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École Polytechnique Fédérale de Lausanne, Switzerland

Abstract—This paper presents a convenient way to invert
the classical Preisach model to compensate the hysteresis of
a piezoelectric stack actuator in real-time. The advantage of
the proposed method lies the possibility to track a stochastic
signal and compensate the hysteresis in real-time. Experimental
results show a reduction of the RMS tracking error by 67% to
90% by using the compensation algorithm designed.

I. INTRODUCTION
Piezoelectric actuators are nowadays widely used in

nanometer-accuracy positioning systems and are appreci-
ated for their high precision, stiffness, and fast response.
Nevertheless, the hysteresis of these actuators remains a
major limitation to their precision. Such a degradation of
the performance cannot be tolerated in applications such
as atomic-force microscopes [12], or high-accuracy optical
systems.
In the context of the conception of a new optical

Differential-Delay Line for the Very Large Telescope In-
terferometer (VLTI) at the European Southern Observatory
(ESO) facility in Chile, a dual-stage system has been de-
signed [14]. The fine stage of this system is composed
of a piezoelectric-stack actuator that compensates both for
atmospheric disturbances and for the positioning errors of
the coarse stage. The coarse stage is controlled by a stepper
motor. So as to improve the bandwidth and the precision of
the system, a feed-forward loop containing an inverse model
of the hysteresis can be added to the controller of the fine
stage.
Different methods have been proposed to model the hys-

teresis appearing in piezoelectric actuators, but the most
popular one remains the classical Preisach model. It has
been adapted using electromagnetism theory by Ge and
Jouaneh [2]. Some improvements of this method have also
been proposed, such as the generalized Preisach model,
which relaxes the congruency property [4]. However Hu and
Ben Mrad showed that the congruency property is already
satisfied whenever either no load or a constant load is applied
to the actuator [10]. Moreover, it is possible to add a neural
network to facilitate the on-line implementation of the model
[6].
Ge and Jouaneh developed a compensation method based

on the Preisach model [3]. However, this method is not
suitable for a real-time compensation of a stochastic signal
as it is required for the above setup in Chile. In addition, in
the case of the atmospheric disturbances, no information is
given at the beginning of the compensation about the future
piezo expansion. Since very few studies have investigated

such a problem [11], a method in order to invert the classical
Preisach model is proposed in this paper and validated on
a piezoelectric stack actuator. First, the classical Preisach
model is described, implemented, and validated through dif-
ferent simulations. The model is then inverted and validated
boths in simulation and on the real system for different input
signals. Experimental results show a reduction of the RMS
tracking error by 67% to 90% whenever the compensation
algorithm is added using open-loop control.

II. CLASSICAL PREISACH MODEL
The basic idea of the Preisach model lies in the description

of the hysteresis through an infinite number of operators
γαβ [u(t)] (Fig. 1a). For piezoelectric actuators, γαβ [u(t)] is
set to +1 if the input u(t) exceeds the switching value α or
to 0 if the input u(t) is below the switching value β. The
operators are multiplied by a weighting function µ(α, β) and
connected in parallel (Fig. 1b). Such a representation takes
into account the fact that the hysteresis is a nonlinearity
with nonlocal memory effect, which means that the current
displacement of the actuator, namely x(t), depends upon
the history of the input voltage u(t). The classical Preisach
model can then be mathematically written as:

x(t) =
∫∫

α>β

µ(α, β)γαβ [u(t)] dα dβ (1)

This equation can be interpreted thanks to a limiting
triangle T0, also called α− β diagram. It is defined in such
a way that umax ≥ α ≥ β ≥ umin, where umax and
umin are the limiting values of the input voltage u(t). The
surface S+, which corresponds to the operators γαβ [u(t)]
set to +1, grows from bottom to top when the hysteresis
is in an ascending loop and decreases from right to left in
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Fig. 1. (a) Hysteresis operator γαβ [u(t)]. (b) Block diagram of the Preisach
model.
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Fig. 2. Limiting triangle T0 for (a) an ascending loop and (b) a descending
loop.
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Fig. 3. (a) Expansion of the actuator for a input voltage increasing until
α′ and then decreasing until β′. (b) Limiting triangle T0 related to (a).

a descending loop (Fig. 2). Since the operator γαβ [u(t)] is
equal to 0 out of the surface S+, Equation (1) can be written
as:

x(t) =
∫∫

S+

µ(α, β) dα dβ (2)

So as to both simplify the calculation and suppress the
double integration, the Preisach function is defined as fol-
lows:

