensor records

the force they apply to the robotic end effector. The robotic

arm is used to constrain the subject’s arm, to impose forces

on the end-effector that make the task feel ‘natural’ to the

subject, and to apply assistance during the performance of

tracking tasks. The stroke patient’s task during the treatment

will be to track a range of trajectories that are projected

onto a target mounted above their hand. Further details

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrA08.2

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3887



regarding the design and functionality of the workstation and

its peripheral systems are given in [5].

III. HUMAN ARM MODEL

The description of the subject’s arm consists of a model of

the passive dynamical system to which the torque generating

properties of the stimulated muscle is then added.

A. Passive System

Figure 2 shows the geometry of the constrained human arm

model. The first link represents the upper arm, from the

acromion to the elbow, with length lu = (lu1 + lu2). The

second link represents the forearm, from the elbow to the

thumb web, with length l f = (l f 1 + l f 2). The constraint means

that the forearm must lie in the horizontal plane, and rotation

is possible about the axis along the upper arm. The point,

Q, denotes where the subject’s hand grasps the robot, and

components of the forces applied in the xxx0 and yyy0 directions

are denoted by Fx0
and Fy0

respectively. Actuation is provided

by the triceps, which has been modelled as supplying a

torque, Tβ ≥ 0, acting about an axis orthogonal to both the

upper arm and forearm. To satisfy the horizontal constraint

Fig. 2. Geometry of constrained human arm.

it is necessary to set

α(ϑ f ,γ) = arccos





c f sγ
√

1− c2
f c

2
γ



 (1)

which corresponds to an elbow angle of

β (ϑ f ,γ) = arccos(−c f cγ) (2)

Here c f and cγ denote cos(ϑ f ) and cos(γ) respectively, cu

and cu f will be used to denote cos(ϑu) and cos(ϑu + ϑ f ),
and similarly for the case of sin(·). The unitary axis about

which Tβ is applied is given by

1
√

1− c2
f c

2
γ





−s f sγ

c f sγ

−s f cγ



 (3)

The dynamic model of the constrained arm can then be

expressed in the form

BBB(qqq)q̈qq+CCC(qqq, q̇qq)q̇qq+ FFF(qqq, q̇qq) = τττ − JJJT (qqq)hhh (4)

where qqq = [ϑu ϑ f ]
T , τττ =

[

0 Tβ σ(ϑ f ,γ)
]T

, hhh = [Fx0
Fy0

]T and

BBB(qqq) =

[

b1 b2

b2 b3

]

, CCC(qqq, q̇qq) =

[

−2c1ϑ̇ f −c1ϑ̇ f

c1ϑ̇u c2ϑ̇ f

]

,

JJJT (qqq) =

[

−lucγ su − l f su f lucγ cu + l f cu f

−l f su f l f cu f

] (5)

with

b1 = mu(lu1cγ )
2 + Iu +m f (l

2
f 1 +(lucγ )

2 +2lucγ l f 1c f )+ I f

b2 = m f (l
2
f 1 + lucγ l f 1c f )+ I f , b3 = m f l2

f 1 + I f + Ie

(

sγ

1−c2
f c2

γ

)2

c1 = m f lucγ l f 1s f , c2 = −2Ie

(

s2
γ c2

γ c f s f

(1−c2
f c2

γ )3

)

(6)

and

σ(ϑ f ,γ) = −
s f cγ

√

1− c2
f c

2
γ

(7)

The form of the friction term considered is

FFF(qqq, q̇qq) =
[

F1(ϑu, ϑ̇u) F2(ϑ f , ϑ̇ f )
]T

(8)

in which F1(·) and F2(·) are piecewise linear functions. The

γ-dependence of α(·), β (·) and σ(·) will now be dropped.

