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Abstract— This paper is devoted to the analysis of output
performances for linear systems with state/output constraints.
Analysis methods are obtained by incorporating the structures
of outputs and state constraints into non-quadratic Lyapunov
functions. Output ranges and overshoots are estimated for given
sets of initial conditions and bounded inputs. Attempts are
also made to detect a large invariant set within state/output
constraints. Numerical examples demonstrate the effectiveness
of the non-quadratic Lyapunov functions and the proposed
methods. In particular, it is shown that, even for linear time
invariant systems, the output bound can be sharpened by using
a simple non-quadratic Lyapunov function that incorporates
the structure of the output.
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I. INTRODUCTION

Every physical quantity is subject to a certain constraint. In

many situations, the violation of the constraints may cause

severe damages or destroy a device. Thus it is important

to have a clear understanding of the range of the key

quantities during the operation of the device under various

circumstances. Consider a dynamical system described by

the following equations:

ẋ = f(x,w, t), y = h(x,w), (1)

where x is the state, y the output representing some key

quantities, and w the external input or disturbance. Assume

internal stability of the system in the absence of disturbance

(i.e., w = 0). Suppose that the initial condition x(0) belongs

to a set X0 and the external input w(t) belongs to a set W
for all t. Our main concern is to determine the range of the

output y during the operation of the system under all possible

initial conditions and external input. Another related issue is

to find a safety set of initial conditions and input range so

that certain output constraints will not be violated.

For the system (1) under fixed initial condition and input,

the range of output can be easily obtained via simulation

if the model is exactly known and accurate. However, for

practical systems which usually have uncertain models, un-

certain time-varying parameters, uncertain external inputs,

and/or variable initial conditions, it is quite insufficient to

use simulation to determine a range for the outputs.

Practical ways to estimate the range of state and output

in the presence of model and input uncertainties are given

in [2], where quadratic Lyapunov functions and invariant
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ellipsoids are used as major tools for various analysis and

design problems. In [5], invariant polytopes are used to

deal with state and input constraints. Although quadratic

Lyapunov functions may lead to conservative results, they

are still popular in practice since they may yield optimization

problems with linear matrix inequality (LMI) constraints

which are easily tractable.

In recent years, efforts have been made towards the de-

velopment of non-quadratic Lyapunov functions to improve

stability and performance analysis (see e.g.,[1], [3], [4], [6],

[8], [10], [11], [12], [14], [15]). Most of the Lyapunov func-

tions in these works pertain to or are composed from several

quadratic functions and thus lead to optimization problems

with matrix inequality constraints, generally a mixture of

LMIs and bilinear matrix inequalities (BMIs). Although the

optimization problems are generally non-convex, suboptimal

solutions can be obtained with LMI-based algorithms.

In this paper, we will consider Lyapunov functions that

are constructed by using the structures of the output and the

structures of the state/output constraints. They are similar

to the max of quadratics used in [4], [10], but are easier

to handle numerically, since they effectively incorporate the

structure of the output and constraints. The algorithms are

a little more complicated than those arising from quadratic

functions but the improvement is significant.

This paper is organized as follows. In Section II, we

use one example to demonstrate how the estimation of

output bound can be sharpened by using the structure of the

output in the construction of invariant sets. This motivates

the development of non-quadratic Lyapunov functions that

reflect the structure of the output and constraints. Section III

derives methods for the estimation of output bounds and

overshoots under a set of given initial conditions. Section IV

considers the problem of estimating output bound under a

set of norm-bounded persistent disturbances and Section V

derives methods for detecting a large safe operating range (an

invariant set) within state constraint. Section VI concludes

the paper.

Notation:

coS: The convex hull of a set S. For P ∈ R
n×n, P =

P T > 0, E(P ) := {x ∈ R
n : xTPx ≤ 1}. For a positive

definite function V , LV := {x ∈ R
n : V (x) ≤ 1}. For

H ∈ R
r×n, L(H) :=

{

x ∈ R
n : |Hℓx| ≤ 1, ℓ ∈ I[1, r]

}

,

where Hℓ is the ℓth row of H . About the relationship between

E(P ) and L(H), we have (e.g., see [7]),

E(P ) ⊆ L(H) ⇐⇒ HℓP
−1HT

ℓ ≤ 1 ∀ ℓ ∈ I[1, r]. (2)
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II. MOTIVATION AND PRELIMINARIES

