
Geometric Output Regulation for a Class of
Nonlinear Distributed Parameter Systems

C.I. Byrnes ∗, D.S. Gilliam †
∗ Washington University, St. Louis, MO chrisbyrnes@seas.wustl.edu

† Mathematics and Statistics at Texas Tech University, Lubbock, TX gilliam@math.ttu.edu

Abstract— We consider the output regulation problem for
a special class of nonlinear distributed parameter systems
(NLDPS). The main goal of this work is to show that the
geometric theory of nonlinear output regulation, which has
been extensively developed for lumped nonlinear systems, can
be extended in a local setting to this class of NLDPS. Our
approach is geometric, based on the center manifold theorem.
Even for local problems, however, one must surmount technical
issues that inevitably arise in the infinite dimensional setting. In
this paper, we describe a particular class of nonlinear systems
and exogenous systems for which center manifold methods
can be used to obtain state feedback control laws for solving
problems of tracking and disturbance attenuation. We also
give a numerical example of set-point control for a controlled
Chafee-Infante diffusion reaction equation which involves the
consideration of a bounded input operator and an unbounded
(point evaluation) output operator.

I. INTRODUCTION

An important goal in the development of a theory of

nonlinear output regulation is to establish a theory as parallel

as possible that which has been established for finite dimen-

sional linear [15]–[17] and nonlinear systems ( [24], [23], [1],

[20], [25]). In this direction, we note that for a large class

of linear DPS problems those state feedback control laws

which solve the problem of output regulation for a stable

linear system with bounded inputs and outputs can also be

characterized in an appealing systems theoretic fashion [27],

[28], [29], [30] [6].

Output regulation is an asymptotic theory and the long

time existence of solutions to open-loop nonlinear distributed

parameter systems remains extremely challenging Nonethe-

less, we have been successful in establishing long time

existence and asymptotic behavior for certain examples or

system classes using particular feedback design methods

(see, e.g., [4]–[9]). For example, our current efforts are

primarily focused on local results for output regulation

with respect to signals and disturbances generated by finite-

dimensional exogeneous systems (see, however, [21] for a

discussion of infinite-dimensional exosystems). In our set-

ting, the exosystem is both finite dimensional and neutrally

stable [24] and we can appeal to powerful center manifold

methods to obtain some nontrivial insights and results. We

emphasize the fact that these local techniques are not simply

an appeal to linearization. Even in the lumped nonlinear case,

elementary examples [11] show that a solution to the problem

of output regulation for the linearization does not solve the

output regulation problem for the nonlinear problem.

In general, we consider a system in the form

dz

dt
(t) = F (z, d, u) (I.1)

y(t) = c(z(t)), (measured output) (I.2)

z(0) = z0, (I.3)

where z is the state of the system in the infinite dimensional

Hilbert space Z; u is a control; y is the output and z0 ∈ Z

is the initial state of the system and d is a disturbance. In

addition we assume there exists a neutrally stable [24] finite

dimensional exogenous system

dw

dt
= s(w) (I.4)

w(0) = w0 ∈W, (I.5)

(here we assume that W is a finite dimensional Hilbert vector

space) that generates both a reference signal yr and the

disturbance d. Namely, we assume

yr(t) = q(w(t)) q : W 7→ Y. (I.6)

d(t) = p(w(t)) p : W 7→ Z. (I.7)

We assume that (0, 0, 0) is an equilibrium point, i.e.,

F (0, 0, 0) = 0 and that the linearization of F about this
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equilibrium is

F (z, w, u) =
∂F

∂z

∣∣∣∣
0

z +
∂F

∂w

∣∣∣∣
0

w +
∂F

∂u

∣∣∣∣
0

u+ f(z, w, u),

where the nonlinear term f(z, w, u) satisfies f(0, 0, 0) = 0,

fz(0, 0, 0) = 0, fu(0, 0, 0) = 0 and fw(0, 0, 0) = 0. Next we

define the linear operators

A =
∂F

∂z

∣∣∣∣
0

∈ L(Z), B =
∂F

∂u

∣∣∣∣
0

∈ L(U,Z).

We also have

p(w) =
∂p

∂w

∣∣∣∣
0

+ p̂(w), p̂(0) = 0,
∂ p̂

∂w
(0) = 0.

q(w) =
∂q

∂w

∣∣∣∣
0

+ q̂(w), q̂(0) = 0,
∂ q̂

∂w
(0) = 0.