A form of impedance control (see [8]) is used to control

the robotic arm, which results in the relationship

−hhh = KKKKx x̃xx−KKKBx ẋxx−KKKMx ẍxx (9)

at Q, where x̂xx is the reference position, x̃xx = x̂xx− xxx, xxx = kkk(qqq),
ẋxx = JJJ(qqq)q̇qq and ẍxx = JJJ(qqq)q̈qq + J̇JJ(qqq, q̇qq)q̇qq. Here xxx = kkk(qqq) is the

direct kinematics equation for the human arm system. When

the robot is moved freely by the subject in the absence of

assistance, the gain matrices are set as KKKKx = 000, KKKBx = KBxIII

and KKKMx = KMx III. The values of KBx and KMx assume positive

values and are tuned to create a ‘natural’ feel. When the

robot is required to move the subject’s arm along predefined

trajectories, it is necessary to set KKKKx = KKx III with KKx > 0.

The three gains are then tuned to produce the required

tracking performance. The form of the gain matrices for the

case where the robot applies assistance during tracking tasks,

is described in Section IV. Further details of the robotic

controller are given in [5].

B. Muscle Model

A model of the torque, Tβ , generated by electrically stimu-

lated muscle acting about a single joint is given by

Tβ (β , β̇ ,u,t) = hβ (u,t)×Fa(β , β̇ )+ Fp(β , β̇ ) (10)

where u denotes the stimulation pulsewidth applied, and β is

the joint angle (see [9] for details). A Hammerstein structure

incorporating a static non-linearity, hIRC(u), representing the

isometric recruitment curve, cascaded with linear activation

dynamics, hLAD(t), produces the first term, hβ (u,t). The

activation dynamics can be modelled as a critically damped

second order system [10]. The term Fa(β , β̇ ) describes the

multiplicative effect of the joint angle and joint angular

velocity on the active torque developed by the muscle. The

term Fp(β , β̇ ) accounts for the passive properties of the joint.

Since γ is invariant, (2) means it is accounted for when

using the frictional form of (8). A full description of the

procedures used to establish the parameters appearing in the

model, and also identification results similar to those of the

subject whose results appear in Section VII, is given in [11].
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IV. ROBOTIC ASSISTANCE

The trajectories used consist of constant velocity, elliptical

reaching tasks for the subject’s dominant arm. Ellipses have

been chosen since they approximate functional reaching

movements similar to those required to perform every-day

tasks, but, using a suitable velocity, limit the level of higher

order joint kinematics required to track them and thus can be

used to provide a smooth movement for the subject to follow.

Tracking of these trajectories is, however, not achievable

using only stimulation applied to the triceps. The robot

will therefore be used to provide a torque acting about the

subject’s shoulder in order to track the reference in a manner

which is entirely governed by the angle of the forearm. The

triceps muscle will meanwhile provide the sole actuating

torque about the elbow, and the robotic arm will use the

control scheme given by (9) to make the dynamics about this

axis feel ‘natural’ to the subject. This then makes the task

feasible without diminishing the role played by the triceps.

To find the necessary robotic assistance, (9) and (4) are

combined to give

BBB(qqq)q̈qq+CCC(qqq, q̇qq)q̇qq+ FFF(qqq, q̇qq) = JJJT (qqq)
(

KKKKx x̃xx−KKKBx ẋxx−KKKMx ẍxx
)

+τττ
(11)

To separate the dynamics of the end-effector in the directions

corresponding to the human arm joint angles, it is then

necessary to set

KKKKx x̃xx−KKKBx ẋxx−KKKMx ẍxx = JJJ−T (qqq)
(

KKKKq q̃qq−KKKBq q̇qq−KKKMq q̈qq
)

(12)

where q̃qq = q̂qq−qqq and q̂qq = kkk−1(x̂xx). It is then required that

KKKKq = diag{KK1
,0}, KKKBq = diag{KB1

,KB2
}

KKKMq = diag{KM1
,KM2

}
(13)

and q̂qq =
[

ϑ̂u ϑ̂ f

]T
where KK1

, KB1
, KB2

, KM1
, KM2

≥ 0.