This work arose from an attempt to improve the estimation

of the maximal output and the overshoot for linear time

invariant systems and linear differential inclusions. For a

linear system

ẋ = Ax, y = Cx, x(0) = x0, (3)

the output response y(t) = CeAtx0 can be readily computed

with simple Matlab functions. However, it is hard to extend

this method to the situation where there are time-varying

uncertainties in the matrix A and/or uncertainties in the initial

condition x(0).
A powerful tool to deal with time varying uncertainties and

nonlinearities is the Lyapunov function. Quadratic Lyapunov

functions are known to be conservative but still popular

because they are empowered by the numerically efficient

LMI technique. In [2] (page 88), the output bounds for linear

time invariant systems and linear differential inclusions are

estimated via LMIs under a unified framework. Here we

use the linear time invariant system (3) with a given initial

condition to illustrate the main idea.

Suppose that the output y is a scalar and C is a row

vector. An upper bound for the output response of (3) can

be estimated by solving the following generalized eigenvalue

problem (gevp):

infP>0 δ, (4)

s.t. ATP + PA ≤ 0, xT

0Px0 ≤ 1,

CTC ≤ δ2P.

The explanation is as follows. Let (P, δ) be a feasible

pair satisfying the constraints in (4). Then V (x) = xTPx
is a quadratic Lyapunov function whose 1-level set is the

ellipsoid

E(P ) = {x : xTPx ≤ 1}.

The LMI ATP + PA ≤ 0 ensures that E(P ) is an invariant

set. The area between the two planes Cx = ±δ is denoted

by the set

L(C/δ) = {x : |Cx| ≤ δ}.

The inequality CTC ≤ δ2P ensures that the ellipsoid E(P )
lies between the two planes Cx = ±δ, i.e.,

E(P ) ⊂ L(C/δ).

And the inequality xT

0Px0 ≤ 1 simply means that the initial

condition belongs to the invariant ellipsoid E(P ). Thus the

state x(t) will stay inside E(P ) ⊂ L(C/δ) for all t and we

have |y(t)| ≤ δ for all t > 0.

Is there any room for improvement? Consider an example

with

A =

[

0 1
−0.1 −1

]

, C =
[

1 0
]

, x0 =

[

0
1

]

. (5)

The minimal δ for (4) is δ∗ = 1.2252 and the optimal P ∗ is

P ∗ =

[

1.3753 0.7505
0.7505 1.5010

]

. (6)

The invariant ellipsoid E(P ∗) and the two straight lines

Cx = ±1.2252 are plotted in Fig. 1. The initial condition is

marked with “ ∗ ”. The trajectory starting from x0 is plotted
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Fig. 1. Invariant set clipped from an invariant ellipsoid.

with dashed curve. In an attempt to improve the estimation,

we observed that as the maximal output is reached, we must

have ẏ(t) = 0, i.e., Cẋ = CAx = 0. This means that the

maximal output can only be reached when x is in the straight

line CAx = 0 (a hyperplane for high-order systems). For

this particular example, CAx = 0 overlaps the horizontal

x1 axis. Above this line, CAx > 0, i.e., y(t) increases

(x(t) goes rightward); and below this line, y(t) decreases

(x(t) goes leftward). Let the intersections of the boundary

of the ellipsoid with CAx = 0 be G1 and G4. Here we

have G1 = (1.05, 0), G4 = (−1.05, 0). If we draw two

straight lines Cx = δ1 and Cx = −δ1 passing G1 and G4

respectively, then δ1 = 1.05. Let the other intersections of

the straight lines with the ellipsoid boundary be G2 and G3.

Then the line segment G1G2 is below CAx = 0, hence

for every point x in this segment, y decreases along the

trajectory, i.e., the vector Ax points to the left; Similarly, for

every point x in the segment G3G4, the vector Ax points to

the right. Since the ellipsoid is invariant, Ax points inward

of the ellipsoid along the boundary. Thus the intersection

of the ellipsoid E(P ∗) and the strip L(C/δ1) is also an

invariant set. Therefore all trajectories starting from within

this intersection E(P ∗) ∩ L(C/δ1) will stay in it and the

output will be restricted to |y(t)| ≤ δ1 = 1.05 < 1.2252 =
δ∗. This gives a smaller bound for the output response.

Suppose that the initial condition is outside of the inter-

section E(P ∗) ∩ L(C/δ1) but inside the ellipsoid. Since the

ellipsoid is invariant and the system is exponentially stable,

the trajectory will enter E(P ∗) ∩ L(C/δ1) before a local

maximum/minimum of y(t) is reached, and once entering

the intersection, it will stay there. This fact can be used to

estimate the overshoot for a system under a step input by

shifting the origin to the steady state.

