
Motion Probes for Fault Detection and Recovery in Networked Control

Systems

Mauro Franceschelli⋆, Magnus Egerstedt†, and Alessandro Giua⋆

⋆Electrical and Electronic Engineering †Electrical and Computer Engineering

University of Cagliari Georgia Institute of Technology

09123 Cagliari, Italy Atlanta, GA 30332, USA

{franceschelli,giua}@diee.unica.it magnus@ece.gatech.edu

Abstract— In this paper we address the problem of how to
excite networked control systems in such a way that faulty,
and possibly malicious, agents can be detected. In particular,
we envision a scenario in which a subset of the agents in
the network are executing a different control strategy than
what has been prescribed and the problem under consideration
consists of two subtasks, namely detection of the faulty agents,
and isolation and mitigation of their impact on the remaining
agents. We achieve this by proposing a collection of "motion
probes" that leave certain aspects of the network invariant
while ensuring that non-cooperative agents are identified and
isolated. While we propose a useful tool to identify the faulty
agents, the actual algorithms and policies that make use of the
motion probes are left to future research.

I. INTRODUCTION

The consensus problem, i.e., the problem of having a

collection of agents’ states reach a common value in the

presence of network and information sharing constraints, has

recently received considerable attention. (For a representative

sample, see [2], [6], [7], [8], [11], [10], [13].) A common

approach to this problem is to use a linear, nearest neighbor

control strategy, resulting in a linear dynamic system driven

by the graph Laplacian associated with the underlying

network topology.

One recently discovered aspect of a Laplacian-based con-

trol strategy for networked systems is its connection to the

heat equation through the introduction of so-called partial

difference equations as discrete analogs of partial differential

equations [1], [4]. This analogy enables the connection to

traditional boundary-value problems. In particular, it has

been showed in [5], [12] that the introduction of single

anchor nodes, i.e., a single, immobile agent, results in a

rendezvous at the location of that agent, provided that the

underlying graph remains connected. Similarly, with multiple

anchor nodes, the remaining agents converge to the convex

hull spanned by the anchor nodes [5].

As a consequence of this, the immobile agents will in

effect change the system performance most significantly in

that the agents will no longer converge to the centroid of the

initial configuration, as would otherwise be the case. Taking

this observation one step further, one way in which mobile

networks, executing a consensus-based control strategy, can

be "hi-jacked" is by either adding a hostile (immobile) agent

or by rendering one agent immobile. Moreover, if the hostile

agent is moving, it would in essence be able to move all the

original agents away from the target area. This fact can be

thought of as a rather extreme form of non-robustness with

respect to outliers in that outliers are given more or less

complete control over the system performance.

In this paper we discuss how to add robustness to the sys-

tem in the sense that hostile/faulty agents may be identified

and their influence nullified. In particular, what we propose

is a set of tools for achieving this in a decentralized manner

under the banner of so-called motion probes. A motion probe

is a maneuver executed either by a single agent or by a

team of agents, intended to allow the agents to infer certain

properties about the network. Moreover, these movements

should be such that they preserve desirable properties, such

as keeping the centroid static. We point out that such tools

can be used as a way of identification of faulty behavior (e.g.

if an agent is stuck or is not responding, it is probably faulty)

but we do not investigate how to achieve the task in this

paper, it will be object of future research. We show however

that within this approach it is also possible to recover the

original centroid of the non-faulty agents once the faulty

agents have been identified.

The outline of this paper is as follows: In Section 2, we

briefly discuss the problem under consideration in the setting

of linear consensus protocols. Section 3 presents a first

result of this paper, namely the motion probes for preserving

the rendezvous point (typically the initial centroid of the

network) and for nullifying future impacts of hostile/faulty

agents. Following this, in Section 4, we present a tool for

network fault recovery. It consists of a method to nullify

any contribution to the final rendezvous point that the faulty

agents may have caused prior to their detection. We conclude

the paper with an example and, in Section 5, with the

concluding remarks.

