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Abstract— We propose a method to control the spike timing
of a Type II oscillatory neuron to match the phase of a given
reference oscillator. The control method is inspired by the
impulsive character of neural communication in nature, and
leads to a simple mathematical solution. We show that the phase
response curve, which describes the phase-shift of the oscillation
due to an impulsive perturbation as a function of the phase at
which the perturbation occurs, contains sufficient information
to design a charge-balanced control law that provides global
monotonic convergence of oscillator phase to the reference
phase. This feedback law requires only the knowledge of the
dynamics gained through the phase reduction, and the ability
to detect a once-per-period marker event, such as the time
at which a neuron fires. The effectiveness of this control
law is demonstrated through analytical and numerical re-
sults, including application to the full-dimensional conductance-
based neuron model from which the phase-reduced model
was derived. This work represents a step toward a closed-
loop form of electrical deep brain stimulation, a treatment
for neuromotor disorders such as Parkinson’s disease, with
symptoms characterized by pathologically synchronized neural
firing.

I. INTRODUCTION

In this paper, we consider event-based control of a non-

linear phase oscillator, derived from an oscillatory neuron

model, subject to the constraint that the integral of the

control signal over a period of actuation is zero, and the only

observable is a once-per-period marker event. In previous

work [6], we developed several control strategies for a

simplified phase oscillator and proposed a heuristic extension

to phase oscillator models representing real neurons. Here,

we propose a more rigorous control method, inspired by the

signaling dynamics of real neurons, that is applicable to a

rather large class of nonlinear phase oscillators. We show that

it provides global monotonically convergent error dynamics

when applied to full-dimensional conductance-based neuron

models, in addition to the phase-reduced models.

This problem is motivated by the desire to control the

spiking behavior of oscillatory neurons and, by extension,

the level of synchronization of a population of oscillatory

neurons. For example, one of the symptoms of Parkinson’s

Disease (PD) is tremor in the limbs, which has been as-

sociated with pathological synchronization of motor control

neurons in the thalamus [10]. These symptoms can be

treated using a procedure known as Electrical Deep Brain
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Stimulation (EDBS). Current technology uses an open loop

high-frequency (greater than 100 Hz) waveform directed into

the brain through an implanted electrode by a device similar

to a cardiac pacemaker [2]. Incorporating a sensor electrode

to provide feedback to the stimulus generator has been

suggested as a way to optimize the efficacy of the treatment

and reduce its side effects via “Demand-Controlled EDBS”

[12]. Ultimately, we envision a set of feedback electrodes

and a set of stimulus electrodes working with a controller

incorporated into the EDBS signal generator electronics. The

controller would use measurements of the neural population

to derive optimal stimulus signals to accomplish population-

level control objectives, such as desynchronization in the case

of PD.

From a control theory standpoint, such a population of

millions of neurons, each connected to tens-of-thousands

of other neurons, is a staggeringly complex and perhaps

intractable system. The neurons themselves are highly non-

linear, display a large degree of variability, and the network

structure is unknown (and perhaps unknowable). However,

since open-loop EDBS has been shown to be effective in

eliminating tremors in PD, epilepsy, and even symptoms of

depression [2], [9], there is good reason to believe that there

may be some inherent structure, important to the dynamics

of synchronization, that may enable the problem to be cast

in a tractable form.

While the intent of this paper is to derive control algo-

rithms for individual oscillatory neurons, these results can be

interpreted in the larger context of population-level control.

Indeed, if we drastically simplify the problem by neglecting

coupling and assume that we can sense and stimulate each

neuron (or perhaps each cluster of neurons) independently,

we can obviously desynchronize this simple neural system

by driving each neuron (or cluster) to follow a uniformly

staggered reference phase. While this toy model is not very

biologically realistic, we hope that the methods which we

have developed for individual neurons will be a starting

foundation for future work to address more realistic network

architectures.