This allows a choice of arbitrary second order dynamics

to be imposed about the shoulder and the damping and

inertia about the elbow to be prescribed. This produces the

expression
[

KK1
ϑ̃u −KB1

ϑ̇u −KM1
ϑ̈u

−KB2
ϑ̇ f −KM2

ϑ̈ f

]

+ τττ (14)

for the right-hand side of (11), and provides the necessary

dynamic relationship for both components of the torque. To

arrive at the required values of ϑ̂u and ϑ̂ f , components of

(12) are compared to give

KKKKx (x̂xx− xxx)= JJJ−T (qqq)

[

KK1

(

ϑ̂u −ϑu

)

0

]

=
KK1

(

ϑ̂u −ϑu

)

lucγs f

[

cu f

su f

]

This leads to a solution

KKKKx =
KK1

(

ϑ̂u −ϑu

)

|x̂xx− xxx| lucγs f

III, x̂xx = xxx+ |x̂xx− xxx|

[

cu f

su f

]

(15)

so that x̂xx is a point lying on a line extending along the

forearm and passing through xxx. To achieve the tracking task

it must therefore be set equal to the point of intersection

with the trajectory. This is shown in Figure 3, in which

Fig. 3. Trajectory Geometry.

xxx∗(t) = kkk(qqq∗(t)) with qqq∗(t) defined in (17). The remaining

robotic controller matrices may be chosen to satisfy
{

KKKBx = JJJ−T (qqq)KKKBqJJJ−1(qqq)

KKKMx

(

JJJ(qqq)q̈qq+ J̇JJ(qqq, q̇qq)q̇qq
)

= JJJ−T (qqq)KKKMq

(16)

with the gains given by (13). If the trajectory is defined as

qqq∗(t) =
[

ϑ ∗
u (t) ϑ ∗

f (t)
]T

, t ∈ [0 T ] (17)

then eliminating t from the components provides the rela-

tionship ϑu = Ψ(ϑ f ) and for this to be a one-one continuous

function, both ϑ ∗
u (t) and ϑ ∗

f (t) must be monotone. The

reference point is then defined formally as

x̂xx = ΩΩΩ(xxx,Ψ(·)) : kkk

([

Ψ(ϑ̂ f )

ϑ̂ f

])∣

∣

∣

∣

kkk

([

Ψ(ϑ̂ f )

ϑ̂ f

])

= xxx + λ

[

cu f

su f

]

where λ is a scalar. The complete control system is shown

in Figure 4. The gain (15) can then be written explicitly as

KKx (xxx,Ψ(·)) =
KK1

(

Ψ(ϑ̂ f )−ϑu

)

λ lucγs f

III (18)

Fig. 4. Human arm system with robotic assistance.

It is now assumed that the robotic assistance system pro-

vides accurate tracking of ϑ̂u by ϑu, so that ϑu = Ψ(ϑ f ), then

ϑ̇u = ϑ̇ f Ψ
′
(ϑ f ) and ϑ̈u = ϑ̈ f Ψ

′
(ϑ f )+ ϑ̇ 2

f Ψ
′′
(ϑ f ). Moreover

the relationship c1,c2 ≪ b2,b3 holds for the robotic arm,

and furthermore Ie ≈ 0.005 Kgm2 (see [11] for examples of

identified muscle model parameters), and the trajectories are

chosen so that the derivatives of Ψ(·) are small. Therefore

the bottom row of (11), with the expressions given by (9)

and (12), and the control gains (13), produces

Tβ ≈
1

σ
(

ϑ f

)

(

KB2
ϑ̇ f +

(

b3 + KM2

)

ϑ̈ f + F2

(

ϑ f , ϑ̇ f

))

(19)

which is shown schematically in Figure 5. In practice the

existence of a torque that will allow ϑ ∗
f (t) to be tracked
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Fig. 5. Continuous-time model of stimulated human arm showing feedback loops.

perfectly is ensured by selecting trajectories that comprise

half ellipse segments whose start and end points can be

reached by a smooth extension about the elbow. The gains,

KB2
and KM2

, were selected as 8 Nm/rads−1 and 0.29

Nm/rads−2 respectively in order to mimic a realistic activity.