This example shows that we can sharpen the estimation

of the output bound and overshoot simply by utilizing the

plane CAx = 0 (a straight line for second order systems),

or by using the planes Cx = ±δ to form part of the

boundary of an invariant set. The resulting invariant set is

a clipped ellipsoid. In this paper, we will develop methods

for sharpening the output bound or overshoot by optimizing

1093



such invariant set. The optimization problem will involve

LMIs and simple BMIs. For the above example, the output

bound can be further reduced to 0.9161. This is because the

optimized P for the new optimization problem is different

from P ∗ in (6). As we can see from Fig. 2, the new ellipsoid

E(P ) forms a much tighter bound for the same trajectory as

in Fig. 1 before it reaches the line CAx = 0, i.e., before the

output reaches the maximal value.
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Fig. 2. Clipped ellipsoid after optimization.

In this paper, we are going to use Lyapunov functions of

the form

V (x) = max{xTPix, i = 1, 2, · · · ,m},

where some of the Pi’s are CT

i Ci with Ci taken from the

output matrix. This type of functions are not everywhere

differentiable and we need to use directional derivative to

quantify the time derivative of V (x(t)) along a trajectory. A

general result about the directional derivative of this type of

functions can be found in [10].

For a function V (x), the one sided directional derivative is

defined ([13], page 213) with respect to two variables: x and

a vector ζ specifying the direction of motion. In particular,

the one-sided directional derivative of V , at x along ζ is

defined as

V̇ (x; ζ) := lim
∆t→0,∆t>0

V (x + ζ∆t) − V (x)

∆t
.

For x ∈ R
n, let

Imax(x) := {i : xTPix = V (x)} = {i : xTPix ≥ xTPjx ∀j}.

Then by [10], the directional derivative of V at x along ζ is

V̇ (x; ζ) = max{2xTPiζ : i ∈ Imax(x)}. (7)

III. OUTPUT BOUND AND OVERSHOOT

A. Output bound for given set of initial conditions

1) Linear time-invariant systems: We first consider the

linear system

ẋ = Ax, y = Cx, (8)

where x ∈ R
n and y ∈ R. For systems with multiple outputs,

each output can be examined individually. With a positive

definite matrix P ∈ R
n×n, a Lyapunov function V (x) and

its 1-level set are defined as follows,

V (x) := max{xTPx, xTCTCx},

LV := {x ∈ R
n : V (x) ≤ 1}.

It is easy to see that the level set is the intersection of the

ellipsoid

E(P ) = {x ∈ R
n : xTPx ≤ 1}

and the strip

L(C) = {x ∈ R
n : |Cx| ≤ 1}.

Since V (x) is homogeneous of degree 2, for a positive

number γ, we have

γLV = {x ∈ R
n : V (x) ≤ γ2},

and the maximal y = Cx for x ∈ γLV is γ.

Let X0 ⊂ R
n be a set of initial conditions. If γLV is an

invariant set and X0 ⊂ γLV , then all trajectories starting

from X0 will stay inside γLV and the output y(t) remains

bounded by γ. Thus the problem of estimating an upper

bound for the output can be transformed into one of searching

for a matrix P such that the resulting LV is invariant and

X0 ⊂ γLV with the minimal γ. In what follows, we translate

the condition for set invariance and that for set inclusion into

matrix inequalities.

Proposition 1: The level set γLV is invariant if and only

if there exist α ≥ 0 and β ≥ 0 such that

α(CTCA + ATCTC) ≤ P − CTC (9)

PA + ATP ≤ β(CTC − P ). (10)

The set inclusion condition X0 ⊂ γLV can be stated as

matrix inequalities if X0 is a polygon or an ellipsoid. If

X0 = co{xk : k = 1, 2, ...K}, then X0 ⊂ γLV if and only

if

xT

kPxk ≤ γ2, xT

kCTCxk ≤ γ2 ∀k. (11)

If X0 = {x ∈ R
n : xTRx ≤ 1}, then X0 ⊂ γLV if and only

if

P ≤ γ2R, CTC ≤ γ2R. (12)

Combining the matrix conditions for set invariance and set

inclusion, it is straight forward to formulate an optimization

problem for minimizing the bound on output response. The

following is for the case where X0 is a polygon,

inf
P>0,α,β≥0

γ2, (13)

s.t. ATP + PA ≤ β(CTC − P ), (14)

α(CTCA + ATCTC) ≤ P − CTC, (15)

xT

kPxk ≤ γ2, xT

kCTCxk ≤ γ2 ∀k. (16)

If α and β are set to zero, the problem reduces to (4) (with

P scaled by γ2). The additional parameters α and β relaxe

the constraint and may lead to tighter estimate of the output

bound. The results in Fig. 2 are generated by solving (13)

for the second-order example (5). As we can see, the output

bound is reduced from 1.2252 to 0.9161.

