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Abstract: The emergence of wind turbine systems for 
electric power generation can help satisfy the growing 
global demand. To maximize wind energy captured in 
variable speed wind turbines at low to medium wind 
speeds, a robust control strategy is presented. The 
proposed strategy simultaneously controls the blade pitch 
and tip speed ratio, via the rotor angular speed, to an 
optimum point at which the efficiency constant (or power 
coefficient) is maximum. The control method allows for 
aerodynamic rotor power maximization without the 
restrictions of exact wind turbine model knowledge. A 
series of numerical results show that the wind turbine can 
be controlled to achieve maximum energy capture. 

I. INTRODUCTION 
Wind energy has evolved into an attractive energy 

source for electric utilities, although it is currently 
responsible for only one percent of the global electrical 
power output.  The structure of wind turbines, as well as 
the fact that the wind energy rate is uncontrollable, 
compounds the problem of regulating the power capture 
of the wind turbine. This problem has been alleviated by 
the construction of variable speed wind turbines, which 
are designed to regulate the power captured over a range 
of wind speeds. The efficiency of power regulation, is 
however dependent on the selected control method.1 

Wind turbine control methods include classical 
techniques [1]-[3], which utilize a linearized wind turbine 
system model and a single measured wind turbine output 
for control. In [2], a PID controller compensates for wind 
speed fluctuations by changing the pitch angle to keep the 
rotor speed constant. The controller is improved by 
selecting gain values based on minimization of rotor 
speed error and the actuator duty cycle. Another common 
control method is full state feedback [4]-[7], which is 
sensitive to errors in modeling and measurements. Liebst 
[4] uses individual blade pitch linear quadratic Gaussian 
(LQG) optimal control to reduce the loads on a wind 
turbine due to environmental factors such as shear and 
gravity. The dynamics of the wind turbine blade flap, lag 
and pitch are modeled.  Knudsen et al. [5] compare PI and 
H∞ controllers for regulating the pitch of a 400kW wind 
turbine. The H∞ controller accounts better for turbine 
model uncertainties as well as error in measuring the wind 
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speed, thus reducing pitch activity. Disturbance 
accommodating control can account for measurement 
disturbances by augmenting a state-estimator based 
controller to recreate disturbance states using an assumed 
waveform model [8]. These new states reduce disturbance 
effects. Wright and Balas [8] describe the design of a state 
space control algorithm for the regulation of the rotor 
speed of a two bladed wind turbine in full-load operation 
using a simple five degree-of-freedom linear model. The 
authors demonstrate that the pole placement technique 
can stabilize the modeled turbine while state estimators 
reduce the number of required measurements. The wind 
speed fluctuations are reduced using disturbance 
accommodating control. 

Fuzzy logic control [9]-[11] and neural networks [12] 
have been investigated to reduce the uncertainties faced 
by classical control methods. Prats et al. [10] present a 
fuzzy logic application for enhanced energy capture in a 
variable speed, variable pitch wind turbine. A dynamic 
model was developed using torque and blade pitch fuzzy 
control and produced better results than linear control. 
Zhang et al. [11] compared PID and fuzzy logic control in 
the control of the rotation of the wind wheel and reverse 
moment of the generator in a variable speed wind turbine 
and concluded that fuzzy logic control produce a 
smoother output with less susceptibility to disturbances. 
Adaptive control schemes [13]-[16] have been developed 
to eliminate some of the problems faced in wind turbine 
control, such as unknown and time varying model 
parameters in the wind turbine model. Song et al. [14] 
used a model reference adaptive control scheme to force a 
wind turbine with a known power efficiency function, to 
track a desired rotor speed that maximizes the energy 
captured by controlling the excitation winding voltage of 
the generator. Johnson et al. [15] developed an adaptive 
control algorithm for controlling the generator torque on a 
fixed pitch variable speed wind turbine. This approach 
maximized the energy capture in low to medium wind 
speeds without knowledge of the optimal tip speed ratio.  

In this study, a control strategy is developed to regulate 
the blade pitch angle and rotor speed of a variable speed 
wind turbine system. The control objective is to maximize 
the energy captured by the wind turbine in low to medium 
wind speeds by tracking a desired pitch angle and rotor 
speed, with the wind turbine system nonlinearities 
structurally uncertain. Additionally, the maximization of 
the energy captured is achieved without the knowledge of 
the relationship that governs the power capture efficiency 
of the wind turbine.  Instead, an optimization algorithm is 
developed to seek the unknown optimal blade pitch angle 
and rotor speed that maximize the energy captured (via 
the aerodynamic rotor power) while ensuring that the 
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resulting trajectories are sufficiently differentiable. The 
disadvantage of not explicitly knowing the optimal pitch 
angle and rotor speed a priori is countered by the fact that 
the optimal rotor speed, and likewise, the optimal pitch 
angle, will change as the wind speed changes, which can 
be accounted for by the optimization algorithm. A robust 
controller is used and proven to yield a globally uniformly 
ultimately bounded (GUUB) stable closed loop system 
through Lyapunov-based analysis. 