V. IDENTIFIED PARAMETERS

The parameters appearing in the arm model (4) were

identified using tests described in [11]. In particular FES

was applied to the subject’s triceps using a ramp sig-

nal, and hIRC(u) and hLAD(t) were found using deconvo-

lution and an non-linear optimisation procedure. Suitably

rich stimulation sequences and kinematic trajectories were

then applied to the arm and an LMS optimisation was

used to yield the remaining model parameters. The values

produced were lu = 0.38m, l f = 0.39m, γ = 0.7928rad,

ωn = 2.6704rads−1, b3 = 0.27Kgm2, along with the func-

tion hIRC(u) = 0.1695

∣

∣

∣

exp(−1.1891u)−1

exp(−1.1891u)+0.2723

∣

∣

∣, and the forms of

F2(ϑ f , ϑ̇ f ) and Fa(β , β̇ ) that are shown in Figures 6 and 7

respectively. Figure 8 shows the shape of the reference used

0.5
1

1.5
2

−1
−0.5

0
0.5

1

−1

0

1

2

θ
f

dθ
f
/dt

F
2
(θ

f,d
θ

f/d
t)

Fig. 6. Combined viscous and elastic friction function F2(ϑ f , ϑ̇ f ).

to produce the results in this paper. It is set at an angle of

20◦ from the y axis and extends the subject’s arm from 55%

to 95% of their maximum reach. The trajectory consists of a

5 second waiting period and either a 2.5, 5 or 7.5 second

movement along the reference at a constant speed, these

respectively being termed fast, medium and slow trajectories

(Figure 11 shows ϑ ∗
f (t) corresponding to the medium trajec-

tory). Before each trial began, the subject’s arm was moved

to the initial position by the robot and then released when the

trajectory started. The subject was not shown the trajectory

1.4 1.6 1.8 2 2.2

−1
0

1

0

0.2

0.4

0.6

0.8

1

βdβ/dt

F
a
(β

,d
β
/d

t)
Fig. 7. Active muscle function Fa(β , β̇ ).
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Fig. 8. Reference trajectory and position of subject tested.

before or during the test and electromyographic data were

inspected to ensure no voluntary effort was exerted by them.

VI. SYSTEM DESCRIPTION

To produce a discrete-time system representation, let the

linear activation dynamics be represented by the state-space

system in standard form [ΦΦΦm,ΓΓΓm,HHHm]. The relationship

between w1 and w2 shown in Figure 5 is then given by

xxxm(t + 1) = ΦΦΦmxxxm(t)+ ΓΓΓmw1(t) xxxm(0) = xxxm0

w2(t) = HHHmxxxm(t) (20)

and similarly the arm dynamics be represented by the state-

space system [ΦΦΦp,ΓΓΓp,HHH p] so that the relationship between

w3, ϑ f and ϑ̇ f is given by

xxxp(t + 1) = ΦΦΦpxxxp(t)+ ΓΓΓpw3(t) xxxp(0) = xxxp0
[

ϑ f (t)
ϑ̇ f (t)

]

=

[

HHH p1

HHH p2

]

xxxp(t) = HHH pxxxp(t) (21)
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In this case the system is given on trial k by

xxxk(t + 1) = ΦΦΦxxxk(t)+ ΓΓΓ

[

d (xxxk(t))
hIRC(uk(t))

]

= fff (xxxk(t),uk(t))

ϑ f ,k(t) = H̄HH p1
xxxk(t) = hhh(xxxk(t)) xxxk(0) = xxx0 t ∈ [0,N]

