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Abstract— Modern companies have realized that reducing
inventory levels as much as possible without losing sales
opportunities is an effective way to reduce costs and to have
more profitability. This fact is true not only for large companies
but also for mid-size and small companies on account of the
high maintenance and opportunity costs associated with large
inventory stocks. In this paper we want to introduce into the
inventory management field advanced methodologies and tools
from de industrial automation and modern control theory. In
this way, a new approach to the Automatic Pipeline Feed-
back Order-Based Production Control System (APIOBPCS) is
presented. The proposed control system structure add to the
APIOBPCS a PID (Proportional, Integrative and Derivative)
controller as well as an Extended Kalman filter, acting as
demand predictor. The main objective of this controller is to
stabilize and to regulate the inventory level around a desired
set-point value, in spite of a demand with cyclic and stochastic
components. Along this work, the dynamics and delays of
the productive process were modeled as a pure delay. The
Kalman filter estimates de parameters of a Volterra time-series
model to forecast futures values of the demand in order to
compensate production delays. A control error analysis for
the proposed controller is also presented in order to obtain
bounds for the control error and to probe controller stability.
This analysis is also useful to make decisions about the desired
inventory level for a given demand prediction error. Finally,
the inventory control system is tested by simulations showing
a good performance and better results than those achieved by
using traditional techniques.

Index Terms— Production systems, inventory level control,
prediction, Extended Kalman Filter.

I. INTRODUCTION

Until recently, production and sales managers used to

control inventory levels by means of two powerful but

limited tools: intuition and experience. However, the highly

competitive market, the changing customer preferences and

the complexity of modern production and sales operations,

even in small markets, have pushed manager for improving

their decision processes. Among others, the decision on how

much or when to order plays an important role in modern

companies and it is not anymore convenient to regulate

stock levels without a quantitative assessment of the involved

factors.

Inventories are resources needed for production or com-

mercialization processes, that are kept idle, waiting to be
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used when necessary. These resources can be of any kind:

men, machines, raw material, money, graduates from the

educational system, dean management, water tank-based

irrigation system, etc. Inventories are used to compensate or

regulate the imbalances of the normal sequence of activities

in production and sales processes. In other words, inventories

should have a stabilizing effect on material flow patterns [1].

An important problem in production planning and sales

projections is the demand, which is usually unknown and

stochastic in nature. This fact makes the task of keeping

inventory on an appropriate and constant level an impossible

mission. If inventory levels fall below certain values, there

exists the risk of losing sales when demand grows beyond the

expected figures. On the other hand, if the inventory levels

are kept too high, maintenance cost are usually higher due

to the larger volume of resources that are kept in stock, the

larger space required, and the higher devaluation and mainte-

nance costs. Therefore, an effective supply chain is managed

with an aim at keeping a high level of costumer satisfaction

while minimizing costs and maximizing profits [2]. Results

of savings achieved by best-in-class companies, as a result

of improving their supply chain operations, amount 5-6% of

sales [3].

Although research in the inventory management area is

not novel, it was recently when the control systems comunity

have paid attention to this topic and some dynamic inventory

control technics have appear. In an excellent revision of

Ortega and Lin [4], some major research efforts for applying

control theoretic methods to production inventory systems

are presented. Some previous research works have also

proposed systems to stabilize the inventory level as is the

case of John et al. [5] and Disney and Towill [1]. More

recently, the works of Grubbström and Wikner [6], Samanta

and Al-Araimi [7], and Rivera and Pew [2] have explicitly

included dynamical controllers, such as PID, on the supply

chain, and have obtained promising results.

In this paper a new approach to the APIOBPCS is

presented. The proposed structure is a simple dynamical

control system whose main objective is to keep the inventory

level at a desired set-point, in spite of demand fluctuations

includes a PID controller and an estimator of the demand

given by a Kalman filter. It is assumed that demand signal

is constituted by a cyclic component and a Poisson-like

stochastic perturbation. The one-step ahead prediction of

the demand is generated by a Dual Joint EKF [8], which

identifies the parameters of a Volterra time-series equation.