II. PROBLEM DESCRIPTION

We will be considering the discrete time version of the

consensus problem. The results can be extended to contin-

uous time setting in a straightforward manner. A general

formulation of the linear, nearest neighbor rule for solving

the consensus problem is to let the state of the system evolve

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrBI02.9

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 4358

as

x(k + 1) = Px(k), (1)

where P is a stochastic, indecomposable, aperiodic matrix,

as discussed in [9]. Moreover, x ∈ R
n is an aggregated state

vector, with each component xi representing a scalar state

associated with agent i = 1, . . . , n.

We model the network as an undirected graph G = V ×E,

with V being a set of vertices V = {1, . . . , n} that represent

the agents, and where the edge set E ⊆ V × V encodes the

network topology in that (i, j) ∈ E if and only if agents i and

j can share information. Based on a matrix representation of

this graph, using algebraic graph theory [3], the graph can

be encoded through its adjacency matrix A. The adjacency

matrix is an n × n matrix such that ai,j = 1 if and only if

(i, j) ∈ E and is 0 elsewhere.

Let Ni ⊂ V be the set of vertices adjacent to vertex i, and

let |Ni| denote its cardinality. We can then define the degree

matrix ∆ as the diagonal matrix whose diagonal entries are

∆i,i = |Ni|. Using these matrices, a standard, discrete time

model of consensus networks is the one defined by x(k +
1) = (I−ǫL)x(k), where I is the identity matrix, L = ∆−A
is the graph Laplacian of the graph G, and ǫ > 0. Under this

dynamics, the matrix P in Equation (1) becomes

P = I − ǫL. (2)

Following the notation in [9], we will refer to P as a Perron

matrix.

We assume that the topology of the network is represented

by a time varying, undirected graph G(t) = (V, E(t)), where

the edge set is time dependent, which corresponds to edges

being created and disappearing in the network. This could

be caused by communication failures, or by the movements

of the individual agents as they enter and leave each others’

sensory ranges.

Now, as the adjacency and degree matrices are time

dependent, the Laplacian will depend on time as well and

rather than explicitly computing L(t), we assume that we

have an enumeration of all possible graphs over n agents.

We define T as the index set of all connected graphs T =
{i|Gi = (V,Ei) is connected}. In fact, we will assume that

the graph that is currently encoding the network topology

is connected, i.e., its index belongs to T , and the linear

consensus dynamics that we will employ can thus be given

for k ≥ 0 by x(k+1) = Pi(k)x(k) with x(0) = x0, i(k) ∈ T ,

where x0 is the initial state of the system. We generalize

the dynamics given by (2) assuming that the system matrix

Pi(k) (corresponding to the connected graph that describes

the network topology at time k, i.e., Gi(k)) is given by

Pi(k) = I − ǫDLi(k), (3)

where D is a positive definite, diagonal matrix representing

the speed (or gain) of each agent. Obviously for D = I (i.e.,

all agents have the same speed) equation (3) gives a Perron

matrix.

It is straightforward to verify that Pi in Equation (3)

is a stochastic, indecomposable, aperiodic matrix for any

sufficiently small, positive ǫ. By simple manipulations we

find that any 0 ≤ ǫ < minj 1/(dj(n − 1)), where dj is the

jth diagonal entry of D satisfies the above assumption.

III. MOTION PROBES

In this section we provide the basic tool - the so-called

motion probe - for detection of misbehavior in a multi-agent

system with single integrator dynamics that is running a

linear consensus algorithm.

The formulation of the consensus dynamics in Equation

(3) is only valid as long as all agents are executing the

prescribed control laws. However, if a subset of the agents

do not, the dynamics change and one would typically like

to be able to detect this change in dynamics and mitigate its

effects. For this, we propose to let individual agents perform

controlled movements that is somewhat different from the

pure consensus dynamics in order to excite the system. In

fact, the main contribution in this paper is the characteriza-

tion of what movements the agents should perform in order to

achieve a variety of tasks like intruder and failure detection,

obstacle avoidance or connectivity preservation. Moreover,

these motions should be performed in such a way that certain

properties of the network are preserved, for instance the

centroid of the network (i.e., the rendezvous point) or, in a

more general setting, a weighted average of the initial states.

