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Abstract— Control of induction machines in the so-called
sensorless paradigm forms an interesting academic and prac-
tical problem. In this paper, an observer-controller system is
proposed that can be used to control an induction machine with
unknown parameters and partial state variable information.
The observer is used to obtain the rotor flux linkage vector,
needed for the sliding mode control based torque and flux
control laws, while estimating speed and the unknown rotor
resistance at the same time. In a nut shell, this system provides
a unified sensorless control technique.

I. INTRODUCTION

Discontinuous control offered by sliding mode control

theory makes it a natural choice for controlling inverter

driven induction machines. Apart from this advantage, this

theory provides simplicity in control design and robustness

against unknown or time-varying plant parameters. However,

irrespective of the control algorithm, information on motor

speed, flux linkages etc. are required. Recent advanced

developments in data acquisition and processing allow the

implementation of the sensorless control idea, this paper

presumes the availability of such devices and offers a sliding

mode based observer-controller system.

Control of an induction machine has been a subject of

much study over the past several decades. Sliding mode

control has also been presented abundantly in technical litera-

ture, both from a theoretical and implementation perspective.

Hence, in this paper, background details are kept to the

minimum and the interested or novice control engineer is

directed to [1], [2], and [3] for fundamentals of sliding mode

control theory and induction machines.

Design of torque and flux control in an induction machine

without the use of speed or flux sensors is the main focus of

this paper. In terms of stator currents and rotor flux variables,

an induction machine is described by a fifth-order non-linear

system with stator voltages as inputs and stator currents as

output; a detailed derivation of the equations used in this

paper is provided in [4]. The unknown quantities are the

speed, rotor fluxes, and finally, the rotor resistance, which

can vary significantly, albeit slowly, with temperature. The

problem statements can be described as follows: first, esti-

mate the unknown variables and second, use these estimates

to design control. An observer is designed to solve the first

problem and a controller based on the Field-Oriented Control

(FOC) technique [2], [4], is used for the second; sliding mode

control theory is applied in solving both problems. For more
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ideas on observers: [5] is an exhaustive survey on sliding

mode based observer designs for AC machines; a more basic

version of the observer proposed in this paper can be found

in [6], [7].

II. MATHEMATICAL MODELS

A. Induction machine

From [4], [6],

i̇α = βηλα + βωλβ − γiα +
1

σLS
uα

i̇β = βηλβ − βωλα − γiβ +
1

σLS
uβ

λ̇α = −ηλα − ωλβ + ηLM iα (1)

λ̇β = −ηλβ + ωλα + ηLM iβ

ω̇ =
PLM

JLR
(λαiβ − λβiα) −

TL

J

are the induction machine equations in the standard (α, β)
frame. The known entities in (1) are: the stator currents

[iα iβ ]T , the input stator voltages [uα uβ]T ; also known

are the positive constants: σ = 1 −
L2

M

LSLR
, β = LM

σLSLR
,

and γ =
RS+(L2

M /L2

R)RR

σLS
. The unknowns, which need to be

estimated, are: the rotor fluxes [λα λβ ]T , the electrical rotor

angle velocity ω, and the positive constant η = RR

LR
. LS, LR

are the stator and rotor inductances, RS , RR are the stator

and rotor resistances, and LM is the mutual inductance; on

the mechanical side, J is the known rotor inertia and TL is

a constant and known load torque. Although γ depends on

time-varying RR, it is assumed to be constant with a chosen

nominal RR.

