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Abstract— The problem of deriving a probabilistic mathe-
matical model of an industrial production line is addressed in
this paper. In particular, the analysis of a Tetra Pak liquid
foodstuff packaging line has been developed as application of
the modeling theory. Tetra Pak’s package forming machine
works on the basis of a continuous process which cannot
be interrupted without production wasting. Production buffer
are used to decouple package forming machine with following
(downstream) machines (e.g. straw applicator, film wrapper,
etc.) to avoid forming machine forced stoppage because down-
stream machine stoppage. The paper presents a new analytical
approach for the packaging forming machine restart control
policy based on buffer level.

I. INTRODUCTION

Automated production lines represent a key choice in

production systems when high demand volumes and constant

quality assurance have to be addressed. Among the different

manufacturing fields, food packaging industry is certainly

one of the primary user of such production systems.

Briefly, an automated production line consists in a series

of machines forced to work in a predefined chain, each of

them performing specific operations on the raw material at

the highest possible speed. As a primary consequence of

such a particular layout, the performance of the whole line

is not only determined by the performances of the machines

themselves, but also by the way they are linked each other.

This latter aspect is a natural consequence of the sequential

disposition of the machines in the line, which implies that

when a machine goes down other machines can incur in idle

state. In particular, an operational machine could be found

in idle state as a consequence of failures occurred

– in the upstream, determining an interruption of the

ingoing product flow, thus causing a starvation;

– in the downstream, determining a stop of the outgoing

product flow, thus a block of the machine as a conse-

quence of the impossibility to discharge products.

To mitigate the effects of such harmful interactions, buffers

are allocated along the line to act as decoupling points to

sustain the flow for a determined time span, when failures

on machines occur. Hence, the optimal design of an au-

tomated production line cannot prescind from the correct

understanding of the interactions between the machines and

the determination of the right position and capacity of the

buffers ([2][3][4]).

Since several years, scientists have address the problem

of buffer dimensioning and allocation, and one of the most
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attractive and effective way adopted is the mathematical

modeling. By means of mathematical models, an analytic

relation between the buffers structuring and the throughput

of the line can be established, thus precise and useful insights

can be obtained to address the optimal dimensioning (see [1]

for a comprehensive representation).

The most important methodology adopted considers the

line as a continuous time Markov process, to allow also

the modeling of inhomogeneous lines (i.e. those in which

machines can have different productivities). A generic line

is decomposed in a series of two machines one buffer sub-

problems, for which analytical solution have been obtained

in literature for the canonical case [5], while also some other

particular cases are under study [6]. Provided that analytical

models for each two machines one buffer sub-problem are

given, the performance parameters of the whole line can

be computed by means of iterative procedures adopting a

decomposition technique, as pointed out by the literature

[7][8][9][10][11][12]. Hence, the importance to have well

performing mathematical models to correctly represent the

behavior of each two-machines sub-system is emphasized.

In this paper, the canonical two machine one buffer model

developed in [5] has been extended to take into account

the particular behavior of the filling machine of Tetra Pak

automated packaging lines.

In such packaging lines, the filling machine (also named

filler) constitutes the most important and critical part, being

the one that executes the packaging formation and filling

process. To guarantee world-class constant sealing and asep-

tic conditions together with highest production speed, the

packaging formation and filling process is executed in a

continuous manner. Hence, when a failure in the downstream

blocks the possibility to discharge packages, an interruption

in the filling process occurs causing a stop of the filler and

an outage cost related to the succeeding restart phase. This

firstly implies that the filler cannot work in an intermittent

manner or at a speed lower than the canonical one, and

secondly that interruption in the downstream flow have to

be reduced to a bare minimum.

A first attempt to produce a mathematical model for the

two-machine one-buffer problem (see Figure 1) able to take

into account this particular behavior can be found in [13]. A

restart level L has been introduced by the authors to impose

a forced block state on the filler each time the buffer reaches

the maximum level N . The forced block state on the filler is

then removed when the buffer level gets back L. This policy

aims to prevent situations in which the filler restarts when

the buffer level is still high, then reducing the probability to

have a further block if the downstream interrupts again for
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Fig. 1. Two machines system with restart level.

the time being.