In addition to developing motion probes for exciting the

system, we will also provide the tools needed to disconnect

an individual agent (typically, the faulty agent) from the net-

work in such a way that the effect that this agent had before it

was disconnected can be canceled out. The main application

of this technique is the recovery of the initial centroid after

the intruders or faulty agents have been detected.

To study the evolution of such systems we need to point

out the connection between this formulation of the consensus

dynamics and that of discrete time Markov chains. In fact,

one can think of Pi as being the transition matrix in a Markov

chain, with a corresponding, unique stationary distribution

πi such that limk→∞ P k
i = 1πT

i , where 1 is the vector with

ones in each entry.

The following result can then be directly obtained:

Lemma 1: The stationary distribution of

P(t) =
∏t−1

k=0 Pi(k), for any t ≥ 1, where

Pi(k) = I − ǫDLi(k), i(k) ∈ T , is

π = D−1
1α,

with α being a normalizing scalar such that
∑n

j=1 πj = 1.

Proof: The proof follows directly from the basic

properties of stochastic, indecomposable, aperiodic matrices.

We omit it due to space constraints.

Now, what we want is to move a subset of the agents in

such a manner that we can infer certain properties of the

network. However, at the same time we want to make sure

that certain other properties of the network stay the same at

the end of the moment. In particular, we will use Lemma 1

to establish constraints on the movements (or motion probes)

that preserve a weighted average of the initial states.

4359

In order to allow for the agents to exert a control action

different from the consensus-based maneuver, we assume

that the network behavior can be described by:

x(k + 1) = Pi(k)x(k) + Bu(k) x(0) = x0, i(k) ∈ T.
(4)

Here B is an n× n matrix (typically the identity matrix), u
is a vector of inputs whose ith component ui is the scalar

input exerted by agent i.
Theorem 2: Given the network dynamics in Equation (4).

If
t−1∑

k=0

u(k) = 0,

then πT x(t) = πT x(0), where π is the stationary distribu-

tion in Lemma 1.1

Proof: We have that

x(t) =
t−1∏

k=0

Pi(k)x(0) +
t−1∑

k=0

k∏

j=0

Pi(j)Bu(k).

Multiplying by πT on both sides of the above equation and

observing that π is the stationary distribution of Pi ∀i ∈ T ,

we get

πT x(t) = πT x(0) +
t−1∑

k=0

πT Bu(k).

Since πT B does not depend on k it can be taken out of the
summation as

π
T
x(t) = π

T
x(0) + π

T
B

t−1∑

k=0

u(k).

By hypothesis,
∑t−1

k=0 u(k) = 0, and hence πT x(t) =
πT x(0), which concludes the proof.

The previous theorem can be understood in the context

of the partial difference equation analogy with the heat

equation. Any agent applying an input can be seen as an

agent that is "warming up" or "cooling down" the network,

depending on the sign of the input. Since the system is

conservative (no heat can flow away), in order to recover

the initial thermal equilibrium point the only information

needed is how much heat has flown in or out from the

network. This quantity corresponds to the integral of the

applied input. Hence, if the integral is zero, the total heat

present in the network has been preserved, and the initial,

thermal equilibrium point will be reached under the regular

evolution of the heat equation.

It should moreover be pointed out that such a motion probe

can be performed by any agent in a completely decentralized

fashion since no information is required to flow through

the network for its computation. In other words, the motion

probe can be used to achieve a variety of tasks like obstacle

1If the n agents are moving in a m−dimensional space, the extension to
R

n×m requires the presence of a relative inertial reference for each agent.

This means that the assumption that
∑t−1

k=0
u(k) = 0 needs to hold for

u ∈ R
n×m.

avoidance, failure detection (i.e., if an agent does not react

to the motion probe it is clearly not running the consensus

algorithm), and connectivity preservation (an agent may just

slow down to avoid disconnection with a far agent and then

speed up later to preserve the centroid). And, this is done

while preserving the weighted centroid of the network, as

per Theorem 2.

In particular, we envision the motion probe to be used in

the following scenarios:

1) Agents are Rendered Immobile: If reliable communi-

cations are not available, or costly, we can imagine that the

neighbors of the immobile agent can adopt a policy used to

identify the faulty behavior of the immobile agent. This can

be achieved by checking its reaction to the motion probes.

