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Abstract— Vehicle dynamics control systems, previously only
intended for yaw stabilization, are now being extended to
incorporate rollover mitigation via braking. Current systems
typically use a heuristic approach to control allocation, often
utilizing only a subset of the available actuators. In this
article a computationally–efficient, optimization–based control
allocation strategy is used to map controller commands to
braking forces on all four wheels, taking into account actuator
constraints. Simulations show that the strategy is capable of
preventing vehicle rollover for various standard test manoeu-
vres.

I. INTRODUCTION

The use of active safety systems in road vehicles

is widespread, and most modern passenger vehicles are

equipped with Anti–lock Braking Systems (ABS) to improve

braking performance. Electronic Stability Programs (ESP),

found in many modern vehicles, use the ABS hardware to

stabilize yaw motion. The prevention of driver–induced, or

‘untripped’ rollover accidents however, requires a new form

of active safety system. Such systems have been the topic

of research for some years, and have recently found their

way into production, in the form of ESP systems augmented

with some rollover mitigation functionality. These production

systems, as well as a number of the algorithms proposed in

the literature, use individual wheel braking as actuators [1],

[2], [3], [4]. Other algorithms have been proposed which

utilize active steering, often in coordination with braking [5],

[6]. The majority of these algorithms use a subset of the

available actuators for control. Typically, in standard ESP

systems, the front wheel on the outside of the turn is used,

as this wheel experiences the most normal force due to load

transfer. While this strategy is simple and often effective,

ignoring the possibility of using other available actuators

(the other wheels) reduces the achievable performance. In

this article, optimization–based control allocation is used as

a means of systematically determining braking commands for

all wheels in order to achieve desired generalized force and

moment commands generated by a vehicle dynamics con-

troller. The resulting algorithm involves the online solution

of a quadratic programming problem, as is done in Model

Predictive Control (MPC). As with MPC, the algorithm is

capable of handling actuator constraints. This allows for a

high degree of fault tolerance, as faulty actuators can simply

be removed from the optimization problem.
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II. OUTLINE

The tire and chassis models used in this article are

outlined in Section III. A brief overview of the rollover

mitigation control laws is given in Section IV; further

details can be found in [7]. The derivation of the control

allocation algorithm is presented in Section V. Simulation

results obtained using DaimlerChrysler’s proprietary vehicle

simulation software are presented in Section VI.

III. VEHICLE MODEL

Vehicle models typically consist of two components, a

chassis model which describes the dynamics of the vehicle,

and a tire model which describes the forces generated at

the contact point between the tire and the road. In order

for a tire to produce a force, slip must occur. Longitudinal

force Fx is produced by the longitudinal slip λ, and the

lateral force Fy is produced by the lateral slip α. For small

slip values, the relationships are approximately linear. For

larger values, the forces saturate. The maximum achievable

longitudinal force is given by Fx,max = µFz , where µ is the

coefficient of friction between the tire and the road and Fz is

the normal force on the tire. The maximum available lateral

force for a given lateral slip can be described by the so–

called Magic Formula [8], which is a function of α and Fz .

In the case of combined slip, where lateral and longitudinal

slip occur simultaneously, a simple model for the resulting

force is the friction ellipse, illustrated in Figure 1. The ellipse

is described by the equation
(

Fy

Fy,max

)2

+
(

Fx

Fx,max

)2

= 1.

In order to adequately describe the dynamics of the vehi-

cle, a nonlinear two–track model with roll dynamics can be

used, as shown in Figure 2. Figure 3 illustrates the model in

the vertical plane. The suspension is modelled as a torsional

Fy,max(α, µ, Fz)

Fx,max(µ, Fz)Fx

Fy

(
Fy

Fy,max

)2

+
(

Fx

Fx,max

)2

= 1

Fig. 1. The friction ellipse, showing maximum lateral and longitudinal
forces, the resultant force and its components.
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Fig. 2. Two-track model with roll dynamics.

spring–damper system, with roll stiffness Cφ and damping

Kφ. The vehicle states are longitudinal velocity vx, lateral

velocity vy , yaw rate ψ̇, roll rate φ̇ and roll angle φ. The

inputs to the system are the total longitudinal force FxT , total

lateral force FyT , and total moment MT . The relationships

between these and the individual tire forces are derived in

Section V. A full derivation of the model can be found in

[7]. For the purpose of control, only the rotational dynamics

are of interest. After some simplifications, the equations of

rotational motion are found to be:

φ̈ =
FyTh+mghφ− Cφφ−Kφφ̇+ ψ̇2(Iyy − Izz)φ

Ixx

(1)

ψ̈ =
MT − FxThφ− 2(Iyy − Izz)φφ̇ψ̇

Iyyφ2 + Izz

(2)

where m is the vehicle mass, h is the height of the centre of

gravity above the roll axis, and Iii is the moment of inertia

abouth the ith axis.

IV. CONTROL DESIGN

A large number of different strategies for rollover miti-

gation have been proposed in the literature. One strategy,

used by the authors [4], [7] as well as others [6], is to limit

the roll angle while following a yaw rate reference trajectory.

Restriction of the vehicle sideslip angle β (the angle between

the vehicle-fixed x-axis and the velocity vector) is also

important, but this can be accomplished through appropriate

yaw rate control [9]. The control design is performed with

respect to the generalized forces and moments, or virtual

controls v =
(
FxT FyT MT

)T
. These virtual controls are

then mapped to actuator commands by the control allocator.

Mg

May

z

FyL FyR

FzL FzR

l

r0

h

Cφ

Kφ

φ̇

φ

Fig. 3. The two-track model in the vertical plane, showing suspension
modeled as a torsional spring and damper.

A. Roll Control

In [7] it was shown how a maximum allowable roll angle

may be converted to a lateral acceleration limit. This allows

the use of a control scheme based on the limitation of

roll angle using lateral acceleration measurements only, at

the cost of introducing a degree of parameter sensitivity,

in particular to the centre of gravity height h. The lateral

acceleration ay is determined by the total lateral force FyT .

From the friction ellipse, it can be seen that FyT can be

influenced by varying the total longitudinal (braking) force

FxT . Therefore, FxT will be used for roll control.

The strategy developed in [7] involves the use of a

proportional–plus–derivative type filter for the lateral accel-

eration measurement used to trigger the controller, which

is simply a predefined deceleration. Hysteresis is used to

prevent chatterring. The use of a PD type filter is analogous

to using both roll angle and rate information for switching,

as is suggested in [5]. It can be interpreted as providing a

prediction of the lateral acceleration over a certain horizon.

This is important since it allows rapid activation of the

controller. Let ây(t) denote the filtered signal on which the

switching is performed. Using the PD filter, ây(t) may be

obtained as:

Ây(s) = K

(

Ay(s) +
sTd

1 + sTd/N
Ay(s)

)

(3)

where Ay(s) and Ây(s) are the Laplace transforms of ay(t)
and ây(t) respectively. Td can be interpreted as the prediction

horizon, and K is the static gain.

The resulting control law takes the form:

FxT =

{

−m|ad
x| if controller on

0 if controller off
(4)

where ad
x is the desired longitudinal acceleration. This may

be obtained from the roll angle limit as in [7], or by empirical

means. The controller is switched on when |ây| ≥ âon
y and

off when |ây| ≤ âoff
y , where âon

y > âoff
y are predefined

thresholds.
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B. Yaw Control

Attention may now be directed at controlling the yaw rate

ψ̇. From (2), it can be seen that the yaw rate can be influenced

by both MT and FxT . A simple Lyapunov function for the

yaw dynamics is given by:

Vr(x, v) =
1

2
(ψ̇ − ψ̇ref )2 (5)

By standard Lyapunov-based design, taking FxT to be given

by (4), MT is found to be:

MT =(−Kr(ψ̇ − ψ̇ref ) + ψ̈ref )(Iyyφ
2 + Izz) + FxThφ

+ 2φφ̇ψ̇(Iyy − Izz) (6)

For details see [7].

V. CONTROL ALLOCATION

The control laws derived in the previous section use the

generalized forces FxT , FyT and MT as virtual controls. The

role of the control allocator is to obtain actual controls (in

this case the individual braking forces) which will give rise

to the desired virtual controls. Generally, the relationship is

v(t) = g(u(t)) where v(t) ∈ R
k are the virtual controls,

u(t) ∈ R
m are the actual controls and g : R

m → R
k is

the mapping from actual to virtual controls, where m > k.