The present work improves [13] by introducing some new

boundary conditions and providing an analytical solution

to the mathematical formulation. Finally, some numerical

results show the effects of the restart level variation on the

throughput of the system, thus the optimal value can be

determined.

The remaining part is organized as follows. In Section II

the mathematical model is presented while in Section III the

solution is obtained. Finally, Section IV reports the results

of numerical applications and Section V points out some

concluding remarks.

II. SYSTEM MODEL

The two machine finite buffer problem, with M1’s restart

controlled by buffer level, is modeled as a continuous time,

mixed state Markov process. The system is depicted in

Figure 1.

The variables µi, pi, and ri represent the production

rate, the failure rate, and the restoration rate, respectively,

∀ i = 1, 2.

Moreover, the condition µ2 > µ1 is imposed to the system.

In fact, in real packaging lines the machines downstream of

the filler (the so-called distribution equipment, here ideally

represented by M2) are less reliable than the filler itself, thus

a value of µ2 higher than µ1 allows the buffer to work at

low load levels.

The system state is defined as

S =
(

x, β, α1, α2, t
)

, (1)

being x the buffer level, β = {0, 1} a binary parameter

identifying the forced block state of the first machine,

αi = {0, 1} the repair state of the machine i = {1, 2}, and t

the time variable.

In a generic time interval δt, the variation in the

buffer level involved by the machines behavior is
(

(1 − β)α1µ1 − α2µ2

)

δt, if x is far enough to its boundaries

0 and N .

When the buffer reaches the level N , the first machine

can not discharge products and consequently goes blocked,

that is, it could process units (α1 = 1) but it has to stop

production as a consequence of the impossibility to send

products in the downstream. Moreover, as said in Section I,

to reduce the number of stops of M1, an immediate restart

is prevented by putting M1 in the forced block state (β = 1)
and maintaining it blocked until the buffer level decreases to

a predefined value L ∈ [0, N ]. As an additional consequence,

while β = 1, M1 can not go down since operational

dependent failures are assumed. While β = 0, the probability

of failure of M1 at time t + δt, provided that α1(t) = 1, is

p1δt.

On the other side, M2 can consume products at its nominal

rate µ2 only if the buffer is not empty, otherwise it is forced

to slow down its speed to µ1 (remember the hypothesis

µ2 > µ1). In this case the probability of failure of M2 at

time t + δt, provided that α2(t) = 1, is pb
2δt, where

pb
2 =

µ1

µ2

p2 , (2)

since a failure rate proportional to machine operating speed

is assumed. When the buffer is not empty, such a probability

is p2δt.

Finally, the probability to have a restoration at time t+ δt

of a machine i failed in t
(

αi(t) = 0
)

is riδt.

The model comprises a set of equations that represent the

behavior of the system. Let p(x, β, α1, α2, t) be the proba-

bility of being in state (x, β, α1, α2, t) and f(x, β, α1, α2, t)
be the probability density.

It is advisable to distinguish two groups of equations, the

one related to the boundary states and the other related to

the intermediate buffer levels.

A. Boundary behavior

The previous literature examines only two kinds of bound-

ary states: the first kind of boundary equations refers to the

situation where the buffer is empty x = 0, the second kind

to the situation where the buffer is full x = N .

The present study significantly extends previous literature

by considering two different dynamics: the first one (β = 0)

holds when the first machine is not forced to be blocked;

the second one (β = 1) takes over when the buffer reaches

the value N and M1 is then put in the forced blocked state.

This latter dynamics lasts until the buffer level decreases to

the value L.

We then introduce a new kind of boundary equations

related to the situation where the buffer level is equal to L

and the system passes from the first dynamics to the second

one (i.e. from β = 0 to β = 1).

Let us examine the equations to represent the probability

of finding the system in a given boundary state.