Lead times of the production processes are considered as a

pure delay. A control error analysis is also performed for

the proposed control system, in order to obtain error bounds
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Fig. 1. Basic production-inventory model.

for control error as well as to probe controller stability. This

procedure is also useful to determine the desired inventory

level for a given prediction error. Finally, simulation results

show good performance of the proposed controller and better

results than other known techniques.

II. PRODUCTION-INVENTORY SYSTEM MODEL

The dynamics of an inventory system can be represented

by a simple difference equation:

I(k + 1) = I(k) + O(k − τ) − D(k) (1)

where, I(k) is the net inventory level, τ represents the order

fulfilment time, O(k−τ) is the prior orders made τ -days

before, and D(k) the demand signal. The order fulfilment

time, O(k) is generated by a reorder policy.

Traditionally, reorder policies have been based on Eco-

nomic Order Quantity (EOQ) approaches, such as the (ŝ, Ŝ)
policy (when the inventory level becomes equal to or less

than ŝ, order up to the level Ŝ). EOQ approaches are widely

used but they are not efficient enough, mainly because they

are static laws and do not have into account the demand

fluctuations not only as constant signal but also as a temporal

one.

On the other hand, APIOBPCS models have shown to per-

form well, stabilizing the dynamic system and reducing the

bullwhip effect. Bullwhip effect refers to the scenario where

orders to the suppliers tends to have larger fluctuations than

sales to the buyer and this distortion propagates and amplifies

itself when going upstream [1], [9]. A basic production-

inventory system based on the APIOBPCS scheme has four

main components: the inventory, that can be modeled as an

integrator, the production process, that has been modeled in

this paper as a finite time delay, the reorder policy, and the

demand predictor. In addition, there are four fundamental

information flows [6], namely demand, inventory level, work-

in-progress (WIP), and demand prediction. Most of the order

decision rules are based on one or more of these flows. That

is:

O(k) = f [I(k), d̂, WIP ]. (2)

Figure 1 presents a schematic model of the flows and

components of a simple production-inventory system.

III. DEMAND ESTIMATION

A key aspect in the inventory management area is the

demand estimation. For the sake of simplicity, usually de-

mand is considered constant, or at least known. In real life,

demand is the opposite: variable and stochastic. However,

due to the probabilistic characteristic of the demand, some

useful information, such as variance, mean and trends can

be exploded to obtain a forecast of the demand. In this

work, the demand is supposed to be cyclic, modeling a

seasonal demand, adding a stochastic component given by a

Poisson noise. For simplicity, a fixed order fulfillment time

is assumed.

A. Volterra Models

The demand over time can be thought as a time-serie,

represented by a nonlinear autoregressive model. One way

to model it is by mean of a Volterra equation. The finite-

dimensional discrete-time Volterra model used in this paper

is a single-input, single-output model, relating an input

sequence {d(k − i)}, to an output sequence {d̂(k)} [10].

d̂(k) = d0 +
30
∑

i=1

θid(k − i) (3)

where d0 and θi are the model parameters, d̂(k) is the actual

estimated demand and d(k−i) are past values of the demand.

The values of the unknown parameters will be found by a

Kalman Filter.