The majority of the literature deals with the linear case [10],

where the actual and virtual controls are related by a control

effectiveness matrix B:

v(t) = Bu(t) (7)

The control allocation problem is an under-determined, and

often constrained problem. A common approach to solving

these problems is to formulate an optimization problem in

which the allocation error ||Bu(t) − v(t)||2 is minimized,

subject to actuator constraints. The 2-norm of the allocation

error is most commonly used.

A. Approximations

Since the controller will be operating exclusively in the

limits of the vehicle’s driving regime, it is reasonable to make

approximations which are valid during these conditions. The

first approximation is that the slip angles of all of the

wheels are large enough such that the maximum lateral tire

forces saturate, and are thus given by Fyi,max = µFzi.

This is attractive since the slip angles are not required in

order to compute the maximum lateral forces. The resultant

force on each wheel can now be seen as a function of

the applied braking force and the normal force. However,

the function is still nonlinear, so a further approximation is

suggested to simplify the constraints. The friction ellipse can

be approximated in each quadrant by a linear function, as in

Figure 4. This approximation can be justified by considering

that there will be a large amount of uncertainty in the radius

of the friction circle. In particular, µ is highly uncertain.

The linear approximation can be thought of as lying within

circles defined by upper and lower bounds of the radius µFz .

The approximation may be refined by introducing tuning

Fy,max

Fx,max Fx

Fy

µmax

µmin

νFy = (σµFz + Fx)sign(δ)

Fig. 4. The friction ellipse with linear approximation, showing the
uncertainty regions arising from the uncertainty of µ. Note that the linear
approximation is only valid for −σµFz ≤ Fx ≤ 0. The approximation
must therefore be used with constraints to obtain reasonable results.
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Fig. 5. Planar chassis model, showing the horizontal components of the
tire forces.

parameters to alter the gradient and position of the linear

approximations, giving a relationship on the form:

νFy = (σµFz + Fx)sign(δ) (8)

where ν and σ are tuning factors. The sign(δ) factor is

required to ensure that the resultant force acts in the correct

direction. This approximation has the attractive property that

the constraints are convex. Using these simplifications, a

control allocation problem can now be formulated.

B. Control Effectiveness Matrix Derivation

By considering Figure 5, the following expressions relat-

ing the individual tire forces to the generalized forces are

obtained:

FxT =F rl
x + F rr

x + (F fl
x + F fr

x ) cos δ − (F fl
y + F fr

y ) sin δ
(9a)

FyT =F rl
y + F rr

y + (F fl
y + F fr

y ) cos δ + (F fl
x + F fr

x ) sin δ
(9b)

MT =(F fl
y + F fr

y )a cos δ + (F fl
x + F fr

x )a sin δ (9c)

− (F rl
y + F rr

y )b+ (F rr
x + F fr

x cos δ + F fl
y sin δ

− F rl
x − F fl

x cos δ − F fr
y sin δ)l

where δ is the steering angle (measured at the wheels).

Replacing Fy with the linear approximation (8), the virtual
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controls v can now be expressed as:

v(t) = B(δ)u(t) + d(δ)

where:

B(δ) =







cos δ − ∆

ν
sin δ ∆

ν
cos δ + sin δ b1M

cos δ − ∆

ν
sin δ ∆

ν
cos δ + sin δ b2M

1 ∆

ν
−l − b∆

ν

1 ∆

ν
l − b∆

ν







T

d(δ) =





−σµ∆ sin δ
ν

(F fl
z + F fr

z )
σµ∆ cos δ

ν
(F fl

z + F fr
z ) + σµ∆

ν
(F rl

z + F rr
z )

dM





b1M = (
∆

ν
(a cos δ + l sin δ) + a sin δ − l cos δ)

b2M = (
∆

ν
(a cos δ − l sin δ) + a sin δ + l cos δ)

dM =
σµ∆

ν

[
(a cos δ(F fl

z + F fr
z ) + l sin δ(F fl

z − F fr
z )

− b(F rl
z + F rr

z )
]

∆ = sign(δ)

u =
(
F fl

x F fr
x F rl

x F rr
x

)T

This can be transformed into the required form in (7) by

defining new virtual controls v′(t) = v(t)−d. The constraints

are now given by:

−|σµFzi| ≤ Fxi ≤ 0 (10)

These constraints have the form of ‘box constraints’:

u ≤ u ≤ u (11)

Note that the control effectiveness matrix is now a function

of the steering angle δ. In conventional linear control design

this would cause problems, but the use of control allocation

alleviates this because the mapping is perfomed online at

each sample instant. In the following, the dependence on δ
will be dropped, and B regarded as a constant matrix.