The above result can be easily extended to linear dif-

ferential inclusions. Consider a polytopic linear differential

inclusion with a fixed C,

ẋ ∈ co{Aix : i = 1, 2, · · · ,K}, y = Cx. (17)
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Corollary 1: The level set γLV is invariant if and only if

there exist αi ≥ 0 and βi ≥ 0, i = 1, 2 · · · ,K, such that

αi(C
TCAi + AT

iC
TC) ≤ P − CTC ∀ i (18)

PAi + AT

iP ≤ βi(C
TC − P ) ∀ i. (19)

B. Estimation of the overshoot

Consider the system

ż = Az + Bu, y = Cz, z0 = 0, (20)

where y ∈ R is a scalar output and u ∈ R
m is a step

input with final value uf . Assume A is Hurwitz. We’d like

to estimate the maximal y that will be reached during the

transient response. To do this, we may shift the origin to the

steady state value of z by defining x = z + A−1Buf . Then

ẋ = Ax, y = Cx − CA−1Buf , x0 = A−1Buf .

Let y1(t) = Cx(t). Then the maximum/minimum of

y(t) is the sum of the maximum/minimum of y1(t) and

−CA−1Buf . In what follows, we try to estimate the maxi-

mum of y1(t).
Proposition 2: Suppose there exist a matrix P > 0, a

scalar γ > 0 and a real number α such that

ATP + PA < 0 (21)

αATCTCA ≤ P − CTC (22)

xT

0Px0 ≤ γ2 (23)

1) If y1(0) ≤ γ, then y1(t) ≤ γ for all t.
2) If y1(0) ≥ −γ, then y1(t) ≥ −γ for all t.
3) E(P ) ∩ L(C) is an invariant set.

The same conclusions hold if (22) is replaced with

KCA + ATCTKT ≤ P − CTC. (24)

for certain K ∈ R
n×1.

Suppose that the original system (20) has a positive final

output value y(∞) = −CA−1Buf and an overshoot, then

y1(0) = CA−1Buf < 0 and the maximal y1(t) is the

amount of overshoot for y(t) above its final value. Using

item 1) in Proposition 2, this maximal y1(t) is bounded by γ.

Thus we can formulate an optimization problem to minimize

γ under the constraints (21) to (23). The method of using

clipped ellipsoid to estimate the overshoot is demonstrated

in Example 1 and Fig. 3.

The proof of Proposition 2 is not based on any Lyapunov

function. So it can not be directly extended to differential

inclusions. Note that if K = αCT for certain α ≥ 0 in (24),

then we obtain (15). Thus (15) is stronger than (24), and

(22) can be replaced with (15) to ensure the same results.

The advantage of using (15) instead of (22) or (24) is that this

constraint can be extended to differential inclusions, since it

ensures V̇ (x; Ax) ≤ 0 for x such that xTPx ≤ xTCTCx.

Consider the linear differential inclusion

ẋ ∈ co{Aix : i = 1, 2, · · · ,K}, y1 = Cx. (25)

Corollary 2: Suppose there exist a matrix P > 0 and real

numbers αi ≥ 0, i = 1, 2, · · · ,K such that

αi(C
TCAi + AT

iC
TC) ≤ P − CTC, ∀ i (26)

PAi + AT

iP ≤ 0, ∀ i. (27)

Then both E(P ) and E(P )∩L(C) are invariant sets for (25).

For x0 ∈ γE(P ) and y1(0) < −γ (or y1(0) > γ), y1(t) will

reach −γ (resp. γ) at certain time instant and stay below γ
(resp. above −γ) afterwards.

Example 1: A second-order system is described as

ż =

[

0 1
−3 −1

]

z +

[

1
1

]

u, y = [1 0]z, z(0) = 0.

Under a step input, the steady state output is y(∞) = 0.6667.