We set

P =
∂p

∂w

∣∣∣∣
0

∈ L(W,Z), Q =
∂q

∂w

∣∣∣∣
0

∈ L(W,Y).

For the measured output we have

c(w) =
∂c

∂w

∣∣∣∣
0

+ ĉ(w), ĉ(0) = 0,
∂ ĉ

∂w
(0) = 0,

and we set C = ∂c/∂w
∣∣
0

so that C ∈ L(W,Y) and

y(t) = Cw(t) + ĉ(w(t)).

Finally we also have

s(w) = Sw + ŝ(w) ŝ(0) = 0,
∂ ŝ

∂w
(0) = 0.

Here S ∈ L(W) (so in a fixed basis S is given as an NW ×
NW matrix).

The objective of output regulation is to find a control law

u = γ(w) = Γw + γ̃(w),

Γ ∈ L(W,U), γ̃(0) = 0,
∂ γ̂

∂w
(0) = 0.

so that closed-loop trajectories exist and so that the error

e(t) = y(t)− yr(t) = c(z(t))− q(z(t)).

exists as t→ +∞ and tends to 0.

II. THE BASIC HYPOTHESES

We consider a special class of problems in which we im-

pose the following assumptions. First, recall that An operator

is accretive if the numerical range lies in the half plane, i.e.,

Re (Θ(A)) = Re 〈Aϕ,ϕ〉 ≥ 0 for ϕ ∈ D(A) ⊂ Z. An

accretive operator A is m-accretive if for all Re (λ) < 0 (in

addition to accretive) we have

(λI −A)−1 ∈ B(Z), ‖(λI −A)−1‖ ≤ 1
|Re (λ)|

.

An operator is called quasi-accretive (or quasi m-accretive)

if (αI −A) is accretive (or quiasi-accretive) for some scalar

α. This is equivalent to the condition Θ(A) is contained in

a half space Re (λ) ≥ const.

A quasi-accretive operator A is called sectorial if the

numerical range is not only contained in a half space

Re (λ) ≥ const but also is contained in a sector

|arg(λ− γ)| ≤ θ < π/2.

Here γ is called the vertex and θ is the semi-angle. A is called

m-sectorial if it is sectorial and A is quasi-m-accretive.

Finally, following Pazy [26], we say that A is dissipative

provided (−A) is (maximal) accretive.

Assumption 1: 1) (−A) is a sectorial operator with

compact resolvent. Therefore (−A) generate a Hilbert

scale Zα.

2) The analytic semigroup T (t) = eAt is exponentially

stable (Notice that it is also a contraction semigroup).

3) B ∈ B(U,Z) and P ∈ L(W,Z) are bounded.

4) C ∈ B(Zα, Y ) for some α > 0, i.e., there is a constant

cα so that

‖Cϕ‖Y ≤ cα‖ϕ‖α.

5) We assume that the exosystem has the origin as a

neutrally stable equilibrium, i.e., w = 0 is a fixed point

which is Lyapunov stable but not attracting. A center

is an example of such a fixed point. This, in particular,

implies σ(S) ⊂ iR (i.e., the spectrum of S is on the

imaginary axis) and has no non-trivial Jordan blocks.

Remark 1: In our examples, and quite often in practice, A

is self-adjoint. We also note that, since we assume (−A) is
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sectorial, we work with the semigroup exp(At) rather than

exp(−At) as is done in Henry [19].

In order to simplify the exposition in this paper we will

impose the following simplifying assumptions.

Assumption 2: We will assume that the input and mea-

sured output are linear functions of the state of the plant and

reference signal and disturbance are linear functions of the

state of the exosystem. We also assume that f(z, w, u) =

f(z) so that, in particular, the uncontrolled problem is

autonomous. Thus we assume q̂ = 0, p̂ = 0, q̂ = 0, ĉ = 0

and we have

c(w) = Cw, q(w) = Qw.

III. A LOCAL STATE FEEDBACK RESULT

Under the assumptions made in the previous section, we

obtain an abstract nonlinear system

ż = Az + f(z) +Bu+ Pw (III.1)

ẇ = s(w) (III.2)

z(0) = z0, w(0) = w0, (III.3)

y = c(z), yr = q(w) (III.4)

e = y − yr.