Lower Boundary – x = 0: The equations that describe the

behavior of the system at the lower boundary are very similar

to those investigated in the previous literature. In this case

the parameter β is included in the definition of the system

state nevertheless its value is fixed to zero when the buffer

is empty.

Hence, the equations related to the lower boundary are

only stated and not derived in the following (the reader is

referred to [1] for more details).
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• Boundary-to-Boundary Equations

d

dt
p(0, 0, 0, 0) = −(r1 + r2)p(0, 0, 0, 0) , (3)

p(0, 0, 1, 0) = 0 . (4)

• Interior-to-Boundary Equations

d

dt
p(0, 0, 0, 1) = r2p(0, 0, 0, 0)− r1p(0, 0, 0, 1)+

+ p1p(0, 0, 1, 1) + µ2f(0, 0, 0, 1) , (5)

d

dt
p(0, 0, 1, 1) = −(p1 + pb

2)p(0, 0, 1, 1)+

+ r1p(0, 0, 0, 1) + (µ2 − µ1)f(0, 0, 1, 1) . (6)

• Boundary-to-Interior Equations

µ1f(0, 0, 1, 0) = r1p(0, 0, 0, 0) + pb
2p(0, 0, 1, 1) . (7)

Upper Boundary – x = N: It is important to note that

the variable β changes instantaneously from 0 to 1 when the

buffer level reaches the value N : as soon as this situation

occurs M1 is put in the forced blocked state. Thus, the

concern is about the passage from the first dynamics, when

β = 0, to the second one, when β = 1.

• Boundary-to-Boundary Equations

p(N, 1, 0, 0) = 0 . (8)

p(N, 1, 1, 1) = 0 , (9)

The equations (8) and (9) result from the following

consideration: the buffer can fill up only if the first

machine is up and the second one is down; otherwise,

as a consequence of the hypothesis µ2 > µ1, the buffer

level can only decreases and the upper boundary x = N

can not be reached.

• Interior-to-Boundary Equations

To be in state (N, 1, 1, 0) at time t+δt the system could

have been only in one of two sets of states at time t. It

could have been in state (N, 1, 1, 0) with no repair of

the second machine (the first could not have failed since

it was blocked) or else in any interior state (x, 0, 1, 0),
where N − µ1δt ≤ x < N , if repair of the second

machine or failure of the first did not occur.

Symbolically, ignoring the second order terms,

p(N, 1, 1, 0, t + δt) = (1 − r2δt)p(N, 1, 1, 0, t)+

+

∫ N

N−µ1δt

f(x, 0, 1, 0, t)dx ,

It is not necessary to consider transitions directly from

states like (x, 0, 1, 1), since, if the second machine is

working in t, the buffer level cannot reach N in t + δt.

As δt → 0, the equation becomes

d

dt
p(N, 1, 1, 0) = −r2p(N, 1, 1, 0) + µ1f(N, 0, 1, 0) .

(10)

• Boundary-to-Interior Equations

The only possible internal states reachable from the

upper boundary are those with β = 1 and α1 = 1

because the first machine is forced to be blocked and

can not fail. In addition, it is possible to leave the

upper boundary x = N only by repairing the second

machine, then it results α2 = 1 and the buffer level

decreases according to the productivity of the second

machine (µ2). To be in the state (x, 1, 1, 1) at time

t + δt the system can have been at the boundary state

(N, 1, 1, 0) some time during the time interval (t, t+δt),
then

∫ N−µ2δt

N

f(x, 1, 1, 1,t + δt)dx =

∫ t+δt

t

r2p(N, 1, 1, 0, s)ds .

Letting δt → 0, the equation becomes

µ2f(N, 1, 1, 1) = r2p(N, 1, 1, 0) . (11)

Middle Boundary – x = L and β = 1: The states

representing the second dynamics (β = 1) and characterized

by a buffer level x = L, can be conceptually consid-

ered equivalent to the states representing the first dynamics

(β = 0) with x = 0. Hence, the states with x = L and β = 1
are the lower boundary states of the second dynamics.