When transformed to the state x = z + A−1B, we have

x0 =

[

−0.6667
1

]

and y1(0) = −0.6667. The estimated

overshoot is 0.5971 (89.5%) by minimizing γ under con-

straints (21) to (23). The actual overshoot determined from

simulation is 0.3718 (55.8%). Fig. 3 plots the resulting

ellipsoid clipped by Cx = ±0.5971 and the trajectory x
starting from the initial condition x0. Fig. 4 plots the time

response of the output y.
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Fig. 3. Clipped invariant ellipsoid for estimating overshoot.
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Fig. 4. Output response and the overshoot.

IV. BOUND ON OUTPUT UNDER PERSISTENT

DISTURBANCES

A linear system subject to persistent disturbance is de-

scribed as follows,

ẋ = Ax + Bw, y = Cx, (28)

where x ∈ R
n, w ∈ R

m and y ∈ R. Assume that

wT(t)w(t) ≤ 1 for all t and x(0) = 0. An upper bound
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for |y(t)| can be estimated by sets which are invariant

under all possible persistent disturbances. These invariant

sets contain the actual reachable set. If an invariant set

exists inside the strip γL(C), then the output is bounded by

|y(t)| ≤ γ. Optimization problems can then be formulated for

minimizing γ over all possible invariant sets. In [2] (page 82-

83), invariant ellipsoids are considered and the optimization

problem has LMI constraints except for a scalar variable

within [0,∞).
In what follows, we would like to consider invari-

ant sets clipped from ellipsoids by planes Cx = ±γ.

They are level sets of the Lyapunov function V (x) =
max{xTPx, xTCTCx}, i.e., γ(E(P ) ∩ L(C)). As a result,

the optimization problem has LMI constraints except for

two scalar variables within [0,∞]. These two variables can

be optimized via plane search or with Matlab function

“fminsearch”.

Proposition 3: The level set γLV is invariant for system

(28) if there exist α1, α2 ≥ 0 and β1, β2 ≥ 0 such that
[

β1C
TC 0

0 0

]

≤γ2

[

−α1(C
TCA+ATCTC)+P−CTC α1C

TCB
α1B

TCTC β1

]

(29)

[

β2P 0
0 0

]

≤ γ2

[

−PA − ATP + α2(C
TC − P ) PB

BTP β2

]

(30)

To estimate the bound on the output, an optimization prob-

lem can be formulated to minimize γ under the constraints

(29) and (30). Note that the two matrices in (29) are linear

with respect to all variables and the two matrices in (30) are

linear in P for fixed α2 and β2. When α2, β2 are fixed, the

minimal γ can be obtained by solving a “gevp” problem.

If we define the minimal γ for the “gevp” problem as a

function of α2 and β2, γ1(α2, β2), we may use “fminsearch”

in Matlab to find the minimal γ1 over α2, β2 ∈ [0,∞).
Also note that the optimization problem reduces to the

corresponding problem in [2] if α1 = α2 = β1 = 0.

We use a simple third order system to demonstrate the

improvement.

Example 2: Consider the system (28) with

A =





0 1 0
0 0 1

−3 −2 −4



 , B =





0
0
1



 ,

and C =
[

1 0 1
]

. The bound on the output obtained

via invariant ellipsoid is 0.9023. The bound obtained via the

constraints (29) and (30) is 0.6789.

V. MAXIMAL INVARIANT SET UNDER STATE CONSTRAINT

Consider the linear system

ẋ = Ax, y = Cx, (31)

where x ∈ R
n, y ∈ R

m. Each output is constrained within a

given bound. For simplicity, assume that the bound for each

output is 1, i.e., |yi(t)| ≤ 1 for all i = 1, 2, · · · , m. Denote

the corresponding state constraint set as

Xc = {x ∈ R
n : |Cix| ≤ 1, ∀ i}.

A set X0 ⊂ Xc is said to be admissible if all trajectories

starting from X0 will stay within Xc for all t > 0. We

would like to determine an admissible set which is as large

as possible.

A simple method is to find a maximal invariant ellipsoid

inside the constraint set Xc, which can be formulated as

an LMI problem (see e.g., [9]). Such an estimation can be

improved by considering invariant sets which incorporate the

structure of the constraints. Here we would like to consider

invariant set as the level set of the Lyapunov function

V (x) = max{xTPx, xTCT

i Cix, i = 1, 2, · · · ,m}. (32)

The 1-level set LV = {x ∈ R
n : V (x) ≤ 1} is formed by

clipping the ellipsoid E(P ) with planes Cix = ±1 and thus

lies within the polytope Xc. We first give a condition for the

set LV to be invariant.