B. Adaptive Observer

In keeping with the problem statement mentioned before,

the unknowns have to be estimated. Consider the first 4

equations of (1) - the electrical equations. The observer

model is selected as

˙̂iα = βη̂λ̂α + βω̂λ̂β − γiα +
1

σLS
uα − βλ̂αµ

˙̂iβ = βη̂λ̂β − βω̂λ̂α − γiβ +
1

σLS
uβ − βλ̂βµ

˙̂
λα = −η̂λ̂α − ω̂λ̂β + η̂LM iα + Cλ̂βµ (2)

˙̂
λβ = −η̂λ̂β + ω̂λ̂α + η̂LM iβ − Cλ̂αµ

where îα,β and λ̂α,β are current and flux estimates; η̂ and

ω̂ are rotor resistance and speed estimates; µ and C form

the observer input which is to be selected. In order to justify

the choice of the observer model, the problem should be

described in some detail.
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III. PROBLEM STATEMENT

The conventional control problem concerning induction

machines is that of position or speed control. In this paper,

only speed control will be considered with the induction

machine acting as a motor; the position control problem can

be similarly tackled, but with the use of a position sensor.

From the mechanical equation in (1)

ω̇ =
PLM

JLR
Tu −

TL

J
(3)

Tu = (λαiβ − λβiα)

the speed ω can be controlled using the motor output torque

Tu as control. The desired control torque can be provided by

assigning appropriate values to the stator currents and rotor

fluxes using the input stator voltages, which are, in fact, the

real control inputs.

It is clear from (3), that λα,β should be known to

achieve desired Tu. The observer model (2) can provide

this information accurately only if the estimates η̂ and ω̂ are

correct. Hence, the observer should be equipped to estimate

parameters as well. The following sections are devoted to

showing the convergence of the estimates to the true values.

IV. OBSERVER ANALYSIS

The estimation of currents in (2) might appear to be a

redundant feature. Since the fluxes depend on the known

currents, they may be calculated using a combination of

integration techniques and parameter update laws to estimate

ω and η. But, integration without the knowledge of initial

fluxes leads to errors in the form of dc drift. Moreover, open-

loop techniques which need some knowledge of parameters

suffer from lack of robustness in case of parameter varia-

tions. Hence, a full-order observer with discontinuous inputs

designed from principles of sliding mode control theory is

used.

A. Current Estimate Errors

Define the estimate errors: ĩα,β = îα,β − iα,β, λ̃α,β =

λ̂α,β − λα,β , η̃ = η̂ − η, ω̃ = ω̂ − ω. From (1) and (2), the

error dynamics are

˙̃iα = βη̃λ̂α + βηλ̃α + βω̂λ̂β − βωλβ − βλ̂αµ

˙̃iβ = βη̃λ̂β + βηλ̃β − βω̂λ̂α + βωλα − βλ̂βµ (4)

˙̃λα = −η̃λ̂α − ηλ̃α − ω̂λ̂β + ωλβ + η̃Lmiα + Cλ̂βµ

˙̃λβ = −η̃λ̂β − ηλ̃β + ω̂λ̂α − ωλα + η̃Lmiβ − Cλ̂αµ (5)

The principles of sliding mode control theory will be

implemented to drive the estimate errors to zero. This re-

quires the definition of a switching surface and a control

that undergoes discontinuities on this surface [1]. So, define

the surfaces

s1 = ĩβλ̂α − ĩαλ̂β

s2 = ĩαλ̂α + ĩβλ̂β (6)

and from [1], the derivative of s1,2 needs to be calculated to

choose discontinuous control. From (2), (4)

ṡ1 = βη(λ̂αλ̃β − λ̃αλ̂β) − β(ω̂(λ̂2
α + λ̂2

β))

+ βω(λ̂αλα + λ̂βλβ) − η̂(s1 + LM (iβ ĩα − iαĩβ))

+ (Cµ − ω̂)s2

ṡ2 = β(λ̂2
α + λ̂2

β)(η̃ − µ) + βη(λ̂αλ̃α + λ̂β λ̃β)

+ βω(λαλ̂β − λ̂αλβ) − η̂(s2 + LM (iαĩα + iβ ĩβ))

+ (ω̂ − Cµ)s1

(7)