Theorem 1: Under assumptions 1 and 2, the (local) state

feedback regulator problem for (III.1)-(III.4) is solvable if,

and only if, there exist mappings π : W → D(A) ⊂ Z and

γ : W→ Y satisfying the “regulator equations,”

∂π

∂w
s(w) = Aπ(w) + f(π(w)) +Bγ(w) + Pw (III.5)

c(π(w)) = q(w). (III.6)

In this case a feedback law solving the state feedback

regulator problem is given by

u(t) = γ(w)(t). (III.7)

Modulo the inherent technical difficulties that arise in

infinite dimensions, Theorem 1 can be obtained using an

argument similar to that given in [24]. Indeed, under the

assumptions on A, B and C, we can appeal to a version of

the Center Manifold Theorem to aid in the proof.

Proof: To be able to adapt the necessary results from

center manifold theory, it is useful to formulate the problem

in the state space X = Z ×W. Namely, with u = γ(w) we

have

Ẋ = AX + F(X), X(0) = X0, (III.8)

X =
(
z
w

)
, F(X) =

(
f(z) + γ̂(w)

ŝ(w)

)

A =
(
A (BΓ + P )
0 S

)
e = c(z)− q(w).

Under our Assumption 1 we have, for any fixed, contin-

uously differentiable γ and that F is continuously differen-

tiable in Xα for some α > 0,

F(0) = 0, FX(0) = 0

and the operator (−A) is a sectorial operator and therefore

generates an analytic semigroup T(t). Furthermore,

σ(A) = σ(A) ∪ σ(S), σ(A) ∩ σ(S) = ∅,

and for some β > 0,

σ(A) ⊂ C−−β = {ζ : Re (ζ) ≤ −β}, σ(S) ⊂ C0 = iR.

According to [19, Theorem 6.2.1], for every γ (as above),

X = X1 ⊗ X2 where Xj are A invariant subspaces. X1 =

P(X) ∼= W is the eigenspace spanned by the finitely many

eigenvalues of A1 = A
∣∣
X1

(from [24] we recall that neutral

stability of the exosystem implies σ(A) ∩ C0 = σ(S)

consists of finitely many eigenvalues on the imaginary axis

each having geometric multiplicity one) and X2 = P2X =

(I − P)X corresponds to the spectrum of A2 = A
∣∣
X2

.

In particular, according to [19, Theorem 6.2.1] there is a

C1 local invariant manifold Σ defined in a neighborhood U

of the origin in Xα and a mapping π : X1 → X so that,

after identifying W and X1, we have

Σ =
{(

π(w)
w

)
: w ∈W

}
. (III.9)

Also A2 generates an exponentially stable analytic semi-

group T2 in X2.

Invariance of Σ implies that for initial data X(0) =

(π(w), w)> ∈ Σ the solution to (III.8) satisfies z = π(w).
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In particular, on Σ we have(
z
w

)
=
(
π(w)
w

)
and from the equations of motion we have

dz

dt
= Aπ(w) + f(π(w)) +Bγ(w) + Pw

and
dz

dt
=
dπ(w)
dt

=
∂π

∂w

dw

dt
=
∂π

∂w
s(w).

Therefore, invariance of Σ is equivalent to

∂π

∂w
s(w) = Aπ(w) + f(π(w)) +Bγ(w) + Pw. (III.10)

Furthermore, for initial data (z0, w0)> ∈ U , i.e., sufficiently

small, the solution (z, w)> satisfies

‖z(t)− π(w(t))‖α ≤ Ke−α0t‖z0 − π(w0)‖α (III.11)

where K depends on α. That is, under our assumptions, the

center manifold is locally exponentially attractive.

Figure 1: Center Manifold is Attractive

Remark 2: In the general theory of dynamical systems,

center manifolds are not unique. However, as in [24], an

ω-limit argument using neutral stability of the exosystem

implies uniqueness of the center manifold Σ, given any

choice of γ.

By the same ω-limit argument and the attractivity of the

center manifold, it follows that if u = γ(w) solves the

output regulation problem, then the center manifold be error

zeroing,

e = c(π(w))− q(w) = 0, (III.12)

must hold. In particular, the solvability of the output reg-

ulation problem implies the solvability of the regulator

equations (IV.7), (III.6).