X(α′, β′) = xα′ − xα′β′ (3)

where xα′ is the piezoelectric expansion on the major
ascending branch for an input voltage α ′, and xα′β′ is the
piezoelectric expansion on the first order reversal curve for
an input voltage β ′ (Fig. 3). α′ and β′ represent the maxima,
resp. the minima, of the input voltage u(t). Figure 3b shows
that Equation (3) can also be written as:

X(α′, β′) =
∫∫

T1

µ(α, β) dα dβ (4)

If the hysteresis loop contains several extrema, the surface
S+ is composed of several trapezoidal regions Sk (Fig. 4).
All the extrema α′

k and β′
k that depend on the past values

of the input voltage u(t) are stored in the history. For the
region S1, the following equation is deduced:

∫∫

S1

µ(α, β) dα dβ = X(α′
1, β

′
0) − X(α′

1, β
′
1) (5)

The other regions are calculated in the same way. Because
the integration on the surface S+ is the sum of the integra-
tions on all the surfaces Sk, the total piezoelectric expansion
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Fig. 4. (a) Hysteresis loop with several extrema α′ and β′. (b) Limiting
triangle T0 related to (a).

x(t) for an input voltage u(t) is determined thanks to (2),
depending on the current slope of u(t):

u̇(t) > 0

x(t) =
N∑

k=1

[X(α′
k, β′

k−1) − X(α′
k, β′

k)]

+X(u(t), β′
N) (6)

u̇(t) < 0

x(t) =
N−1∑

k=1

[X(α′
k, β′

k−1) − X(α′
k, β′

k)]

+X(α′
N , β′

N−1) − X(α′
N , u(t)) (7)

where N is the number of maxima α ′
k and minima β ′

k that
are stored.
So as to compute the values X(α′, β′), a mesh of α and

β is created within T0. The reference values X(α, β) are
measured on the piezoelectric actuator for all α and β of the
mesh and stored at each corresponding node (Fig. 5). Once
the cell in which a given pair (α′,β′) lies is determined, the
corresponding value X(α′

i, β
′
j) is computed using a bilinear-

spline interpolation:

X(α′, β′) = a00 + a10α
′ + a01β

′ + a11α
′β′ (8)
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Fig. 5. Division of the limiting triangle T0 into a finite number of rectangles
and triangles.
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For everyX(α′, β′), the interpolation coefficients a00, a10,
a01 and a11, are obtained through the same spline interpo-
lation based on the values of the nodes surrounding the cell
X(αi, βj), X(αi, βj+1), X(αi+1, βj) and X(αi+1, βj+1)
(Fig. 5). The expansion is determined using either (6) or
(7).
To work properly, the Preisach model still needs an

additional property, namely the wipe-out property. It allows
to erase the pair (α′

N , β′
N−1) from the history once u(t)

exceeds α′
N . Similarly, the pair (α′

N , β′
N ) can be erased from

the history once u(t) becomes smaller than β ′
N . This avoids

the excessive growing of the stored values.

III. INVERSE PREISACH MODEL
So as to compensate the hysteresis of the actuator, the

Preisach model has to be inverted. In other words, the voltage
u(t) that produces the desired expansion x(t) must be deter-
mined, based on the model. This inversion is complicated by
the fact that the hysteresis is a nonlinearity with a nonlocal
memory. We propose a novel approach to solve this inversion
problem. This is achieved by modifying Equations (6) and
(7) so as to express the voltage u(t) as a function of the
desired expansion x(t). The history of the hysteresis must
however be carefully taken into account. The cases of either
ascending or descending branches are treated separately.

• u̇(t) > 0

If t0 is defined as the time at which the input voltage
reaches a local minimum, the expansion is:

x(t0) =
N∑

k=1

[X(α′
k, β′

k−1) − X(α′
k, β′

k)] (9)

where all values X(α′
k, β′

k−1) and X(α′
k, β′

k) are already
stored in the history. As the voltage grows, the expansion is
obtained with (6). Combining this result together with (9),
the following relation holds:

X(u(t), β′
N) = x(t) − x(t0) (10)

Equations (8) and (10) lead to the voltage

u(t) =
x(t) − x(t0) − a01β′

N − a00

a10 + a11β′
N

(11)

The only remaining problem is that the interpolation
coefficients, a00, a10, a01 and a11, depend on the cell which
contains the value X(u(t), β ′

N ). Nevertheless, it can be
solved by reasoning in the α − β diagram, as illustrated in
Fig. 6. When the voltage is at his local minimum, the value
X(u(t), β′

N) is located on the straight line α = β and is
equal to zero. As the voltage grows, the point that contains
X(u(t), β′

N) moves up on the vertical line β = β ′
N . By

calculating the values X(α, β ′
N ) that lies at the intersection

of the line β = β ′
N with the horizontal lines of the mesh,

the cell which should contain the value X(u(t), β ′
N ) can be

determined. As the interpolation coefficients are known for
each cell, the voltage u(t) is the only remaining unknown
value and is obtained thanks to (11).
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Fig. 6. Inverse Preisach model principle when u̇(t) > 0.