By choosing ω̂ = ω0sign(s1) and µ = µ0sign(s2), sliding

mode can be enforced on the intersection of the surfaces s 1,2,

so

s1,2 → 0

ṡ1,2 → 0 (8)

Proof of existence of sliding mode and method of selection

of control magnitudes ω0 and µ0 can be found in [1]. With

the occurrence of sliding mode

ĩα,β → 0 (9)

B. Flux Estimate Errors

The flux error equations (5) become the sliding mode

equations after substitution of the so-called equivalent control

[1]. This reduction in system order (the error dynamics (4),

(5) form a 4th order system) - equal to the order of the

switching surface vector - which sliding mode theory offers,

makes feedback analysis relatively easier. Thus, the stability

and convergence properties of (5) alone should be analysed.

Hence, equivalent control - the solution to ṡ1,2 = 0 - should

be found. From (7), (8), (9)

ω̂eq =
ω(λ̂αλα + λ̂βλβ)

λ̂2
+

η(λ̂αλ̃β − λ̃αλ̂β)

λ̂2

µeq = η̃ +
ω(λαλ̂β − λ̂αλβ)

λ̂2
+

η(λ̂αλ̃α + λ̂β λ̃β)

λ̂2
(10)

where λ̂2 = λ̂2
α + λ̂2

β . From [1], the continuous equivalent

control can be found as the output of a low pass filter whose

input is the actual discontinuous control, thus, ω̂eq and µeq

are available. The filtering process needs to be performed as

the right-hand sides of (10) contain unknown entities such

as η, λα,β and so ω̂eq, µeq cannot be directly calculated.

To simplify matters, define new error variables

e1 = λ̂αλ̃α + λ̂β λ̃β

e2 = λ̂αλ̃β − λ̃αλ̂β (11)

and find their derivatives

ė1 = −η̃λ̂2 − 2ηe1 − η̃e1 + (ω̂eq − Cµeq − ω)e2

+ LM (η̃(iαλ̂α + iβ λ̂β) + η̂(iαλ̃α + iβ λ̃β))

ė2 = −2ηe2 − η̃e2 − (ω̂eq − Cµeq − ω)(e1 − λ̂2)

+ LM (η̃(iβ λ̂α − iαλ̂β) + η̂(iαλ̃β − iβ λ̃α))
(12)

1948



using (λ̂αλα + λβ λ̂β) = (λ̂2 − e1) and (λ̂αλβ − λαλ̂β) =
−e2.

Introduce the transforms

id = (λ̂αiα + λ̂βiβ)/λ̂

iq = (λ̂αiβ − λ̂βiα)/λ̂ λ̂ = (λ̂2
α + λ̂2

β)0.5 (13)

which are actually similar to the current vectors in the (d, q)
frame [4]. By solving the pair of simultaneous equations (11)

and (13), for iα,β and λ̃α,β , (12) becomes

ė1 = −η̃λ̂2 − 2ηe1 − η̃e1 + (ω̂eq − Cµeq − ω)e2

+ LM η̃λ̂id +
LM η̂

λ̂
(ide1 + iqe2)

ė2 = −2ηe2 − η̃e2 − (ω̂eq − Cµeq − ω)(e1 − λ̂2)

+ LM η̃λ̂iq +
LM η̂

λ̂
(ide2 − iqe1)

(14)

Before continuing the analysis of (14), which requires

controller design for the assignment of iq and id, some

discussion on the adaptive capacity of the observer is in

order.

C. Rotor Resistance Estimation

For the moment, assume that the errors e1,2 → 0, then

from (10), the equivalent controls ω̂eq → ω and µeq → η̃.

Using this result and that η = η̂ − µeq , the rotor resistance

RR = LR ∗ η̂ can be found. But, this means that the initial

estimate of η̂ should be very close to the true η, which is

unknown. Moreover, η varies with the motor temperature, so

a static calculation definitely leads to an error in parameter

estimation. Therefore, a dynamic law should be used so that

the estimate converges to the true value. Proposition: the law

˙̂η = −γµeq (15)

in tandem with the observer and where the gain γ > 0 will

ensure parameter convergence. The proof is quite simple.