2) Motions as Communication: In a swarm of agents

in a futuristic scenario the leaders may give simple orders

by performing some movements that will be repeated by

the neighbors and so on to transfer information without

disrupting certain properties of the network. In other words,

the motion probe leaves the centroid intact while serving as

means of propagating information through the network.

3) Non-Consensus Based Control: Given an initial con-

figuration of the network. If all the motions are composed

entirely by motion probes, the centroid will remain static,

allowing for a much more expressive set of maneuvers.

IV. FAULT RECOVERY

If we assume that we have been able to locate a faulty

agent (perhaps using the motion probe discussed in the

previous section), what we would like to do is to isolate that

agent from the network. Moreover, we would like to not only

cancel out that agent’s effect on the system after recovery,

but also to nullify the agents total effect, from time t = 0
and onwards. The reason why this might be useful can for

instance be seen in a networked robot system where we do

not want to let the faulty agent drag the team away from

the desired rendezvous point. Similarly, in a sensor network,

we typically need to eliminate the contribution from a faulty

sensor.

We will let the network topology be static in the following

paragraphs. All the computations will still hold under slightly

more general assumptions that we briefly mention later. The

general case of switching topology will be the object of

future research. We assume that the agents are ordered in

such a way that the first n − m agents are non-faulty, and

the remaining m agents are faulty. In fact, we let the system

dynamics be given by

x(k + 1) = P̂ x(k) + B̂u(k) x(0) = x0. (5)

Here B̂ is B̂ =

[
Bg 0n−m×m

0m×n−m Bf

]
, where Bg and

Bf are the input matrices of respectively the non-faulty and

the faulty agents and Bg corresponds to the identity matrix

with the appropriate dimensions. Bg is assumed to be the

identity matrix since this system represent a collection of

agents that though collaborating to achieve a common goal

4360

need to perform some tasks on their own (i.e., motion probes

or else). However, P̂ is no longer a Perron matrix.

P̂ can be expressed as follows: As in the previous section,

we let D denote the positive definite, diagonal weight (or

gain) matrix associated with each agent. Moreover, let Wf

be the n×n matrix whose entries are zeros except the bottom

right n × m block which is the identity matrix.

Wf =

[
0n−m×n−m 0n−m×m

0m×n−m Im×m

]

Using this notation P̂ becomes P̂ = I − ǫD(L − WfL),
where L is the graph Laplacian.

It is straightforward to show that P̂ in Equation (5) can

be written as the following, partitioned block matrix:

P̂ =

[
Pg Df

0m×n−m Im×m

]
(6)

Here Df is a (n − m) × m matrix whose elements in the

ith row are non-zero only corresponding to faulty agents

neighbors of agent i.
In the following we denote ug the inputs to the good

agents and uf the inputs of the faulty ones. Since P̂ is

block diagonal, we can now write the dynamics of the non-

faulty agents (denoted by xg) and view the position of the

faulty agents (xf) as inputs. We moreover recall that uf will

not affect xg directly, and we get the following partitioned

system:

xg(k + 1) = Pgxg(k) + Dfxf (k) + Bgug(k) (7)

xf (k + 1) = xf (k) + Bfuf (k).

Viewed at the level of the individual non-faulty agents, the

dynamics of agent i is in fact given by

xi(k + 1) = xi(k) − ǫdi

∑

j∈Ni

(xi − xj) + ui(k),

where, as before, Ni is the set of vertices adjacent to vertex

i. Letting F = {i | agent i is faulty} allows us to separate

the contributions to the non-faulty agent’s evolution as

xg,i(k + 1) = xg,i(k) − ǫdi

(∑
j∈Ni/F (xg,i − xg,j)

+
∑

j∈Ni∩F (xg,i − xf,j)
)

+ ui(k).