Conversely, if the regulator equations hold then z = π(w)

is an invariant manifold which, by reversing the arguments

above, must be the center manifold Σ for the closed-loop

system. Since Σ is error zeroing and exponentially attractive,

we have

‖e(t)‖Y = ‖c(z(t))− q(w(t))‖Y

= ‖[c(z(t))− q(w(t))]

− [c(π(w(t)))− q(w(t))]‖Y

= ‖c(z(t))− c(π(w(t)))‖Y

= ‖C(z(t)− π(w(t))‖Y

≤ cα‖z(t)− π(w(t))‖α

≤ cαKe−α0t‖z0 − π(w0)‖α

→ 0 as t→∞.

This concludes the proof of Theorem 1.

Remark 3: As first observed for the lumped case in [24] ,

the dynamics on the invariant manifold M is a copy, via π, of

the dynamics of the exosystem and is therefore a model of the

exosystem itself. This observation is the basis for the internal

model principle for output regulation near an equilibrium, as

developed in detail in [23], [1] and more recently in [20].

For lumped nonlinear systems, this has been extended to the

nonequilibrium case in [12], [13], [25].

IV. A NUMERICAL EXAMPLE – SET-POINT CONTROL

We consider as a numerical example a problem of set-point

control for a controlled Chafee-Infante reaction diffusion

equation. In particular we consider the system defined on

0 ≤ x ≤ 1 for t ≥ 0 given by
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∂z

∂t
=
∂2z

∂x2
+ (z − z3) +Bu (IV.1)

z(0, t) = 0,
∂z

∂x
(1, t) = 0 (IV.2)

z(x, 0) = ϕ(x) (IV.3)

y(t) = (Cz)(t) = z(x1, t), 0 < x1 < 1, (IV.4)

yr(t) = M, (IV.5)

The operator A in this case is

A =
d2

dx2
, D(A) = {ϕ ∈ H2(0, 1) : ϕ(0) = 0, ϕ′(1) = 0}.

The operator A is self-adjoint in Z = L2(0, 1) and generates

an exponentially stable semigroup in Z. Even more is true,

(−A) also satisfies all the conditions in Assumption 1.

Namely, (−A) is a sectorial operator and it generates an

exponentially stable semigroup in the infinite scale of Hilbert

spaces Zα = D((−A)α).

In this example we consider a bounded input operator. Let

us denote by I0 the interval [(x0 − ν0), (x0 + ν0)] where

0 < x0 < 1 and ν0 is small enough so that I0 ⊂ (0, 1).

Then we define

(Bu)(x, t) =
1

2ν0
χI0(x)u(t). (IV.6)

Here χI0(x) denotes the indicator function of the set I0, i.e.,

χI0(x) =

{
1, x ∈ I0
0, otherwise

.

Therefore, the input operator is a bounded operator which for

small ν0 provides a bounded approximation to the dirac delta

function supported at x0. Notice that the output operator,

point evaluation at x1, is unbounded but it is bounded on

Z1/2. So that all the required conditions are met.

In the case of set-point control we can take W = R and

s(w) = 0 so that the exosystem becomes

dw

dt
= 0, w(0) = M

which implies that

w(t) = M for all t ≥ 0.

Thus we have

yr(t) = q(w(t)) = M or q(w) = w.

For this problem we seek mappings

π : W→ D(A) ⊂ Z

and

γ : W→ Y = R

satisfying the regulator equation (IV.7) and (III.6), which in

this case become

0 =
d2π(w)
dx2

+ π(w)− π(w)3 +Bγ(w) (IV.7)

π(w)(x1) = w. (IV.8)

In [3], an efficient numerical algorithm for solving these

equations has been developed based on an interpretation of

the regulator equations as a fixed point problem which is

then solved using Newton iteration.

As a specific numerical example we take M = .5, x0 =

.75, ν0 = .01, x1 = .5 and ϕ(x) = .5 cos(πx). In this

case the desired control is a nonlinear function of M but is

independent of x. For this example we find

u = γ(M) = 0.7488.

Figure 2: Surface

In Figure 2 (above) we have plotted the solution surface for

the closed loop system. In Figure 3 (below) we have plotted

both the measured output y for the closed loop system and

the desired reference trajectory yr = M . Finally in Figure

4 we have plotted the error e(t) = y(t)− yr(t). The figures

clearly suggest the desired result that the error approaches

(quite rapidly) zero as t tends to infinity.
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Figure 3: y and yr

Figure 3: e = y − yr
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