The paper is organized as follows. In Section II, a wind 
turbine dynamic model will be presented. In Section III, a 
robust tracking controller is introduced along with the 
error system dynamics. The stability analysis is presented 
in Section IV. In Section V, the system nonlinearities 
have been estimated. The reference trajectory generation 
is discussed in Section VI, followed by numerical 
simulation results in Section VII. Concluding remarks are 
presented in Section VIII. 

II. DYNAMIC MODEL DEVELOPMENT 
The selected wind turbine model consists of two 

subsystems: pitch (wind turbine blades and pitch actuator) 
and drive train (high-speed shaft, gearbox, low-speed 
shaft and generator) [16]. The aerodynamic rotor power is 
dependent on the available wind power and the power 
coefficient. The power coefficient is a function of two 
variables: the tip-speed ratio (TSR) and the blade pitch 
angle. The rotor power of the wind turbine, ( )aeroP t ∈\ , 
can be defined as 

( ) 3
aero

1 ,
2 pP C Avλ β ρ=                    (1) 

where ρ ∈\  is the air density, A∈\  is the rotor swept 
area, ( )v t ∈\  is the wind speed, ( )pC ⋅ ∈\  denotes the 
power coefficient of the wind turbine, which is assumed 
to be unknown, ( )tλ ∈\  is the tip-speed ratio, and 

( )tβ ∈\  represents the blade pitch angle. The tip-speed 

ratio, ( )tλ ,  is defined as  

R
v

ωλ =            (2) 

where ( )tω ∈\  is the rotor speed and R  is the rotor 
radius. From (1) and (2), it is clear that there exists an 
optimal rotor speed *ω , and blade pitch angle *β , for a 
particular wind speed at which the power capture 
efficiency is maximum, represented by max

pC , where 

( )max * *,p pC C λ β= . 

The rotor power, ( )aero ,P t  can also be written as 

aero aeroP τ ω=                                     (3)  
where ( )aero tτ ∈\  is the aerodynamic torque applied to 

the rotor by the wind. An expression for ( )aero tτ  can be 
derived from (1)-(3) as 

( ) 2
aero

,1
2

pC
AR v

λ β
τ ρ

λ
=      (4) 

Remark 1: In (1), it is assumed that ( )pC ⋅ is unknown, 

hence ( )aeroτ ⋅ is unmeasurable. 
The wind turbine model structure can be written as [16] 

( ), , cMX f X vβ τ+ =�� �                         (5) 

where ( ) ( ) ( )
0

2 1

T
t

t

X t t dt tω β ×
⎡ ⎤

∈⎢ ⎥
⎢ ⎥⎣ ⎦
∫� \  are the state 

variables, 2 2M ×∈\  denotes the lumped inertia matrix, 

( ) ( ) 2 1
aero 0

T
f τ ×⋅ − ⋅ ∈⎡ ⎤⎣ ⎦� \  represents the system 

nonlinearities, and ( ) 2 1
c tτ ×∈\  is the control input 

torque. 
To facilitate the control development process, the 

following model characteristics are assumed: 
A.1: ( ) ( ) ( ) ( ), , ,v t t t tω β β�  are measurable. 

A.2: ( )v t  is constant or slowly time varying. 
A.3: ,R ,A ρ are known constants. 
A.4: , ,v v v ∞∈� �� L . 

A.5: ( ) ( ) ( ), , , , , , , , , , ,f X v f X X v f X X X vβ β β ∞∈� ��� � �� � �� ���� �� L  if 

, , ,X X Xβ ∞∈� �� ��� L  
A.6: M is a known symmetric, positive definite matrix. 
 

Remark 2: ( ), ,f X vβ �  can be upper bounded by a 

known function such that ( ) ( ), , ,zf X v Xβ ρ β≤� � . 