A linearly-constrained quadratic programming problem

may now be formulated. Such problems can take the form:

u = arg min
u∈Ω

||Wu(u− ud)||2

Ω = arg min
u≤u≤u

||Wv(Bu− v′)||2
(12)

where Wu and Wv are diagonal weighting matrices, ud is

a desired actual control value, and u and u are constraints

on the actual controls. This type of problem is known

as Sequential Least-Squares (SLS), since the solution is

computed in two steps. First, the weighted allocation error

||Wv(Bu−v)|| is minimized. If feasible solutions are found,

then the ‘best’ solution is obtained by minimizing ||Wu(u−
ud)||. The desired actual control value ud is zero in the

results presented here, but may be chosen in other ways [10].

A faster algorithm can be obtained by approximating the SLS

formulation as a Weighted Least-Squares (WLS) problem:

u = arg min
u≤u≤u

(
||Wu(u− ud)||

2
2 + γ||Wv(Bu− v′)||22

)

(13)

The parameter γ is typically chosen to be very large in order

to emphasize the importance of minimizing the allocation

error. In the results presented here, the WLS algorithm (13)

has been used. Since only FxT and MT are used as virtual

controls, FyT may effectively be removed from the allocation

problem by making the corresponding weight in the matrix

Wv very small.

Such optimization problems can be solved by active set

methods [10], [11]. Consider the least squares problem:

min
u

||Au− b|| (14a)

subject to Bu = v (14b)
(
I
−I

)

︸ ︷︷ ︸

C

u ≥

(
u
−u

)

︸ ︷︷ ︸

U

(14c)

The principal idea of active set methods is that in each step,

some of the inequality constraints are taken to be equality

constraints, while the remainder are ignored. Denote with W
the working set, which contains all of the active constraints.

The details of the active set algorithm used to solve the

problem are given in Algorithm 1. Algorithm 2 shows how

the WLS problem is solved.

Algorithm 1: Active set algorithm

Let u0 be a feasible starting point, satisfying (14c) ;

for i = 0, 1, 2, . . . do

Given suboptimal iterate ui, find the optimal

perturbation p, considering the inequality constraints

in W as equality constraints and ignoring the

remainder. This is done by solving:

min
p

||A(ui + p) − b||

Bp = 0

pi = 0, i ∈ W

if ui + p feasible then

Set ui+1 = ui + p ;

Compute Lagrange multipliers as:

AT (Au − b) =
(
BT CT

0

)
(
µ
λ

)

where C0 consists of the rows of C
corresponding to the constraints in the active set

;

if λ ≥ 0 then

ui+1 is optimal solution;

Return u = ui+1

else
Remove constraint corresponding to most

negative λ from the working set W ;
else

Find αi = max{α ∈ [0, 1] : u ≤ ui + αp ≤ u}
and set ui+1 = ui + αip. Add bounding

constraint to active set.
end

3234



Algorithm 2: Solution of the WLS control allocation

problem (13)

Let u0 be the optimal point obtained at time t− 1, and

W0 be the corresponding active set ;

if u(t) < u0 < u(t) then

Remove any active constraints from W0;

else

Saturate the infeasible elements of u0 and update

the initial working set W0;
Rewrite the cost function as:

||Wu(u− ud)||
2
2 + γ||Wv(Bu− v′)‖2

2

=

∥
∥
∥
∥

(

γ
1

2WvB
Wu

)

︸ ︷︷ ︸

A

u−

(

γ
1

2Wvv
Wuud

)

︸ ︷︷ ︸

b

∥
∥
∥
∥

2

Use Algorithm 1 to solve:

u =arg min
u≤u≤u

||Au− b||

C. Rate Constraints

Rate constraints in the actuators (in this case the braking

system) may be taken into account in the control allocation

problem by modifying the constraints at each sample time.