• u̇(t) < 0

The case of a descending branch is quite similar to the
one treated above. t0 is now the time when the input voltage
is at a local maximum and the expansion is calculated as
follows:

x(t0) =
N∑

k=1

[X(α′
k, β′

k−1) − X(α′
k, β′

k)]

+X(α′
N , β′

N−1) (12)

As the voltage decreases, the expansion is obtained with
(7) and the following relation can then be deduced:

X(α′
N , u(t)) = x(t0) − x(t) (13)

Equations (8) and (13) are then combined to find the
needed voltage:

u(t) =
x(t0) − x(t) − a10α′

N − a00

a01 + a11α′
N

(14)

As for the ascending case, the value X(α′
N , u(t)) is

initially located on the straight line α = β and is equal to
zero (Fig. 7). However the point that contains X(α ′

N , u(t))
moves to the left on the line α = α′

N . The corresponding
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Fig. 7. Inverse Preisach model principle when u̇(t) < 0.
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cell is found thanks to the values X(α′
N , β) that lie at the

intersections of the line α = α′
N with the vertical lines of the

mesh. Equation (14) can finally be used to find the voltage
u(t).
At each time step, the previous voltage u(t) and expansion

x(t) are stored. The extrema α′ and β′ are defined when
the difference between the current and the previous value of
x(t) changes its sign. As for the classical Preisach model,
the wipe-out property can be used to simplify the storage of
the extrema.

IV. RESULTS
A. Experimental setup and procedure
The piezoelectric stack actuator S-325 from PI is used to

realize all the tests for a stroke between 0 and 30 µm and an
input voltage of 0 to 100V. A VME industrial rack controls
the input voltage of the actuator and the power is supplied by
an amplifier E-505 from PI. A laser interferometer (Agilent
10897B) with 1.25 nm resolution is used to measure the
displacement of the actuator which is provided to the VME
rack. The measurement and control signal have both a
sampling rate of 8 kHz.
To identify the Preisach model, the expansion of the actu-

ator, xα, is measured for a 1 Hz sinusoidal-input voltage of
30 different amplitude values, corresponding to 30 maxima
α (Fig. 8). The expansion for 150 values β are then taken on
the descending branch for the larger amplitude, 145 for the
second larger and so on until 5 are left for the smaller one.
Thanks to these measurements, all the Preisach functions
X(α, β) can be calculated with (3) and stored in a 31x151
triangular matrix. The interpolation coefficients a ij can also
be calculated offline with (8) and saved in four 30x150
matrix. This allows minimizing the number of operations
that have to be calculated in real-time. The values α ′, β′

and X(α′, β′) are saved in the history as static vectors. A
variable k points on those vectors and allows to simply add
new values to the history without any dynamical vectors.
The wipe-out property, which consists in erasing a pair (α ′,
β′) and its corresponding value X(α ′, β′), is then performed
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Fig. 8. Hysteresis loops used to identify the Preisach model of the
piezoelectric actuator. The voltage is the one before the amplifier.

by decrementing the variable k. At each time step, the
position of each value α′ and β′ in the limiting triangle T0

is determined by comparing them with the reference values
α and β. As the interpolation coefficients aij are stored in
the history, Equations (6) to (8), for the hysteresis modeling,
and (9) to (14), for its compensation, do not require a large
amount of computing power.

B. Simulation results
First of all, the model created is compared to the measures

collected on the system to be validated. Fig. 9 and 10
illustrate how well the model fits the system for a sinusoidal
input signal of 1 Hz. The modeling error is approximately
equal to 75 nm rms. The maximum error is about 150 nm,
which is only 1.1% of the total stroke.
The model validated is then inverted with the method

developed in Section III and validated in simulation. The
compensation algorithm is placed before the model and a
stochastic signal is used as an input to this system. The
stochastic signal, whose frequency content lies between 0
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Fig. 9. Measured (continuous line) and simulated (dashed line) actuator
displacement for a 1 Hz sinusoidal input voltage with an amplitude of 15
V. The signals perfectly match.
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Fig. 10. Modeling error for a 1 Hz sinusoidal input voltage.