The equations that are useful in the mathematical modeling

of such a system are the following.

• Interior-to-Boundary Equations

d

dt
p(L, 1, 1, 1) = −p2p(L, 1, 1, 1) + µ2f(L, 1, 1, 1) .

(12)

The (12) follows by the same reasonings used in

defining the (6). Obviously in this case the parameters

related to the first machine, which is in the forced

block state, are omitted.

• Boundary-to-Interior Equations

To be in the state (x, 0, 0, 1) at time t + δt, where

L − µ2 δt ≤ x < L, the only possible boundary state

of the second dynamics in which the system could have

been in t is (L, 1, 1, 1) with the first machine failing and

the second not failing during δt.

Accounting only the first order terms in δt:

µ2f(L, 0, 0, 1) = p1p(L, 1, 1, 1) . (13)

B. Intermediate buffer level

The transition equations represent the behavior of the

system at intermediate storage levels, that is, when the buffer

is neither empty nor full. The set of equations reported below

characterizes the system when the forced block state in M1 is

not reached. This is the case in which the parameter β equals

0, thus those equations are the same as the ones reported
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in [1].

∂f

∂t
(x, 0, 1, 1) = − (p1 + p2)f(x, 0, 1, 1)+

+ (µ2 − µ1)
∂f

∂x
(x, 0, 1, 1)+

+ r1f(x, 0, 0, 1) + r2f(x, 0, 1, 0), (14)

∂f

∂t
(x, 0, 0, 0) = − (r1 + r2)f(x, 0, 0, 0)+

+ p1f(x, 0, 1, 0) + p2f(x, 0, 0, 1), (15)

∂f

∂t
(x, 0, 0, 1) =µ2

∂f

∂x
(x, 0, 0, 1)+

− (r1 + p2)f(x, 0, 0, 1)+

+ p1f(x, 0, 1, 1) + r2f(x, 0, 0, 0), (16)

∂f

∂t
(x, 0, 1, 0) = − µ1

∂f

∂x
(x, 0, 1, 0)+

− (p1 + r2)f(x, 0, 1, 0)+

+ p2f(x, 0, 1, 1) + r1f(x, 0, 0, 0). (17)

In the considered case other equations are needed to model

the entire behavior of the system. In fact, when the buffer

level is between L and N , M1 could be or not in the forced

block state, hence there is another set of transient equation

in which β = 1. Such equations are defined for x ∈
[

L, N
]

.

When β = 1, M1 is operational but in the forced

block state, thus failures can not occur. Hence, the only

transient states available in such a situation are (x, 1, 1, 1)
and (x, 1, 1, 0).

Let us consider the first state (x, 1, 1, 1) representing the

situation in which the machine M2 is operational. The prob-

ability of finding such a state with a storage level between x

and x + δx at time t + δt is given by f(x, 1, 1, 1, t + δt)δx,

where:

f(x, 1, 1, 1, t + δt) =(1 − p2δt)f(x + µ2δt, 1, 1, 1, t)+

+ r2δtf(x, 1, 1, 0, t) + ◦(δt) .

This derives from the following considerations:

1) If M2 is operational at time t and the buffer level is

x + µ2δt (with δx = µ2δt), then, at time t + δt, the

storage level will be x if failures do not occur in M2

during δt, thus involving probability
(

1 − p2δt
)

.

2) If M2 is down at time t, it can be up at time t + δt

if it will be repaired in δt, thus implying probability

r2δt. Moreover, there is not variation in the buffer level

since M1 is in the forced block state.

3) States characterized by α1 = 0 (M1 is down) are not

possible since, being M1 in the forced block state, it

can not fail.