We may call Ps the matrix that describes the dynamic of

the good agents and see as input the distance between the

faulty agents and their neighbors and corresponds to Ps =
I − ǫDLi where Li is the subgraph induced by the good

agents. With simple algebraic manipulations one may note

that Ps = Pg+H where H is a n−m×n−m diagonal matrix

whose ith element corresponds to the number of faulty agents

in the neighborhood of agent i multiplied by ǫdi: H =
ǫDdiag

(
|N1 ∩ F | · · · |Nn−m ∩ F |

)
.

The following theorem provides a tool for network re-

covery after some agents have been disconnected from the

network for some reason and it is of interest to nullify their

contribution to the final state of the network. The theorem is

stated for a fixed connected topology and then the result is

extended to the case of a switching topology.

Theorem 3: Let the network of agents be described by

Equation (7). If the following conditions hold:

1) At time t0 all m faulty agents have been detected.

2) The neighbors of faulty agents apply a control input

such that at time t

t∑

k=t0

urec(k) = −
t0−1∑

k=0

(Dfxf (k) − Hxg(k)).

Then, at time t a complete recovery of the weighted

average of the initial states of the non-faulty agents has been

performed, i.e.,

πT xg(0) = πT xg(t).

If, furthermore, the induced subgraph of G containing all

the non-faulty agents is connected after time t

lim
k→∞

xg(t + k) = 1πT xg(0).

Proof: The states of the non-faulty agents follow the equation

xg(k+1) = Pgxg(k)+Dfxf (k)+Bgug(k). What each non-

faulty agent can actually measure, in the proposed discrete

time consensus algorithm, is the difference between its own

state and all the neighbors’. The generic neighbor i of a faulty

agent j sees as input Nij(k) = eT
i (Dfeje

T
j xf (k)−Hxg(k))

and can easily keep the information about the total contri-

bution from each neighbor by remembering
∑t0−1

k=0 Nij(k).
The evolution of the system can now be described by the

following equations:

xg(k + 1) = Psxg(k) + Dfxf (k) − Hxg(k) + Bgug(k)
xf (k + 1) = xf (k) + Bfuf (k).

We recall that Ps = Pg + H is a stochastic, inde-

composable, aperiodic matrix by construction since Ps =
I − ǫDLs(G), where Ls(G) is the Laplacian of the induced

subgraph of the non-faulty agents (that is assumed to be

connected). The states of the good agents at time t0 as

function of the faulty agents and their initial state can be

written as:

xg(t0) = P t0
s xg(0) +

t0−1∑

k=0

P k
s N(k) +

t0−1∑

k=0

P k
s Bgug(k).

At time t0 all the faulty agents are detected and each

neighbor of a faulty node is disconnected. Then, after an arbi-

trary number of time steps, each agent that was a neighbor of

a faulty one applies the proposed control input based on the

information preserved locally about the contribution of the

faulty neighbor to its dynamic. For this, let ûg = ug + urec

be the non-faulty agents’ inputs between time t0 and t, where

ug is any input that the non-faulty (good) agents may want

to perform (i.e., a motion probe or else) and urec is the

4361

recovery input. When, at time t, each agent stops applying

the recovery input, the state of the network is

xg(t) = P t−t0
s (P t0

s xg(0) +

t0−1∑

k=0

P k
s N(k)

+

t0−1∑

k=0

P k
s ug(k)) +

t−1∑

k=t0

P k
s Bgûg(k).

Multiplying both sides of the above equation by the station-

ary distribution of Ps, πT :

πT xg(t) = πT P t−t0
s (P t0

s xg(0) +

t0−1∑

k=0

P k
s N(k)

+

t0−1∑

k=0

P k
s Bgug(k)) + πT

t−1∑

k=t0

P k
s Bgûg(k),

since πT P k
s = πT , ∀k ≥ 0, we get

πT xg(t) = πT xg(0) + πT
t0−1∑

k=0

N(k) + πT Bg

t0−1∑

k=0

ug(k)

+ πT Bg

t−1∑

k=t0

ûg(k).

Recalling that Bg is the identity matrix and ûg = ug + urec

gives

πT xg(t) = πT xg(0) + πT
t0−1∑

k=0

N(k) + πT
t0−1∑

k=0

ug(k)

+ πT
t−1∑

k=t0

ug(k) + πT
t−1∑

k=t0

urec(k).