2942



0 0.5 1 1.5 2 2.5 3 3.5 411

12

13

14

15

16

17

18

19

0.45 0.455 0.46 0.465 0.47 0.475 0.48 0.485 0.49 0.495 0.5

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

16

time [s]

di
sp
la
ce
m
en
t[

µ
m
]

Fig. 11. Simulated actuator displacement (continuous line) for a stochastic
reference (dashed line).
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Fig. 12. Simulated tracking error for a stochastic reference.

and 200 Hz, is chosen so as to significantly represent the
perturbations that the system will have to compensate. Fig-
ures 11 and 12 show the manner in which the output perfectly
follows the input, with a delay of only one sampling time.
Because the model is static and does not take into account
the dynamics of the piezoelectric actuator, the real system
will undoubtedly have a small additional delay. Moreover,
since the compensation algorithm is directly deduced from
the model, the same errors will appear and counterbalance
each other. Nevertheless, this simulation shows that the com-
pensation algorithm is not only applicable for a sinusoidal
input, but also for dealing with input signals that have a slope
with constantly changing sign.

C. Experimentation results

The compensation algorithm is finally validated on the real
system with different input signals. All the experimentations
are realized in open loop. Comparisons are done between
the system controlled with and without the compensation of
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Fig. 13. Open-looped tracking of a 1 Hz sinusoidal reference (dotted line)
with and without the compensation algorithm (continuous and dashed line).
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Fig. 14. Tracking error for a 1 Hz sinusoidal reference with and without
the compensation algorithm (continuous and dashed line).

the hysteresis. For a low frequency input signal, Figures 13
and 14 show a large improvement by using the compensation
algorithm. The error decreases from 902 nm rms to approx-
imatively 79 nm rms. The maximum error is about 150 nm,
which is only 1.1% of the total stroke. By comparing this
result with the one obtained during the modeling procedure
(Fig. 10), it can be seen that the errors are quite similar in
both cases. This shows that the major part of the error comes
from the modeling and not from the inversion. With input
signals of higher frequency, the sampling period necessary
for the inversion involves a higher error, which is also
increased by the dynamics of the piezoelectric actuator.
Nevertheless, the compensation algorithm still provides far
better results than a simple open-loop control. In fact, the
delay due to the dynamics of the actuator stays unchanged,
but the amplitude of the piezoelectric expansion is corrected.
Tests have been carried out over the full 100 Hz bandwidth.
The response to a stochastic signal plotted in Figure 15

also shows a great improvement obtained by the addition of
the compensation algorithm. An error of 44 nm rms can be
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Fig. 15. Open-looped tracking of a stochastic signal (dotted line) with and
without the compensation algorithm (continuous and dashed line).
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Fig. 16. Tracking error for a stochastic reference with and without the
compensation algorithm (continuous and dashed line).

seen in Figure 16 instead of 134 nm rms for a simple open-
loop control, that means a diminution of approximatively
67%. The maximum error is about 120 nm, which is 6% of
the maximal stroke of 2 µm. In fact the results are promising
even if the stochastic signal contains high frequencies that
cannot be represented optimally with the model built at low
frequency. However, as the amplitude of the input signal
diminishes, the dynamics of the piezoelectric are less visible
than with a high-amplitude sinusoidal signal. As the effect of
the hysteresis slowly decreases with an increasing frequency
[5], a dynamic model could be implemented to improve
the performances [6]. Since both the signal is stochastic
and the future values are unknown, the determination of the
frequency or of the current slope can however be particularly
tricky.

V. CONCLUSION
This paper presents the Preisach model of hysteresis and

a novel method to invert it to realize a tracking control of
a piezoelectric stack actuator. The first tests in simulation
show that the proposed method allows tracking input signals
that have a slope whose sign is changing constantly (see Fig.
11 and 12). The experimentations realized on the real system
show good agreement between the desired and measured sig-
nals. For a 1 Hz sinusoidal reference, the error decreases of
approximatively 90% compared to an open-loop control and
represents only 1.1% of the total stroke of the actuator (see
Fig. 13 and 14). Good performances are also obtained for a
stochastic signal of frequency content comprised between 0
and 200 [Hz]. In this case, Fig. 15 and 16 show a diminution
of the tracking error of about 67%, with a maximal error that
represents 6% of the stroke of the actuator.
The proposed algorithm can be integrated in a feed-

forward loop to improve the system performance. Future
work could take into account the dynamics of the actuator
so as to both improve the Preisach model and increase the
tracking precision.
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