B. Joint Extended Kalman Filter

The Kalman filter is characterized by a set of equations

that synthesizes an optimal estimator of predictor-corrector

type in the sense of minimizing the estimate error covariance

P(k). In this particular case, a Joint Extended Kalman Filter

[8] was used to solve the dual problem of simultaneously

estimating the state and the model parameters θ from the

noisy demand signal. To make the Volterra time-serie into a

Markovian process its necessary to model the demand given

by a the Volterra equation (3) as that given by the general

nonlinear auto-regression system (4)
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(4)

y(k) =
[

1 0 · · · 0
]

x(k) + η(k)

where f(x(k−1) . . . , x(k−M), θ(k−1)) is the mentioned

Volterra model, and υ and η are the process and measurement

noises respectively. The joint EKF approach to determine

the unknown parameters θ consists in augmenting the state

vector x with the parameters vector θ(k). By doing this, a new

state vector z(k) = [xT
(k), θ

T
(k)]

T is obtained. Then, estimation

is done recursively by writing the state-space equations for

the joint state as
[

x(k)

θ(k)

]

=

[

F(x(k−1), θ(k−1))
Iθ(k−1)

]

+

[

B
0

]

υ(k−1)

y(k) =
[

1 0 · · · 0
]

[

x(k)

θ(k)

]

+ η(k) (5)

and running a EKF on the joint state-space to produce the

simultaneous estimates of the states x(k) and θ.

2887



Fig. 2. Ordering system incorporating WIP feedback.

Once the model parameters d0 and θ have been estimated,

they are used together with the model to get a prediction of

on step ahead. This predicted state vector is then used for

the PID-APIOBPCS reorder policy.

IV. PID-APIOBPCS-BASED INVENTORY LEVEL

CONTROL

In contrast to the APIOBPCS analyzed by Disney and

Towill [1], our approach also includes in the control loop

a PID-controller and the demand prediction is generated by

a joint dual EKF. We call this approach a PID-APIOBPCS

model.

APIOBPCS has the main advantage over the other reorder

policies of including in the decision rule the value of the

WIP. A scheme of the APIOBPCS is shown in Fig. 2, and

the reorder policy equations are given by (6),

O(k) = d̂(k) +
[Iref (k) − I(k)]

Ti
+

[dWIP (k) − WIP (k)]

Tw
(6)

WIP (k) = WIP (k − 1) + O(k) − O(k − τ)

dWIP (k) = Tpd̂(k)

where, d̂(k) is the estimated demand, and Iref (k) is the

inventory level reference. Constant Ti is related to the time to

adjust the inventory level, T̂p is the estimate of the production

lead time, and Tw is the time needed to adjust WIP.

As it can be seen, this reorder policy has no dynamics in

its structure. This means that the overall system can present

over-elongations, steady state errors, instability.

On the other hand, the approach of using only a PID as

suggested in Grubbstöm and Wikner [6], and in Rivera and

Pew [2] to model an order decision rule does not involve

an explicit forecasting unit to estimate demand. So, fusing

both controllers, it is possible to obtain a new structure and

control law. The proposed control schema can be seen in

Fig. 3.

O(k) = O(k − 1) + KP [e(k) − e(k − 1)] + KIe(k − 1)+

+KD [e(k) − 2e(k − 1) + e(k − 2)]
(7)

e(k) = (Iref (k) − I(k)) + (dWIP (k) − WIP (k))

WIP (k) = WIP (k − 1) + O(k) − O(k − τ)

dWIP (k) = d̂(k)

Fig. 3. Proposed PID-APIOBPCS controller.

Equations (7) represent the reorder policy for the PID-

APIOBPCS controller. As it can be seen the reorder policy

involves the same variables as the APIOBPCS method, but

in this case with the advantages of using a PID controller.

The inclusion of a PID is not a capricious choice; according

to Kunreuther [11], top level managers are found to act in a

three-terms-control mode, similarly to a PID controller, using

memory of past results (integral term), anticipating trends

(derivative term), and as well as a proportional term for their

future decisions.

Therefore, as shown in Fig. 3, the proposed controller

has the basic elements of the APIOBPCS, demand forecast,

and WIP compensation, and the PID controller is used as

a decision rule maker. It is worth to note that, in this

case, the PID actions are physically limited, that is, actions

should not take values above 200 and below to 0. That

is because we assume that the production system saturates

when orders are greater than 200, and order with negative

represent backorders, that is, items that are sent back from

the inventory to the production process.