II. PROBLEM STATEMENT

Our control objective is to drive an oscillatory neuron

to track the phase of a reference trajectory evolving at a

constant frequency (equal to the natural frequency of the

neuron), using a charge-balanced control signal based only

on the detection of a voltage spike.

To model oscillatory neurons, we start with a set of

ordinary differential equations (ODEs) obtained from rep-
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resenting the neuron as an electrical circuit, as originally

developed in the seminal work of Hodgkin and Huxley [7].

We consider regions of the ODE parameter space where the

system exhibits a stable periodic orbit. Then, we perform

a phase reduction to arrive at a one-dimensional nonlinear

phase oscillator model, which has a single state on the unit

circle with zero phase identified as the voltage spike. This

reduction provides the necessary information to develop the

desired control algorithms.

A. Neuron models

The membrane voltage dynamics of neurons are repre-

sented using the conductance-based Hodgkin-Huxley formal-

ism [7], in space-clamped form, yielding a set of ODEs of

the form:

cV̇ = Ig(V,n) + Ib + I(t), ṅ = G(V,n), (1)

where V ∈ R is the voltage across the membrane, n ∈ R
m
[0,1]

is the vector of gating variables which correspond to the state

of the membrane’s ion channels, c ∈ R
+ is the constant

membrane capacitance, Ig : R × R
m 7→ R is the sum of

the membrane currents, and I : R 7→ R is the stimulus

current. Ib ∈ R is the baseline current, which is a bifurcation

parameter that controls whether the neuron is in an excitable

or an oscillatory region. This form of ODE representation

was first employed by Hodgkin and Huxley to model the

Loligo squid’s giant axon [7].

This canonical model, while not representing brain neu-

rons, is the prototypical voltage membrane dynamic model,

and exhibits similar characteristic oscillatory behavior as the

motor control neurons that we are interested in. Due to this

qualitative similarity, and the fact that the Hodgkin-Huxley

model is perhaps the most widely studied and familiar

conductance-based neuron model, we choose to consider it

as our primary neuron model in this paper.

Control of the spike timing of this system is non-trivial

due to the fact that the vector functions Ig and G are highly

nonlinear, the gating variables n are not observable by the

controller, and equations themselves represent a feedback in-

terconnection of nonlinear systems. For the Hodgkin-Huxley

model we consider, the gating variables n represent Sodium

and Potassium ion channels, and a generic leakage channel.

The functions composing G consist of sums of ratios of

exponentials derived by curve-fitting experimental data. The

details of this model can be found, for example, in the

appendix of [4]. We seek a simpler representation of the

dynamics of this model that will capture its fundamental

behavior, but be amenable to analysis.

B. Phase reduction

In the case of oscillatory synchronization, the participating

neurons fire periodically, corresponding to a region of Ib

parameter space where the ODEs (1) have a stable periodic

orbit. We will consider the case when Ib = 10 mA. In the

absence of stimuli, the system is found to have a stable

periodic orbit with natural frequency ω = 0.43 rad/msec

[11]. We then perform a phase reduction, following [4], to

reduce the number of dimensions from m + 1 (m = 3, in

the case of the Hodgkin-Huxley model) to a single phase

variable.

We define x ≡ [V,nT ]T so that we can conveniently

represent the entire state of the full-dimensional model in

one vector. We introduce the phase variable θ ∈ S
1 which

parametrizes the position of the state on its periodic orbit

x
γ(θ). In the absence of input, the system simply evolves

with constant frequency ω along x
γ(θ). With nonzero input,

the system continues to evolve due to ω, but is affected by the

input depending on where on the periodic orbit the state is.