Indeed, if η varies very slowly in time, ˙̂η = ˙̃η. Hence, from

(15)
˙̃η = −γη̃ (16)

and for γ > 0, η̂ → η. However, for (16) to be true, that

e1,2 → 0 is still to be proved and this is the subject of the

next section.

V. CONTROLLER-OBSERVER SYSTEM

A. Controller Design

In (14), some knowledge about the variables i q, id is

required. This knowledge can be gained from the very idea

of the FOC technique, which involves controlling these exact

variables. Hence, to prove the convergence of the observer

errors, the joint controller-observer system must be studied.

The FOC technique has proved to be a very convenient

method to control an induction machine. It involves trans-

forming the machine variables in the stationary (α, β) frame

to the (d, q) frame making them rotate with the rotor flux

variables (λα,β). From [4], the motor equations in the (d, q)
frame are

i̇q = −γiq − ωid − βωλd − ηLM
idiq
λd

+
1

σLS
uq

i̇d = −γid + ωiq + βωλd + ηLM

i2q
λd

+
1

σLS
ud (17)

λ̇d = −ηλd + ηLM id

Tu = λdiq

As mentioned in the problem statement, the control prob-

lem in the (d, q) frame becomes that of making the state

variables iq, λd achieve desired values. In the present

scenario, these state variables can be evaluated from the

rotor flux estimates λα,β , hence control can be designed. (For

convenience, the ’hat’ superscript is dropped, it is assumed

that the flux estimates are used). Again, based on sliding

mode control theory, define the surfaces

sq = i∗q − iq

sd = λ∗d − λd (18)

which are the errors between the desired and current values;

for simplicity, let i∗q, λ∗d be constants.

By choosing uq = Mqsign(sq) with appropriate Mq,

sliding mode is enforced on the surface sq and iq → i∗q . To

enforce sliding mode on the surface sd, the Block-control

principle [1] is used. The state id is chosen as a fictitious

control and its desired value is given by

ṡd = −λ̇d = −ηλd + ηLM ideq = 0 thus

ideq = λ∗d/LM (19)

To use the true control ud, define the new surface

s = ideq − id (20)

and with ud = Msign(s), sliding mode can be enforced by

choosing M properly. Thus, id → λ∗d/LM and λd → λ∗d.

B. Closed-loop Behaviour

With the results of control implementation, the system (14)

in the closed-loop is

ė1 = −ηe1 + (F1 + F2)e2

ė2 = −ηe2 − (F1 + F2)e1 + F1λ̂
2 + F3η̃ (21)

˙̃η = −γη̃ −
γη

λ̂2
e1 −

γω

λ̂2
e2

where F1 = (ω̂eq − Cµeq − ω), F2 = (LM η̂i∗q)/λ̂, and

F3 = LM i∗q/λ̂.

By selecting a very high γ > 0, from singular perturbation

theory,

η̃ =
1

λ̂2
(−ηe1 − ωe2)

will be true. As a result of this, and from (10),

F1 =
1

λ̂2
(−ωe1 + ηe2)

1949



Finally, from the above two results, (21) becomes

ė1 = −ηe1 + A1e2

ė2 = −(A1 + δ1)e1 − δ2e2 A1 = (F1 + F2) (22)

where δ1 =
LMηi∗q

λ̂d

+ω, δ2 =
LM ηi∗qω

λ̂d

, and A1 = f(η, ω); the

stability of which can be proved by choosing the Lyapunov

function

V = 0.5(αe2
1 + βe2

2) α, β > 0

and evaluating its derivative

V̇ = −αηe2
1 + (αA1 − β(A1 + δ1))e1e2 − βδ2e

2
2

In the above equation, η > 0 and δ2 = (LMηi∗qω)/λ̂d =

(LMηTω)/λ̂d
2
, where T is the output torque. Tω is the

expression for power and as the induction machine has been

assumed to act as a motor, the power output is always

positive for ω �= 0, which means δ2 > 0 when the rotor

is in motion. Hence, α and β can be selected so that V̇ < 0;

and from (11), (21), λ̃α,β , η̃ → 0.