V. CONTROL ERROR ANALYSIS

As a way to probe the overall behavior of the system, an

error analysis is presented. If control errors of the closed-

loop control system are ultimately bounded [12], then the

entire system has stability under a certain perturbation as

demand estimate error.

The analysis is performed by using the Input-Output trans-

fer function model of the system. Considering the demand

as an input signal, the inventory system is a Multiple-

Input Single-Output (MISO). For the stability analysis we

first consider the control system presented in Disney and

Towill [1], which structure is shown in Fig. 2, and modeling

the production process as a first order dynamic system

instead of a pure delay.

Therefore, the transfer functions of the closed-loop model

are obtained by applying the superposition theorem [13],

[14]. That is,

GI,Iref
=

1/TiG1Gi

1 + G1Gi1/Ti
; GI,D =

Gi

1 + G1Gi1/Ti
; (8)

GI,D̂ =

(

1 +
T̄p

Tw

)

G1Gi

1 + G1Gi1/Ti
;
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where,

G1 =
1

Tps + (1 + Tp/Tw)
and Gi =

1

s
.

In (8) , GI,Iref
, GI,D̂ and GI,D represents the transfer

functions relating the inventory output (I) to the desired

inventory level (Iref ), the output to the estimated demand

(D̂), and output to the demand (D) respectively. G1 is just

an intermediate auxiliary transfer function. Then, the system

output can be expressed as,

I = 1/TiG1Gi

1+G1Gi1/Ti
Iref − Gi

1+G1Gi1/Ti
D +

(1+T̄p/Tw)G1Gi

1+G1Gi1/Ti
D̂.
(9)

Therefore, by using (9), and after some mathematical

manipulation, equations (10), it is possible to obtain an

expression of the inventory control errors as a function of

the demand estimate error as is shown in (11).

(1 + G1Gi1/Ti)I = (1/TiG1Gi)Iref − GiD+
(

1 +
T̄p

Tw

)

G1GiD̂

(1 + G1Gi1/Ti)(I − Iref ) + Iref = Gi(D̂ − D) − GiD̂+
(

1 +
T̄p

Tw

)

G1GiD̂

(10)

(1 + G1Gi1/Ti)EInv + Iref = GiEDem − GiD̂+
(

1 +
T̄p

Tw

)

G1GiD̂,

EInv =
Gi

1 + G1Gi1/Ti
EDem −

Gi

1 + G1Gi1/Ti
D̂+

(

1 +
T̄p

Tw

)

G1Gi

1 + G1Gi1/Ti
D̂ −

1

1 + G1Gi1/Ti
Iref . (11)

The maximum error EInv , independently of the values of

EDem, D̂ and Iref , will be achieved when the transfer func-

tion operators have their maximum values. These maximum

values can be obtained by using ∞-Norm (‖ · ‖∞), defined

as ‖H(s)‖∞ = max
ω

|H(jω|), [15] in (11). Then, applying

norm properties, and taking into account the values used in

the model (Tp = T̂p = Tw = Ti = 1), (11) can be reduced to

(12)

‖EInv‖
∞

≤
∥

∥

∥

Gi
1+G1Gi1/Ti

∥

∥

∥

∞

‖EDem‖
∞

−
∥

∥

∥

Gi
1+G1Gi1/Ti

∥

∥

∥

∞

‖D̂ ‖
∞

+

(12)
∥

∥

∥

(

1+
T̄p
Tw

)

G1Gi
1+G1Gi1/Ti

∥

∥

∥

∞

‖D̂‖
∞

+
∥

∥

∥

1
1+G1Gi1/Ti

∥

∥

∥

∞

‖Iref‖
∞

.