In general, the phase-reduced dynamics obey the following

ODE

θ̇ = ω + Z(θ) · u(t),

where the phase response curve Z(θ) and the input u(t) are

vector functions of the same dimension as the original system

(1). However, since the electrical stimulus I(t) affects only

the voltage direction, u(t) = [I(t)/c, 0, 0, 0]T , and we can

ignore the three components of Z(θ) corresponding to the

gating variables n. Thus we obtain the phase-reduced model

θ̇ = ω + Z(θ)u(t), (2)

where Z(θ) = ZV (θ) is the voltage component of the phase

response curve, and u(t) is the input current I(t) normalized

by the capacitance c. The phase-reduced model is valid in

a neighborhood of the periodic orbit where perturbations

off x
γ are asymptotically attracted back with a phase-shift

dictated by isochrons, as described in [13] and summarized

in [4].

In this paper, we will consider only Type II neurons [8],

i.e. those with phase response curves derived from systems

exhibiting a Hopf (or Bautin) bifurcation [4]. The Hodgkin-

Huxley model yields such a phase response curve, which is

shown in Figure 1 and labeled with the following important

points:

α = argmin(Z(θ)) , Zmin = Z(α)
β = argmax(Z(θ)) , Zmax = Z(β).

In general, phase response curves derived from Type II

neurons yield a class of nonlinear phase oscillators with

phase response curves characterized by the following con-

ditions:
Z(0) = 0 , Z ′(0) < 0
Z(γ) = 0 , Z ′(γ) > 0
Zmax > 0 , Zmin < 0

0 < α < γ < β < 2π .

(3)

C. Control objective

The events of critical importance in neural signaling and

synchronization are the voltage spikes [10] which we define

to occur at θ = 0 for our phase-reduced model. Our control

objective is drive the neuron to spike (pass through θ = 0)

in-phase with a reference trajectory with the same natural

frequency.

A complicating factor is the fact that the only observable

is the membrane voltage, since the gating variables are non-

physical abstractions of the microscopic states of the ion
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Fig. 1. Phase response curve derived from the Hodgkin-Huxley neuron
model for Ib = 10mA [11].

channels in the cell membrane. The relationship between

voltage and phase is not one-to-one, so phase cannot be

ascertained only by voltage except when the neuron spikes.

So rather than developing a control law based on continuous

voltage feedback, we will focus on observing the spikes

as events. Much work on event-based control of nonlinear

systems has been done, especially with respect to stochastic

processes [1]. While we do not consider stochasticity here,

the event-based framework is well-suited to our control prob-

lem, since Z(θ) is non-invertible and traditional feedback

linearization fails.

When a spike event happens, we compare the neuron’s

phase to that of its reference oscillator, and construct an

open-loop waveform that will actuate the neuron with the

goal of correcting all, or a portion of, its phase error by

the time the neuron spikes again. The reference oscillator

evolves according to the simple equation

θr(t) = ωrt + θr(0) mod2π

where ωr = ω is the natural frequency of the reference

oscillator, and θr(0) is its initial condition. The times at

which the reference oscillator crosses zero are the times we

want the controlled phase oscillator (neuron) to cross zero

(spike).

Generally, one would define the phase error as

∆θ = θ − θr.

In the scenario presented in this paper, the phase error is

sampled only when θ = 0, so effectively ∆θ = −θr.

However, the phase error, as presently defined, exists on

(−2π, 0]. To accommodate convenient notation for later

development, we wrap the phase error to the interval (−π, π].
This is accomplished using the following phase wrapping

algorithm (shown here in general form):

∆θ =

{

θ − θr , for |θ − θr| ≤ π
θ − θr − sgn(θ − θr)2π , for |θ − θr| > π

(4)

We are interested in how ∆θ changes after a period of

control actuation, so we will define ∆θ+ to be the phase

error at the time of the next spiking event. Thus, we seek a

control law that decreases the phase error over one period,

i.e.

∆θ+/∆θ < 1 ∀ ∆θ ∈ (−π, π]

excluding ∆θ = 0 (where ∆θ+ should also equal 0).

Additionally, we desire a control algorithm that provides

actuation signals that are small in magnitude and does not

result in charge accumulation (the integral of the control

signal over one period of actuation should equal zero), in

order to minimize collateral damage to the neuron and its

surrounding tissue in the brain.