(22)

where xxx(t) = [xxxp(t) xxxm(t)]T , xxx0 = [xxxp0 xxxm0]
T , ΦΦΦ =

diag {ΦΦΦp,ΦΦΦm}, ΓΓΓ = diag {ΓΓΓp,ΓΓΓm}, H̄HHm =
[

000 HHHm

]

, H̄HH p1
=

[

HHH p1
000
]

and H̄HH p2
=

[

HHH p2
000
]

. The integer N is equal to
T
Ts

+ 1, where Ts is the sample time, and

d (xxxk) = H̄HHmxxxkFa

(

β
(

H̄HH p1
xxxk

)

,H̄HH p2
xxxkβ ′

(

H̄HH p1
xxxk

))

σ
(

H̄HH p1
xxxk

)

−F2

(

H̄HH p1
xxxk,H̄HH p2

xxxk

)

(23)

in which the explicit time dependence of xxxk has been omitted.

To replace (22) with a set of algebraic equations in R
N , define

the shifted input and output vectors as

uuuk = [uk(0),uk(1), . . . ,uk(N −1)]T

ϑϑϑ f ,k =
[

ϑ f ,k(1),ϑ f ,k(2), . . . ,ϑ f ,k(N)
]T

(24)

and the relationship between the input and output time-series

can be expressed by the following algebraic functions

ϑ f ,k(1)= hhh(xxxk(1)) = hhh( fff (xxxk(0),uk(0))) = g1(xxxk(0),uk(0))
ϑ f ,k(2)= hhh(xxxk(2)) = hhh( fff (xxxk(1),uk(1))) = g2(xxxk(0),uk(0),uk(1))

...
ϑ f ,k(N)= hhh(xxxk(N)) = hhh( fff (xxxk(N −1),uk(N −1)))

= gN(xxxk(0),uk(0),uk(1), . . . ,uk(N −1))
(25)

so that the system (22) can be represented as

ϑϑϑ f ,k = ggg(uuuk) , ggg(·) = [g1(·),g2(·), . . . ,gN(·)]T (26)

The ILC task of finding the input which drives the dynamic

system (22) to track the desired output, becomes finding

the solution that satisfies the non-linear function (26) with

ϑϑϑ f ,k substituted by ϑϑϑ ∗
f =

[

ϑ ∗
f (1),ϑ ∗

f (2), . . . ,ϑ ∗
f (N)

]T

. The

Newton method is selected to solve this non-linear equation,

and is given in ILC notation as

uuuk+1 = uuuk + αk+1ggg′ (uuuk)
−1

eeek (27)

where the scalar αk+1 ≥ 0 is a relaxation parameter, and

eeek = ϑϑϑ ∗
f −ϑϑϑ f ,k. The derivative ggg′ (uuuk) is equivalent to the

linearisation of (22), on the kth iteration at (uuuk,xxxk) which

can be represented by the time-varying system

ϑ̃ϑϑ f = ggg′ (uuuk) ũuu (28)

which is given by

x̃xx(t + 1) = AAA(t)x̃xx(t)+ BBB(t)ũ(t)

ϑ̃ f (t) = CCC(t)x̃xx(t) (29)

with

AAA(t) =
(

∂ fff

∂xxx

)

uk(t),xxxk(t)
= ΦΦΦ+ ΓΓΓ

[

ppp(t)
000

]

BBB(t) =
(

∂ fff
∂u

)

uk(t),xxxk(t)
= ΓΓΓ

[

0

h′IRC(uk(t))

]

CCC(t) =
(

∂hhh
∂xxx

)

uk(t),xxxk(t)
= H̄HH p1

(30)

where x̃xx = xxxk+1 − xxxk, ũuu = uuuk+1 − uuuk, ϑ̃ϑϑ f = ϑϑϑ f ,k+1 −ϑϑϑ f ,k,

x̃xx(0) = xxxk+1(0)− xxxk(0) = 0 and

ppp(t) = H̄HHmFaσ + H̄HHmxxxH̄HH p1
β ′F ′

aσ + H̄HHmxxxFaH̄HH p1
σ ′− H̄HH p1

F ′
2

+H̄HHmxxx
(

H̄HH p2
β ′ + H̄HH p2

xxxH̄HH p1
β ′′

)

F∗
a σ − H̄HH p2

F∗
2

(31)

where ∗ denotes differentiation with respect to the second

variable, and the functional dependence has been omitted.