Finally, we can obtain a boundary for the inventory control

errors for the APIOBPCS control system as

‖EInv‖∞ ≤ 2 ‖EDem‖∞ + 1.1533 ‖Iref‖∞ . (13)

A similar procedure can be performed for the proposed PID-

APIOBPCS presented in this work. Resulting,

GI,Iref
=

G1PIDGi

1 + G1PIDGi
; GI,D̂ =

G1PIDGi

1 + G1PIDGi
(14)

GI,D =
Gi

1 + G1PIDGi
;
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Fig. 4. Errors are bounded

where,

G1PID =
GPIDGp

1 + GPIDGpTp
; GPID =

Kds
2 + Kps + Ki

s
;

Gp =
1

Tps + 1
and Gi =

1

s
. (15)

Then, the expression of the system output as a function of

signals Iref , D and D̂ is,

I =
G1PIDGi

1 + G1PIDGi
Iref−

Gi

1 + G1PIDGi
D+

G1PIDGi

1 + G1PIDGi
D̂.

(16)

Once again, by taking ∞-Norm and the norm properties,

using typical values for Kp = (30); Kd = (1); Ki = (10);
Tp = 1, and performing the same steps as in the APIOBPCS

case, the equation that relates the demand estimate errors to

the inventory level errors can be obtained by

‖EInv‖∞ ≤ 1 ‖EDem‖∞ + 1.0185 ‖Iref‖∞ . (17)

Then, evaluating the expression given by (13) and (17) in

a graphical interpretation is possible to analyze the stability

problem for the inventory control system.

As it can be seen in Fig. 4, inventory level errors are

bounded for both cases by the straight line, given by

equations (13) and (17). In inventory models, the desired

inventory level is usually arbitrarily chosen, based on demand

requirements and storage capabilities. The equations above

presented can be used to set the value of the desired inventory

level (the value of the abscise) at an arbitrarily low value,

provided that the out-of-stocks are avoided. In this figure

it is clear that for the APIOBPCS model, the minimum

inventory level must be chosen around 16 units, while for

the PID-APIOBPCS that value can be as low as 8 units.

This is an important aspect in the inventory problem. In

addition, for both cases the inventory level error is bounded

by the demand prediction error, but in the case of the

PID-APIOBPCS, errors in the demand prediction have less

effects on the inventory level. In order to prevent out-of-

stock situations, the desired inventory level should be used

as a design parameter and should be chosen looking at the

prediction error, that is, the higher this error is, the higher

the desired inventory level must be chosen.
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Fig. 5. Demand signal.

VI. SIMULATION STUDIES

In order to show the performance of the proposed inven-

tory controller, as well as the stability properties obtained in

the preceding theoretical development, a simulation study has

been carried out using a Matlab-Simulink model. The joint

Dual Extended Kalman filter was implemented in a Matlab

S-Function, using the model explained in Section III. Noise

covariance for the Kalman filter, R
υ and R

η were used as

design parameters, and set to 10 and 40 respectively. The

time-series model used to approximate the demand is that

given by Eq. (3), and its forecasting is performed by the

EKF. The demand signal was generated by a sum of sin and

cos terms, with different amplitudes, phases and frequencies.

A Poisson noise, with λ = 10, was also added to the

seasonal signals. For all simulation runs, the inventory level

set-point was set to 20 units, and the PID action limited to a

maximum of 200 units, assuming that this is the capacity of

the production system. In addition, demand signal has been

added with an extra term, representing sudden stochastic

changes on the value of demand.

Figure 5 shows the output of the demand estimator. Note

that except when actual demand has sudden changes the

demand estimator perform well.

A. APIOBPCS reorder policy

In this point is presented the APIOBPCS control system

performance. The gain values were all set to one, due to

the fact that those values are related to production and lead

times. This means that system takes 1 day to adjust de

WIP (Tw = 1) and the inventory (Ti = 1) and it has an

estimated lead-time of 1 day (T̂p = 1). In this simulation,

desired inventory level was set to 20. Results presented in

Fig. 6 shows a good performance for this control system. The

inventory level stays stable around 20 units, and seldom falls

below 0. There are some peaks, caused by abrupt changes in

demand, but they are canceled in around 7 days. In Fig. 7,

demand and generated orders are compared. It can be seen

that orders follow the demand, meaning that the inventory is

close to its reference.