III. IMPULSIVE CONTROL

In nature, neurons communicate by voltage spikes that are

large in magnitude but very short in duration. Signals of this

kind are a biological analog of impulses. In fact, dynamical

systems researchers in mathematical neuroscience have long

used the concept of impulsive coupling to model networks

of neurons [3]. This has inspired the idea of using impulsive

signals (Dirac delta functions) for spike timing control.

Impulses are desirable inputs from the perspective of the

phase-reduced model, since delta functions turn the calculus

into simple algebra. For example, consider the dynamics of

generic phase-reduced model over the time interval [tI , tII ]
subject to an impulsive input at time t∗ :

θ̇ = ω + Z(θ)ũδ(t − t∗)

where the tI ≤ t∗ < tII . The solution is simply

θ(tII) = θ(tI)+ω(tII−tI)+Z(θ(tI)+ω(t∗−tI))ũ mod2π.
(5)

We will proceed by using (5) as the basic building block

of our control scheme. Intuitively, we want to drive the

oscillator with impulses timed to occur when its phase

corresponds to that of the extremal values of its phase

response curve. For example, if the control objective is to

speed up the neuron, the optimum strategy is stimulate with

a negative impulse, timed to occur when θ = α (recall

Z(α) = Zmin < 0), followed by a positive impulse, timed

to occur when θ = β (recall Z(β) = Zmax > 0).

Since we are not considering noise, we can use (5) to

predict the phase of the actuated oscillator using simple

algebra. The charge balance constraint is implemented by

simply constraining the control to be in the form of two

timed impulses of equal magnitude but opposite sign. Recall

that the control objective is to reduce the phase error after

each period of actuation, i.e. ∆θ+ < ∆θ. The following

control algorithm, derived using (5), gives ∆θ+ = K∆θ,

where we choose K ∈ [0, 1):

u(t) = ũ(δ(t − t1) − δ(t − t2)), (6)

where

ũ =
(1 − K)∆θ

Zmax − Zmin

, t1 =
α

ω
, t2 =

1

ω
(β − Zminũ).

(7)
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Condition Minimum admissible correction factor Kmin

0 < θ(t+1 ) 1 + α(Zmax−Zmin)
πZmin

θ(t+1 ) < γ 1 + (γ−α)(Zmax−Zmin)
πZmin

γ < θ(t+2 ) 1 − (β−γ)(Zmax−Zmin)
πZmax

θ(t+2 ) < 2π 1 − (2π−β)(Zmax−Zmin)
πZmax

TABLE I

CONSTRAINTS ON Kmin

In the control schemes presented in this paper, t represents

the time since the last spiking event and is reset to zero

whenever θ crosses the θ = 2π = 0 spike threshold.

While this is somewhat of an abuse of notation, it will

greatly simplify the presentation of the control schemes by

relinquishing the need to carry an incrementing time offset.

In terms of the cost function J =
∫ ∞

0
|u(t)|dt this

impulsive control law is obviously optimal, since it corrects

the error exactly as we intend over one control period, and

any other control waveform would be using energy at a

“weaker” part of the phase response curve, or would violate

the charge balance constraint.

We must remember, however, that the phase-reduced

model is a simplified representation of a higher-dimensional

conductance-based model, and has a weakness that must be

addressed. The behavior of the phase-reduced model is not

necessarily representative of the conductance-based model

when the impulses are large enough to drive the oscillator

to a phase where the sign of the phase response curve is

different from what it was prior to the impulse. Also, if the

oscillator is driven beyond the θ = 2π = 0 spike threshold,

in either direction, the phase-reduced model loses relation to

the conductance-based model, since a phase of zero implies

a firing and an essential “reset” of the oscillator.

Since we are concerned with asymptotic convergence to

a fixed frequency reference trajectory, we can easily avoid

these issues by using fractional error correction with

K ≥ Kmin > 0,

where Kmin is determined by the phase response curve Z(θ).
Table I lists the corner conditions for Kmin. In the table,

θ(t+1 ) refers to the phase of the oscillator immediately after

the impulse at t = t1. Likewise θ(t+2 ) refers to the phase

immediately after the impulse at t = t2.