Let the rate constraints be given by rmin ≤ u̇(t) ≤ rmax.

After discretization, the maximum allowable deviations of

the positions from one sample time to another are given by

∆min = rminTs and ∆max = rmaxTs, where Ts is the

sampling period. The position constraints may be rewritten

as:

u∗(t) = max{u, u(t− Ts) + ∆min} (15)

u∗(t) = min{u, u(t− Ts) + ∆max} (16)

The rate constraints present in the control problem are the

brake pressure rising and falling slew rates.

VI. SIMULATION RESULTS

The control strategy was simulated in Matlab/Simulink

using DaimlerChrysler’s proprietary CASCaDE (Computer

Aided Simulation of Car, Driver and Environment). The

vehicle used in the simulations was a light commercial van.

A number of test maneuvers were simulated, including the J-

turn, Fishhook and roll–rate feedback Fishhook. The results

presented here correspond to the Fishhook manoeuvre.

A. Test Maneuver

The Fishhook manoeuvre is an important test manoeuvre

in the context of rollover. It attempts to maximize the roll

angle under transient conditions and is performed as follows,

with a start speed of 80km/h1:

• The steering wheel angle is increased at a rate of

720deg/sec up to 6.5δstat , where δstat is the steering

1The original specification from the NHTSA states a start speed of 50
mph.
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Fig. 6. Vehicle states with the controller inactive. The instability of the
roll dynamics is evident. The simulation ceases to run after rollover occurs.

angle which is necessary to achieve 0.3g stationary

lateral acceleration at 80km/h

• This value is held for 250ms

• The steering wheel is turned in the opposite direction

at a rate of 720 deg/sec until it reaches -6.5δstat

B. Results

The controller was capable of preventing rollover in all

of the test manoeuvres used. Figure 6 shows that rollover

occurs when a Fishhook manoeuvre is performed with the

controller inactive. Figure 7 shows the states of the vehicle

when the controller is active. Rollover is prevented, with the

roll angle and sideslip remaining within defined limits [7],

and with reasonable yaw rate tracking.

Figures 8, 9 and 10 show the desired and achieved virtual

control signals FxT , MT and FyT . The ‘predicted’ virtual

controls, corresponding to the virtual control values obtained

using the allocator’s model, are also displayed, and closely

match the desired values. Although FyT is not used by

the controller, it is interesting to note that the actual value

obtained closely corresponds to the value obtained from

the allocator’s model. This indicates that the approximations

made in the tire model were reasonable.

VII. DISCUSSION AND CONCLUSIONS

A rollover prevention strategy based on limiting the roll

angle has been presented. A key element of the strategy is

the control allocator, which is capable of taking into account

important actuator constraints while remaining sufficiently

fast to be easily implemented in real–time.

Online optimization is used in a similar manner as in

Model Predictive Control (MPC), which raises the question

as to whether MPC based on linearized models could or

should be used instead. There are however a number of
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Fig. 7. Vehicle states with the controller active. The dashed lines are the
yaw rate reference, maximum allowed roll angle and maximum sideslip
angle respectively.

0 2 4 6 8 10
−14000

−12000

−10000

−8000

−6000

−4000

−2000

0

2000

time [s]

T
o

ta
l 
L

o
n

g
it
u

d
in

a
l 
F

o
rc

e
 F

x
T
 [

N
]

Total Longitudinal Force F
xT

 

 

Desired F
xT

Actual F
xT

Predicted F
xT

Fig. 8. Total longitudinal force FxT .

obstacles to the use of MPC. Primarily, the relation between

individual wheel forces and resultant forces and moments

depends on the time-varying parameter δ. In order to use

MPC, a multiparametric programming approach would be

required. Additionally, the optimization problem obtained

in the proposed method is tailored to the structure of the

problem. Finally, the proposed method is arguably more

intuitive, since the control design can be performed with the

original physical models rather than linearized versions.

Additionally, the systematic approach gives a high degree

of fault tolerance. Should an actuator fail, it is trivial to

remove that actuator from the optimization problem.
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