Since
∑t

k=t0
urec(k) = −

∑t0−1
k=0 N(k), we get

πT xg(t) = πT xg(0) + πT
t−1∑

k=0

ug(k).

Then, if ug is identically null or is the resulting of tasks

accomplished with motion probes we know that

τ−1∑

k=0

u(k) = 0, ∀τ ≥ t0,

and thus πT xg(t) = πT xg(0), thus proving the first part of

the theorem.

If furthermore G stays connected after all the faulty agents

have been removed from the network, the hypothesis for the

consensus algorithm to converge are satisfied and:

lim
k→∞

xg(k) = 1πT xg(0),

and the second part of the theorem follows.

We point out the following main features of the proposed

recovery procedure:

1) Only the agents that are neighbors to a faulty agent

need to apply the recovery input.

0 50 100 150 200 250 300 350 400
60

61

62

63

64

65

66

67

68

69

70

Time

A
g

e
n

ts
 a

lt
it
u

d
e

Failure detection

Initial centroid

Initial good
agents centroid

Fig. 1. Evolution of the network of agents in Example 1. Four UAVs are
tasked with flying at the same height while avoiding to be dragged to the
ground when one is shot down.

2) The information needed by the generic agent to recover

after detection is

Nij(k) = eT
i (Dfeje

T
j xf (k) − Hxg(k))

that essentially consists of the summation of the differ-

ence between its state and the faulty neighbor’s (i.e.,

their distance) starting from the initial instant of time,

i.e., a single variable for each neighboring agent.

3) Any agent that has detected a faulty agent in its

neighborhood may apply the recovery at any time.

There is no need that all the faulty agents are detected

at the same time. The recovery procedure may then be

applied in an asynchronous way.

The extension of the previous theorem to the switched

topology case will be object of future research. We point out

that a trivial sufficient condition for Theorem 3 to hold in

the switching topology case is that the set of neighbors of

the faulty agents do not decrease in number. In such case

any agent need only to remember the inputs of its actual

neighbors.

Next we give an example of fault recovery for a simplified

case of a network of unmanned aerial vehicles. These UAVs

are assumed to be tasked with flying at the same height while

avoiding be dragged to the ground when one of them is shot

down. These agents are moreover assumed to be aware only

of the relative distances of the neighbors.
Example 1: Let the evolution of the network of agents in

Figure 2, be described by x(k + 1) = Px(k), where

P = I − ǫ




3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3




and x(0) = [66.12 62.24 68.86 69.33]T . The rendezvous
point is then at 66.64 and we note that the average of the
states of the non-faulty agents 1, 2 and 3 is 65.74 at the initial

4362

1

2 3

4

Fig. 2. Network of agents in Example 1.

time. The evolution of such network is shown in Figure 1.
The agents perform the consensus algorithm on their altitude
when at k = 50 agent 4 is shot down and starts falling to
the ground as shown in Figure 1. The other agents, still
unaware of what happened try to follow his movements,
being dragged to the ground themselves. The dynamic of
the network during this period is described by:

xg(k + 1) =



I − ǫ




3 −1 −1
−1 3 −1
−1 −1 3







 xg(k) + ǫ




1
1
1



 xf (k)

xf (k + 1) = xf (k) + u(k).

Then at time k = 200 by some means the neighbors
of the broken agent realize that agent 4 was broken (i.e.,
identify the suspicious behavior and execute a motion probe
or through other means achieve the same result). Agent 4
is then disconnected from the neighbors, the dynamic of the
network then becomes:

xg(k + 1) =



I − ǫ




2 −1 −1
−1 2 −1
−1 −1 2







 xg(k) + ǫ




1
1
1



 u(k)

Where u(k) is the recovery input. In this example all the

agents detect the misbehavior, disconnect the faulty agent

and apply the recovery input at the same instant of time for

clarity sake. All this operations may take place at different

instants of time in a real application. The agents know the

summation of inputs due to agent 4:

Agent 1 :
∑k−1

i=0 x1(i) − x4(i) = 72.8,

Agent 2 :
∑k−1

i=0 x2(i) − x4(i) = −48.2,

Agent 3 :
∑k−1

i=0 x2(i) − x4(i) = 158.42.