IV. QUASI-IMPULSIVE CONTROL

We now modify the impulsive control to use finite mag-

nitude and nonzero duration control pulses. Using finite

(small) magnitude control pulses is important in the context

of EDBS, since the brain tissue exposed to the electrical

stimulus can be damaged by large electrical currents. Also,

the phase reduction method assumes that the input acts as

a small perturbation. A digital approximation of a Dirac

delta function as a rectangular spike with magnitude ũ/dt,
where dt is equal to the sample time, works well for nu-

merical simulation of the phase-reduced nonlinear oscillator

model, but is inappropriate for use with the full-dimensional

conductance-based model. It can instantaneously jolt the

state far off its periodic orbit and yield results that are not

closely approximated by the phase reduced model.

To address these issues, we develop a quasi-impulsive

control that uses the same control energy as the impulsive

control, but extends the duration and confines the magnitude

of the impulse to be equal to a threshold C, which is chosen

to be greater than or equal to a certain minimum value

Cmin. Obviously, we are sacrificing optimality, since the

finite duration pulses may be stimulating the neuron at sub-

extremal regions of the phase-response curve. We will show,

however, that when implemented on the full-dimensional

Hodgkin-Huxley neuron model, the resulting performance is

quite close to the fractional error correction factor K derived

from the optimum impulsive control method (6).

Analagous to a delayed bang-bang control, this method

stimulates at magnitudes equal to the threshold constraint

C ≥ Cmin, using rectangular pulses of opposite sign

centered at t1 and t2 with durations such that the integral

of each pulse is equal to ũ. Using a value of fractional

error correction K ≥ Kmin satisfying the conditions listed

in Table I, we propose the following control scheme:

u(t) =























0 , for 0 ≤ t < tA
sgn(∆θ)C , for tA ≤ t < tB
0 , for tB ≤ t < tC
−sgn(∆θ)C , for tC ≤ t < tD
0 , for tD ≤ t

(8)

where

tA = t1 −
|ũ|
2C

, tB = t1 + |ũ|
2C

tC = t2 −
|ũ|
2C

, tD = t2 + |ũ|
2C

(9)

and ũ is as defined previously in (7). The corner conditions

that determine the minimum admissible threshold constraint

Cmin are listed on Table II. These conditions are derived

in similar manner as those for the minimum fractional error

correction factor Kmin. Together, these constraints ensure

that the control signal always stimulates in the right direction

and will yield a charge balanced waveform. In the limit of

C → ∞, this scheme recovers the timing of the purely

impulsive control law (6).

Theorem For the phase-reduced neural oscillator model

θ̇ = ω + Z(θ)u(t) where u(t) is as defined in (8), Z(θ)

satisfies the conditions from (3), K satisfies the conditions

in Table I, and C satisfies the conditions in Table II, the

phase error ratio over one period of actuation will be a

strict contraction (∆θ+

∆θ
< 1), implying global monotonic

convergence of the oscillator phase θ(t) to the reference

phase θr(t).
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Condition Minimum admissible control magnitude Cmin

0 < tA
ωπ(1−K)

2α(Zmax−Zmin)

tB < tC max
∆θ∈(−π,π]

“

ω∆θ(1−K)
(β−α)(Zmax−Zmin)−Zmin(1−K)∆θ

”

θ(tB) < γ max
∆θ∈(−π,π]

“

−ω(1−K)∆θ

2[(γ−α)(Zmax−Zmin)−Zmin(1−K)∆θ]

”

θ(tC) > γ
ωπ(1−K)

2(β−γ)(Zmax−Zmin)

θ(tD) < 2π max
∆θ∈(−π,π]

“

−ω(1−K)∆θ

2[(2π−β)(Zmax−Zmin)+Zmax(1−K)∆θ]