If the system (28) can be made to track eeek, then the

corresponding input is ũuu = ggg′ (uuuk)
−1

eeek which can then be

used in the update (27). In this paper the Norm Optimal

ILC (NOILC) method has been used to do this (see [12]

for details), thereby obviating the problem of calculating the

inverse of ggg′ (uuuk) directly. Using this method, the input to

(28) on the (m+ 1)th trial is chosen to minimise

Jm+1 = ∑N
t=1[ek(t)− ϑ̃ f ,m+1(t)]

T Q[ek(t)− ϑ̃ f ,m+1(t)]

+∑N−1
t=0 [ũm+1(t)− ũm(t)]T R[ũm+1(t)− ũm(t)]

(32)

In practice only a limited number, M, of iterations of NOILC

have been performed since using a great number typically

leads to ũuu containing large values, which, when used in

(27), will saturate the muscle model (since the pulsewidth

of the stimulation applied was limited to 300µs) and lead to

greater discrepancy between the system and the linear model

approximation at these points.

VII. RESULTS

The algorithm was tested on a 60 year old subject (and

so age-matched with future stroke patients). The NOILC

parameters were selected as M = 30, Q = 50000 and R =

1 in order to produce an update which tracks the error well

but does not produce an excessively large input. Figure 9

shows error results for the medium trajectory over 20 trials

using various values of α . The value of ‖ek‖2 is plotted

against k and it can be seen that the fastest convergence

occurs using α = 0.3, and the lowest error is less than 3mm.

Figure 10 shows error results for the fast trajectory, in this
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Fig. 9. Medium trajectory error results using various α .

case α = 0.3 again yields the fastest convergence, and the

lowest error is again less than 3mm. Figure 11 a) shows

tracking results using the fast trajectory with α = 0.3. The

reference is seen to be closely followed by the fifth iteration,

and the corresponding stimulation pulsewidth, uk, shown in

Figure 11 b), is not excessive. The parameter α can be used
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Fig. 11. a) Tracking and b) input signals using medium trajectory with
α = 0.3.

to ensure monotonic convergence in the presence of severe

nonlinearity, and has accordingly been chosen by optimising

minJk+1(αk+1) = ‖eeek+1‖
2 = ‖ϑϑϑ∗

f −ggg(uuuk + αk+1zzzk+1)‖
2

(33)

where zzzk+1 is the approximation to ggg′ (uuuk)
−1

eeek produced by

the NOILC algorithm. The value of αk+1 was chosen using

a search method with a resolution of 0.05, and Figure 12 a)

shows error results using this optimisation procedure for all

three trajectories. It can be seen that faster convergence has

been achieved in each case than when using a fixed value of

α . The associated values of αk+1 are shown in Figure 12 b).

VIII. CONCLUSION

A Newton based non-linear ILC method has been used to

apply stimulation to the upper arm of unimpaired subjects in

order to establish the feasibility of its use with hemiplegic

and stroke patients. The equations governing the system have

been derived along with those required for the algorithm

implementation. The NOILC algorithm has been used to

provide the required input update, together with an optimal

gain. Results using trajectories of varying speeds have shown

that tracking with a mean of less than 3mm is possible in

each case.

To increase the performance of the Newton-based ILC

algorithm, future research will concentrate on its application

to the system comprising the stimulated arm system in
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Fig. 12. a) error results and b) α values for fast, medium and slow trajectory
using optimal α .

conjunction with various forms of feedback controller. The

ability of the algorithm to adapt to time-varying effects such

as muscle fatigue will also be examined.
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