With few steps the derivative form can be obtained.

f(x, 1, 1, 1, t+δt) − f(x, 1, 1, 1, t) =

(1 − p2δt)f(x + µ2δt, 1, 1, 1, t)+

− f(x, 1, 1, 1, t) + r2δtf(x, 1, 1, 0, t) ,

lim
δt→0

f(x, 1, 1, 1, t + δt) − f(x, 1, 1, 1, t)

δt
=

lim
δt→0

(

−p2f(x + µ2δt, 1, 1, 1, t)
)

+

+ lim
δt→0

(

r2f(x, 1, 1, 0, t)
)

+

+ lim
δt→0

(

f(x + µ2δt, 1, 1, 1, t)− f(x, 1, 1, 1, t)

δt

)

,

∂f

∂t
(x, 1, 1, 1, t) = −p2f(x, 1, 1, 1, t) + r2f(x, 1, 1, 0, t)+

+ µ2 lim
δx→0

(

f(x + δx, 1, 1, 1, t) − f(x, 1, 1, 1, t)

δx

)

.

The final equation is here reported, where the t argument

is suppressed.

∂f

∂t
(x, 1, 1, 1) = − p2f(x, 1, 1, 1) + r2f(x, 1, 1, 0)+

+ µ2

∂f

∂x
(x, 1, 1, 1) . (18)

The same reasoning is adopted to obtain the other transient

equation, reported in the following.

∂f

∂t
(x, 1, 1, 0) = −r2f(x, 1, 1, 0) + p2f(x, 1, 1, 1) . (19)

C. Normalization

The normalization equation must be satisfied to assure that

the sum of the probabilities of all possible states (transient

and boundary) is 1.

1
∑

α1=0

1
∑

α2=0

[

∫ N

0

f(x, 0, α1, α2)dx + p(0, 0, α1, α2)

]

+

+

1
∑

α2=0

[

∫ N

L

f(x, 1, 1, α2)dx

]

+ p(N, 1, 1, 0) = 1 . (20)

D. Throughput of the line

Let Pi be the throughput of the machine i, i.e. the rate at

which material leaves the machine i, ∀i = 1, 2; and let πβ=1

be the probability of being in the second dynamics (β = 1).

Note that material leaves the second machine at rate µ2

only if the buffer level is different from zero, otherwise the

rate is equal to µ1. Consequently,

P2 = (1 − πβ=1) ×

[

µ2

∫ N

0

f(x, 0, 0, 1)dx+

+ µ2

∫ N

0

f(x, 0, 1, 1)dx + µ1p(0, 0, 1, 1)

]

+

+ πβ=1 × µ2

∫ N

L

f(x, 1, 1, 1)dx . (21)

For what concerns the expression of P1, it is necessary to

consider also that material can not enter the first machine if
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the machine is forced to be blocked. Thus,

P1 = (1 − πβ=1) × µ1

[

∫ N

0

f(x, 0, 1, 0)+

+

∫ N

0

f(x, 0, 1, 1)
)

dx + p(0, 0, 1, 1)

]

. (22)

III. SOLUTION TECHNIQUE

Since the steady state density equations (14)–(17) are

coupled ordinary linear differential equations, the form of

the solution is the following:

f(x, β, α1, α2) =(1 − β)CeλxY α1

1 Y α2

2 +

+ βC′eλ′xY ′α2

2 . (23)

Thus, the solution is made up of two contributions related

to the two dynamics: the first one valid if β = 0, i.e.

when the first machine is not in the forced block state, the

second one valid if β = 1, i.e. when the first machine

is forced to be blocked and the buffer level x is in the

interval [L, N ]. C, C′, λ, λ′, Y1, Y2, Y
′

2 are parameters to be

determined. Note that in the second part of the (23) the term

Y ′α1

1 has been omitted since α1 is always equal to 1 if β = 1.

Consider first the case where β = 1 and the behavior of

the system is led by the second dynamics. Equation (23)

satisfies the steady state version of the (18)–(19) if:

Y ′

2 =
r2

p2

, (24)

λ′ = 0 . (25)

Next, let us consider the case where β = 0 and the

behavior of the system is led by the first dynamics. Equation

(23) satisfies the steady state version of the (14)–(17) if:

2
∑

i=1

(piYi − ri) = 0 , (26)

−µ1λ = (p1Y1 − r1)
1 + Y1

Y1

, (27)

µ2λ = (p2Y2 − r2)
1 + Y2

Y2

. (28)

The three parametric equations (26)–(28) allows to deter-

mine the three unknowns λ, Y1, Y2.