”

TABLE II

CONSTRAINTS ON Cmin

Proof: First, a word on notation. When developing

bounds to prove error convergence, underbars x and

overbars x̄ will denote the greatest lower and least upper

bounds on the variable x, respectively. The objective of

the proof is to show that the error gain, ∆θ+

∆θ
, is strictly

less than one for all values of initial error ∆θ ∈ (−π, π].
This implies that the phase error is reduced after each

event-driven actuation period. And since the oscillator in

absence of input rotates around S
1 with natural frequency

ω, events are persistent in time, which make it impossible

for a steady state error to exist.

If the extension of the impulsive control to the quasi-

impulsive case were perfect, we would expect ∆θ+

∆θ
= K.

This, however, is the greatest lower bound, since a pulse with

nonzero duration implies that the control will be stimulating

the neuron at phases where the phase response curve may be

sub-extremal. We will proceed with the proof by developing

bounds on the time at which the oscillator will spike (cross

the θ = 2π = 0 threshold), which we will denote as t+, and

which will be compared with the time at which the constant

frequency reference oscillator spikes to determine the phase

error after one period of actuation, ∆θ+.

For simplicity, we will develop bounds on t+ by separately

considering the cases ∆θ > 0 and ∆θ < 0. When ∆θ = 0,

no control action is taken so that ∆θ+ = 0.

Case I: ∆θ > 0
Intuitively, the control should slow the neuron down when

∆θ > 0. A control magnitude C ≥ Cmin satisfying the

conditions in Table II guarantees that throughout the duration

of the first pulse, the oscillator will have a phase between 0
and γ, the region where Z(θ) is negative semidefinite. For

a positive ∆θ, the pulse will be positive, so the stimulus

can only decrease the velocity of the oscillator below ω.

Likewise, admissibility of the control magnitude further

guarantees that the oscillator’s phase will be between γ and

2π (the region where Z(θ) is positive semidefinite) during

the second pulse which is negative, since ∆θ > 0. Again

this means that the control signal can only decrease the

oscillator’s velocity below its natural frequency ω.

If there was no control, the neuron would spike again at

t+ = 2π/ω, which would result in ∆θ+ = ∆θ. In view of

the argument above, this is, in fact, the lower bound t+.

Now we step through the dynamics to develop an upper

bound for t+. We begin at θ(0) = 0. Then, advancing with

zero input until tA,

θ(tA) = ωtA = α −
ω(1 − K)∆θ

2C(Zmax − Zmin)
.

Now we calculate a lower bound on θ(tB). We do this by

using Zmin as a lower bound on the phase response curve.

Between tA and tB , our input is equal to C. We obtain

θ(tB) = θ(tA) + (ω + ZminC)(tB − tA)

= α +
(ω + 2CZmin)(1 − K)∆θ

2C(Zmax − Zmin)
.

We then evolve with zero input until tC :

θ(tC) = θ(tB) + ω(tC − tB) = β −
ω(1 − K)∆θ

2C(Zmax − Zmin)
.

The input is then applied again, this time with in the negative

direction, since we wish to slow the neuron down, and

Zmax > 0. We obtain

θ(tD) = θ(tC) + (w − ZmaxC)(tD − tC)

= β +
(ω − 2CZmax)(1 − K)∆θ

2C(Zmax − Zmin)
.

We now solve for the upper bound t+ using the relation

θ(t+) = 2π = θ(tD) + ω(t+ − tD),

giving

t+ = tD +
2π − θ(tD)

ω
=

2π + (1 − K)∆θ

ω

So for ∆θ > 0,

2π

ω
< t+ ≤

2π + (1 − K)∆θ

ω
.

In terms of phase, these bounds on t+ imply K ≤ ∆θ+

∆θ
< 1,

as desired.