Proposition 4: Given P > 0. Let V be defined in (32).

The set LV is invariant for (31) if there exist ai > 0, bij ≥ 0,

α0 ≥ 0, αi ≥ 0, i, j = 1, 2, · · · ,m such that Σm
i=1

αi = α0,

and

ai(C
T

i CiA + ATCT

i Ci) ≤ P − CT

i Ci

+
m

∑

j=1

bij(C
T

jCj − CT

i Ci), i = 1, 2, · · · ,m, (33)

PA + ATP ≤ −α0P +
m

∑

j=1

αjC
T

jCj . (34)

The proof easily follows from applying S-procedure to

subsets where V (x) = xTCT

i Cix or V (x) = xTPx. For

example, consider x such that xTCT

1C1x > xTPx and

xTCT

1C1x > xTCT

i Cix for all i > 1. Then V̇ (x; Ax) =
xTCT

1C1Ax and condition (33) with i = 1 ensures that

V̇ (x; Ax)

≤
1

a1

xT(P − CT

1C1)x +
m

∑

j=1

b1j

a1

xT(CT

jCj − CT

1C1)x

≤ 0.

The invariant set LV can be maximized with respect to

certain shape reference set XR such that ηXR ⊂ LV for the

maximal η. The set inclusion condition ηXR ⊂ LV can be

stated as LMIs if XR is a polygon or ellipsoid. For example,

consider XR = co{xk : k = 1, 2, · · · ,K}. Then ηXR ⊂ LV

if and only if

xT

kPxk ≤ 1/η2, xT

kCT

i Cixk ≤ 1/η2, ∀ i, k. (35)

An optimization problem can be formulated to maximize η
satisfying (35), (33) and (34).

Note that all the conditions in (33) are LMIs and the

condition (34) is LMI for a fixed α0.

Proposition 4 can be easily extended to linear differential

inclusions by duplicating the matrix inequalities for each ver-

tex matrix Ak, with respective coefficients aik, bijk, α0k, αjk.
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This is because LV is a convex set. It is invariant for the

linear differential inclusion if and only if it is invariant for

each vertex system.

Example 3: Consider a second order system with A =
[

0 1
−1 −2

]

, C = I, and XR contains a single point

(1, 1). The maximal γ such that γXR is inside an invariant

ellipsoid is 0.7071. The maximal γ such that γXR is inside

an invariant LV is 0.8090. Fig. 5 compares the resulting

invariant ellipsoid and invariant LV (within the thick bound-

ary). Directions of Ax are plotted along the boundary of LV

to verify that it is invariant.
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Fig. 5. Enlarged invariant set within state constraints

Example 4: Consider the balance beam system in [9]. The

open-loop system is

ẋ =

[

0 1
0 −0.04

]

x + k

[

0
−0.3796

]

u

where x1 is the gap between the beam and the stator, x2

its velocity, and u the control current in the electromag-

nets. k ∈ [0.75, 1.2] is an uncertain gain arising from the

nonlinearity of the electromagnets. Under the state feedback

u =
[

336 44
]

x, the closed-loop system is

ẋ ∈ co{A1x,A2x},

where

A1 =

[

0 1
−153 −20

]

, A2 =

[

0 1
−95 −12

]

.

The state x1 is restricted to |x1| ≤ 0.004 due to the maximal

gap. This corresponds to |Cx| ≤ 1 with C =
[

250 0
]

.

We would like to determine the maximal γ such that for

initial condition γ

[

0
1

]

, the state constraint is not violated.

This corresponds to the maximal speed starting from the

horizontal position (balanced position) so that the beam will

not touch the stator. Using invariant ellipsoid, the maximal

γ is 0.0642; using invariant set clipped from ellipsoid by

Cx = ±1, the maximal γ is 0.0715. The resulting invariant

sets are plotted in Fig 6.

VI. CONCLUSIONS

This paper develops some methods for the estimation of

output range and for the detection of a large invariant set

within the state constraints. Existing methods use quadratic

Lyapunov functions for these purposes. We use non-quadratic
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Fig. 6. Enlarged admissible set and invariant ellipsoid.

Lyapunov functions which incorporate the structures of the

output and constraints. The resulting LMI-based algorithms

are a little more complicated than the existing algorithms

based on quadratic functions but may lead to significant

improvement as demonstrated by examples. The Lyapunov

functions in this paper involve one quadratic function. Fur-

ther improvements are expected if we use more quadratic

functions to compose the Lyapunov functions.
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