So all of them need to apply an input whose summation

over a finite number of steps is opposite to the one applied

by the broken agent. For simplicity the chosen input is

constant with a length of 100 time steps (i.e., the agents

are completely free to do whatever they like as long as the

total contribution of agent 4 is nullified). Such inputs for

agent 1, 2 and 3 are:

urec,1(k) = −0.72, k = 201, . . . , 300
urec,2(k) = 0.48, k = 201, . . . , 300
urec,3(k) = 1.58, k = 201, . . . , 300

and zero elsewhere.

When they all finish applying the recovery at time 300,

we note in Figure 1 that the average of their altitudes has

become exactly their average at the initial instant of time,

namely 65.74. From this point on the network evolves as a

standard consensus network, reaching a practical rendezvous

around time k = 400. ¥

V. CONCLUSIONS

In this paper we consider the problem of how to move

agents in a networked system in such a way that they do not

change the desired rendezvous point during the maneuver.

Such movements are referred to as motion probes. And, in

particular, we show how such motion probes could be used

to identify faulty agents that do not exhibit the prescribed

dynamical behavior. Moreover, once these faulty agents have

been identified, we show how to nullify their impact on

the behavior of the non-faulty agents. We also outline some

particularly promising directions for future research in this

new area of motion probes for exciting networked control

systems.

Acknowledgments

The work by Magnus Egerstedt was supported in part by

the U.S. Army Research Office through Grant # 99838.

REFERENCES

[1] A. Bensoussan and J.L. Menaldi. Difference equations on weighted
graphs. Journal of Convex Analysis (Special issue in honor of Claude
Lemarechal) 12(1), 13-44, (2005)

[2] J. Cortes, S. Martinez, and F. Bullo. Robust rendezvous for mobile
autonomous agents via proximity graphs in d dimensions. IEEE Trans.

Robot. Automat., 51(8): 1289-1298, 2006.
[3] C. Godsil and G. Royle. Algebraic graph theory. Springer, 2001.
[4] G. Ferrari-Trecate, A. Buffa, and M. Gati. Analysis of coordination in

multi-agent systems through partial difference equations. Part I: The
Laplacian control. 16th IFAC World Congress on Automatic Control,
2005.

[5] G. Ferrari-Trecate, M. Egerstedt, A. Buffa, and M. Ji. Laplacian Sheep:
A Hybrid, Stop-Go Policy for Leader-Based Containment Control.
Hybrid Systems: Computation and Control, Springer-Verlag, pp. 212-
226, Santa Barbara, CA, March 2006.

[6] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of
mobile autonomous agents using nearest neighbor rules. IEEE Trans.

Automat. Contr., 48(6):988-1001, June 2003.
[7] Z. Lin, M. Broucke, and B. Francis. Local control strategies for

groups of mobile autonomous agents. IEEE Trans. Automat. Contr.,
49(4):622-629, 2004.

[8] R. Olfati-Saber. Flocking for multi-agent dynamic systems: Algo-
rithms and theory. IEEE Trans. Automat. Contr., 51(3):401-420, March
2006.

[9] R. Olfati-Saber. Consensus and cooperation in networked multi-agent
systems. IEEE Proceedings., 95(1):215, Jannuary 2007.

[10] W. Ren, R.W. Beard, and E. Atkins. A Survey of Consensus Problems
in Multi-agent Coordination. American Control Conference, Portland,
OR, 2005.

[11] K. Sugihara and I. Suzuki. Distributed motion coordination of multiple
robots. In Proceedings of IEEE Int. Symp. on Intelligent Control, pages
138-143, 1990.

[12] H. Tanner, A. Jadbabaie, and G.J. Pappas. Stable flocking of mobile
agents, part II : Dynamic topology. In Proceedings of the 42nd IEEE

Conference on Decision and Control, pages 2016-2021, 2003.
[13] R. Olfati-Saber, R. M. Murray. Consensus problems in networks of

agents with switching topology and time-delays. IEEE Trans. on

Automatic Control, volume 49, pages 1520–1533, 2004.

4363