Case II: ∆θ < 0
When ∆θ < 0, the control method seeks to speed up the

oscillator. Following the C ≥ Cmin admissibility argument

from Case I, but with the signs flipped, we conclude that

the control signal cannot slow the oscillator down. Thus we

have a simple upper bound: t+ = 2π/ω. We can now step

through the dynamics in the same manner as Case I, but with

∆θ < 0, to yield the inequality

2π + (1 − K)∆θ

ω
≤ t+ <

2π

ω
.

Therefore, K ≤ ∆θ+

∆θ
< 1, as claimed.

Thus, for all nonzero values of ∆θ ∈ (−π, π], the control

provides error contraction over one period of actuation, and

if ∆θ = 0, the control takes no action.
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The solid lines in the plots in Figure 2 illustrate the

performance of this control algorithm for the phase-reduced

model derived from the Hodgkin-Huxley system with the

phase response curve shown previously in Figure 1. For this

phase response curve, the minimum admissible values Kmin

and Cmin are 0.63 and 1.65 mA, respectively. The results

shown are for K = 0.7 and C = 1.7 mA. We see that the

gain ∆θ+

∆θ
is between 0.7 and 0.8 over the entire interval,

quite close to our prescribed K value of 0.7 derived from

the optimal impulsive control method (6). As discussed in

[6], the global stability of the origin of M : ∆θ 7→ ∆θ+

determines the global asymptotic stability of the phase error.

Here, M is well-behaved, smooth, and is confined to the

first and third quadrants (as expected with global monotonic

convergence).

V. APPLICATION TO THE FULL-DIMENSIONAL

MODEL

We now implement the quasi-impulsive control method (8)

on the full-dimensional neuron model (1) using parameters

listed in [4]. Our objective is to show that the phase error

gain ∆θ+

∆θ
is less than one for all initial values of ∆θ. We will

also compare the results to those achieved with the phase-

reduced model.

Before outlining our results, we will briefly explain how

we implement the control, which was developed for the

phase-reduced model, on the full-dimensional model. For a

single simulation, we choose an initial error ∆θ. We initialize

the state of the model with phase θ(0) = 0 (the state vector

representation of that point on the periodic orbit, x(0), is

known based on information derived during the phase reduc-

tion). We then integrate the ODE system (in x coordinate

space) using the electrical stimulus signal I(t) = cu(t),
where we recall that c is the constant membrane capacitance

(which for the standard Hodgkin-Huxley system is equal

to 1.0µF/cm2). The simulation proceeds until a spike is

detected (the details of spike detection and phase sampling

can be found in [5]). The timing of this spike is compared to

the timing of the reference oscillator spike (initialized based

on the choice of ∆θ) to obtain the value of ∆θ+. The results

of fifty individual simulations with initial conditions ranging

over ∆θ ∈ (−π, π] are shown as a black line with white

circle markers on Figure 2. We see that the implementation of

the control law based on the phase-reduced model yields very

similar results for the full-dimensional system. These results

represent a significant improvement over previous work [6].

Here we have monotonic error convergence, whereas previ-

ous methods yielded asymptotic error convergence of |∆θ+

∆θ
|,

a somewhat weaker control objective.

VI. CONCLUSIONS

We have developed a method to control the spike timing of

a phase-reduced model of an oscillatory neuron that provides

global monotonic convergence of the oscillator’s phase to

that of a reference phase trajectory with the same natural

frequency. We have shown that the resulting control law is

effective in achieving the same objective when applied to
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Fig. 2. Quasi-impulsive control algorithm performance. The left plot shows
the phase error gain. The right plot shows the ∆θ 7→ ∆θ+ map. Solid lines
are results from the phase-reduced model to be compared with the white
circle markers, which are results from the full-dimensional Hodgkin-Huxley
system.

the full-dimensional conductance-based neuron model. The

control algorithms developed in this paper are applicable to

any Type II oscillatory neuron, and have been illustrated on

the prototypical Hodgkin-Huxley model.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the funding agencies

previously listed, and thank J. Hespanha for insight and

discussions related to this problem.

REFERENCES
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