A common and valid objection that can be raised to the

above result is that the induction machine need not act

as a motor at all times. If the motor is to operate in the

braking mode, then sign(i∗q) = −sign(ω) [8] and indeed

the closed-loop equations (22) become unstable. A simple

solution can be offered: switch off the adaptation process

and use the latest value of η̂ to continue with the estimation

of the flux and speed even during braking. This solution

is not very restrictive as during braking, the emphasis is

more on stopping the motor than on its speed control. The

regenerative mode is not considered in this paper, as it is

beyond its scope and would require analysis with the motor

hardware [9].

To analyse stability in this case, assume that at the moment

braking begins, η̃ = 0. The stability analysis is now similar

to the one offered in [7]. Only a brief description of this

analysis is provided here. On substituting ω̂eq and µeq from

(10) and linearizing the dynamics of e1,2 about e∗1,2 = 0, the

linear system of equations

ė1 = −ηe1 + F2e2

ė2 = −(F2 + ω̂eq + Cη)e1 − Cω̂eqe2, F2 = (LM η̂i∗q)/λ̂
(23)

result which are stable for a high value of C and such that

sign(C) = sign(ω̂eq). The parameter C can be chosen to

satisfy this sign constraint as ω̂eq is available. Thus the

observer can be used to estimate the unknown electrical

quantities in all operating modes and in the motoring mode,

the time-varying rotor resistance can be estimated as well.

VI. SIMULATION RESULTS

A speed control algorithm with the proposed observer

was simulated for an induction motor having the following

constants [10]: LS = LR = 0.47H, LM = 0.44H; RS = 8Ω
and a nominal value of the rotor resistance RR = 3.6Ω
(η = (RR/LR) = 7.7); P = 2; and J = 0.05Nms2. The

desired flux and speed values were 1.5Wb and 100rad/s

respectively. The constant load torque TL = 5Nm was

applied.

To use the FOC technique to control speed and flux, i∗q
and i∗d - the desired values - should be calculated (the latter

is given by 19). To calculate i∗q: Assuming a constant and

known load torque, from (3)

i∗q =
1

Kλ∗d

(

TL

J
+ α(ω∗ − ω)

)

(24)

where K = (PLM )/(JLR); λ∗d and ω∗ are reference flux

and speed values respectively; and constant α > 0 which

decides the rate of convergence of ω → ω ∗. The sliding

mode controller design procedure that was described in the

previous section is followed to obtain the currents i∗q,d, the

results of the simulation are shown in Figures 1 to 2. Fig.1

shows the errors between the actual and estimated iq and λd

respectively while Fig.2 shows the convergence of the actual

(unmeasured) speed to the reference speed profile and the

adaptively estimated η̂ to the actual η.

The equivalent controls µeq and ω̂eq were extracted as the

output of a filter with a cut-off frequency of 200Hz and 40Hz

respectively. As the filtered component µeq �= 0, there is no

need of an external signal having the persistency of excitation

property for adaptation, even at standstill. The estimation

yields the exact value for η̂ at constant speed.

The simulation was performed using the simple Euler

scheme with a step-size of 0.1msec. This is equivalent to

implementing a switching frequency of 10kHz, which can

easily be achieved by today’s inverter designs that can also

provide a voltage output with minimum ripple. In fact, since

the observer is completely implemented in the computer, a

much lower step-size can be used to accurately determine its

output as near ideal sliding mode can be enforced.
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Fig. 1. Flux and Current Estimate Errors
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