Equation (26) implies:

Y2 =
r1 − p1Y1 + r2

p2

. (29)

By substituting the expression of Y2 in the (28), the

expression of λ in term of Y1 follows:

λ = −
r1 − p1Y1

µ2

p2 + r1 − p1Y1 + r2

r1 − p1Y1 + r2

. (30)

Finally, substituting (30) in (27) we get a single quadratic

equation in Y1:

− (µ2 − µ1)p1Y
2
1 + [(µ2 − µ1)(r1 + r2)+

− (µ2p1 + µ1p2)]Y1 + µ2(r1 + r2) = 0 . (31)

Thus, if µ1 6= µ2, as in the present case where µ2 > µ1,

we have two solutions Y1j , to which correspond the solutions

Y2j and λj with j = 1, 2.

The final form of the (23) is then the following:

f(x, β, α1, α2) =(1 − β)

2
∑

j=1

Cje
λjxY α1

1j Y α2

2j +

+ βC′Y ′α2

2 . (32)

where the parameters λj , λ
′, Y1j , Y2j , Y

′

2 have already been

determined.

It is necessary to determine the three coefficients

C1, C2, C
′ in order to complete the solution. Three linear

equations are required:

• equation (10) states the passage from the first dynamics,

with β = 0, to the second one, with β = 1; it implies:

µ1

2
∑

j=1

Cje
λjNY1j = µ2Y

′

2C
′ , (33)

• equations (12) and (13), which establish the passage

from the second dynamics to the first one, yield to the

following expression:

µ2

2
∑

j=1

Cje
λjLY2j = −

p1µ2Y
′

2

p2

C′ , (34)

• normalization equations (20) is the last linear equation

requested in the three unknowns.

All the parameters have been determined, thus the solution

is complete.

IV. NUMERICAL RESULTS

A numerical experimentation has been executed in order

to demonstrate the effects of the restart level L on the

throughput of the two machine system. Table I shows the

values of the input data adopted in the computations.

Parameter Value

N 2300 [units]

µ1 20000 [units/h]

µ2

a) 22000 [units/h]
b) 22500 [units/h]
c) 23000 [units/h]
d) 24000 [units/h]

p1 1
[

h−1
]

p2 2
[

h−1
]

r1 15
[

h−1
]

r2 20
[

h−1
]

TABLE I

INPUT DATA

Four cases have been examined by varying production rate

of the second machine. For each different case the throughput

of the line has been computed as a function of the restart

level L, ranging in [0, N ]. Results are shown in Figure 2.
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Fig. 2. Numerical examples.

As can be seen, by passing from the case (a) to the case

(d), that is, as the difference between µ1 and µ2 becomes

higher, an inversion in the effects of the restart level L on

the throughput of the line occurs.

On one hand, when µ2 is quite close to µ1 (case (a)),

the time employed to empty the buffer at each M1 blocking

is not recovered by a decrease in blocking ratio, thus best

performances are related to high values of L. On the other

hand, when µ2 becomes significantly higher than µ1, the

buffer empties quickly then forced blocks in M1 last few

time. Thus, low levels of L can be adopted since the benefi-

cial effect of a low L on the block ratio reduction is higher

than the loss in production time due to the buffer emptying

procedure. Finally, cases (b) and (c) reports intermediate

conditions.

V. CONCLUSIONS

This work addresses particular aspects of automated pack-

aging line design. In such lines, the filling machine forms

and fills packages by means of a continuous process, whose

interruption causes an outage costs related to the succeeding

restart phase. A buffer is adopted to decouple the filling

machine by the rest of the line. Nevertheless, if the buffer

reaches its maximum level, the filling machine has to stop

working.

The paper proposes a mathematical formulation of the

system behavior, introducing a restart policy based on buffer

level. An analytical solution of the model is also obtained,

while some numerical examples are finally discussed.
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