0 50 100 150 200 250 300 350 400
−100

−80

−60

−40

−20

0

20

40

60

Time (days)

In
v
e

n
to

ry
 l
e

v
e

l

 

 

Reference level

Inventory level

Fig. 6. Inventory level for the APIOBPCS method

0 50 100 150 200 250 300 350 400
−20

0

20

40

60

80

100

120

140

160

Time (days)

O
rd

e
rs

 

 

Demand

Orders

Fig. 7. Demand and Orders for the APIOBPCS method

B. PID-APIOBPCS reorder policy

Finally, the proposed control system is tested under

simulation. PID parameters were set to KP = 30; KI = 1;

KD = 10. These values give a good response in terms of

dampness and speed. The desired inventory level was, again,

set to 20 units. The results are presented in Fig. 8 and Note

in this case that the inventory level is more stable. There are

some peaks in the inventory level, but they are are canceled

in around 5 days. These peaks are due to the sudden changes

in the demand. There are, also, some inventory level values

below zero, but in this case are less than in the previous one.

This values can be interpreted as lost sales. So, as conclusion,

in this case it is kept an acceptable level of lost sales, for a

relatively low desired inventory level. Figure 9 presents the

comparison between demand and generated orders. In this

case orders tray to follow demand closer than the previous

case. This is the reason for having a noisy-like reorder signal.

C. Results evaluation

To show the advantage of the proposed controller, the

results for the different controllers are compared following

the next procedure. Suppose that the inventory cost function

is defined as in (18), where LSi means Lost Sales and

represent the number of units below zero in the inventory

level, ILi is the inventory level at any sample time and
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Fig. 8. Inventory for PID-APIOBPCS controller.
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Fig. 9. Orders from PID-APIOBPCS controller.

E is the absolute value of the error between the desired

inventory level and its actual level. The first term of the

functional is the cost of lost sales, and represent not only

an economic quantity but also a measure on service quality

and customer satisfaction level. The second one, represent

the cost of inventory daily maintenance. The last term, just

penalizes the system for not being able to keep the inventory

at the desired value. Table I shows the results after applying

this cost funcional for each control system approach, with

Tf = 730 = 2 years. Note that proposed controller, PID-

APIOBPCS, shows the lowest cost. These results agree with

the conclusions obtained from previous experiments, where

the PID-APIOBPCS shows a better performance than the

other approaches.

C =

Tf
∑

i=0

{3LSi + 0.3ILi + 0.1E} (18)

TABLE I

INVENTORY COST SYSTEM

Policy / Costs LS costs IL costs Error Total Cost

APIOBPCS 2109 4294 1101 7585

PID-APIOBPCS 1305 4131 1084 6520

VII. CONCLUSIONS

We have presented an approach and a systematic design

methodology to obtain a reorder policy for inventory sys-

tem based on the APIOBPCS control scheme. The new

reorder policy includes a PID controller and an estimate

of the demand prediction using a joint dual EKF. This

new approach control is called PID-APIOBPCS. An explicit

evaluation of control error in terms of the demand prediction

error and design parameters was performed. To show the

practical feasibility and performance of the proposed control

algorithm as well as stability properties obtained in the

present work, a simulation study was carried out for a

production-inventory system. The results show the practical

feasibility and good performance of the proposed approach

to production-inventory systems. Future research will include

more complex models for the production-inventory systems,

such as multiple-echelon and multiple-products production-

inventory systems. Besides, the inclusion in the design

methodology technics of optimal control to obtain an opti-

mum operative condition for the controller, as well as, for the

planning of the desired inventory level. Controllers should

be also able to deal with saturation problems and include

backordering. Improvement on the demand prediction is also

a pending issue.
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