III. ERROR SYSTEM DEVELOPMENT 

The control objective is to maximize the aerodynamic 
rotor power of the wind turbine, ( )aeroP t ,  while tracking 

a developed desired rotor speed ( )d tω ∈\  and blade 

pitch angle ( )d tβ ∈\  such that dω ω→  and dβ β→  as 
t → ∞ . To quantify this objective, measurement tracking 
errors denoted by ( ) ( )1 2,e t e t ∈\  are defined as 

( ) ( ) ( ) ( ) ( ) ( )1 2,d de t t t e t t tω ω β β− −� �     (6) 

Remark 3: The variables ( )d tω  and ( )d tβ are planned 
online using a numerical-based two-dimensional 
optimization algorithm to maximize the rotor power 

( )aeroP t  such that at a given wind velocity, ( )v t ,  
* ,dβ β→  *

dω ω→  hence aero maxP P→  where 

max 3
max

1
2 pP C Avρ� , and * * T

ω β⎡ ⎤⎣ ⎦ denotes the set of 

constants resulting from the optimum seeking algorithm 

after convergence. ( ) ( ) ( )
0

,
Tt

d d dt
X t t tω β⎡ ⎤

⎢ ⎥⎣ ⎦∫� is designed 
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such that ( ) ,d tβ ( ) ,d tβ� ( ) ,d tβ�� ( )d tβ��� , ( ) ,d tω  

( ) ,d tω� ( )d tω ∞∈�� L . 
The following filtered tracking error, denoted by 
( )2r t ∈\ , is defined to facilitate the subsequent 

controller design  
2 2 2 2 2 2,r e e r e eμ μ+ = +� � �� ��        (7) 

where μ ∈\ is a positive constant. 
Remark 4:  Based on the definition of ( )2r t  given in 

(7), standard arguments can be used to prove that if 
( )2r t ∞∈L , then ( ) ( )2 2,e t e t ∞∈� L . 
After forming a new set of states, 

( ) ( ) ( )1 2
T

z t e t r t= ⎡ ⎤⎣ ⎦ , taking its time derivative and pre-
multiplying by M , the following expression can be 
obtained 

1

2 2

0e
Mz M M

e eμ
⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

�
�

�� �
          (8) 

2

0
dMz MX MX M

eμ
⎡ ⎤

= − + ⎢ ⎥
⎣ ⎦

�� ���
�

           (9) 

( )
2

0
dMz MX f M

e
τ

μ
⎡ ⎤

= + ⋅ − + ⎢ ⎥
⎣ ⎦

���
�

      (10) 

Based on the subsequent stability analysis in the next 
section and the structure of the open loop error system in 
(10), the control input ( )c tτ  is designed as 

( ) ( )2

2

0 ˆ z
c d sMX M f Kz z

e
ρ

τ
μ ε

⋅⎡ ⎤
= + + ⋅ + +⎢ ⎥

⎣ ⎦
��

�
   (11) 

where ( ) ( ){ }
1

1ˆ ˆsat
1sf f

sτ
⋅ ⋅

+
� , ( )f̂ ⋅  is an estimate of 

( )f ⋅  designed in Section IV, K +∈\  is a control gain 

and 1,ε τ +∈\  are small constants, s  is the laplace 
variable, and {}sat ⋅ is the saturation function . 

Remark 5: ( ) ( )ˆ ˆ,s sf f ∞⋅ ⋅ ∈� L  since {}sat ∞⋅ ∈L and 

1

1
1sτ +  

is a proper bounded filter. Thus, it may be 

assumed that ( )ŝ Nf ρ⋅ ≤ , where .Nρ +∈\  

Substituting the control torque from (11) into the open-
loop dynamics of (10), results in the following closed-
loop error system 

( ) ( ) ( )2
ˆ z
sMz f f Kz z

ρ
ε

⋅
= ⋅ − ⋅ − −�   (12) 

IV. STABILITY ANALYSIS 
Theorem 1: Given the closed loop system of (12), all 

signals are bounded and the tracking error signal ( )z t  is 
globally uniformly ultimately bounded (GUUB).  

Proof:  See [17]-[19] for proof. 
Using Remark 4, it can be implied that 
( ) ( )2 2,e t e t ∞∈� L . Similarly, (6) and Remark 3, allow for 

( ) ( ),t X tβ ∞∈� L . From A.5, it is apparent that 

( )f ∞⋅ ∈L . It can be shown that ( )c tτ ∞∈L  using (11). 
The application of standard signal chasing arguments 
permits the conclusion that all signals in the closed-loop 
system remain bounded. In particular, from (12), 

( ) ( ) ( )1 2, ,z t e t e t ∞∈� ��� L . Using A.5, it is clear that 

( )f ∞⋅ ∈� L . After taking the time derivative of (11) and 

using Remark 5, it can be shown that ( )c tτ ∞∈� L . After 
taking the time derivative of (5), it is apparent that 

( )X t ∞∈��� L . Finally it may be concluded that ( )f ∞⋅ ∈�� L  
using A.5. 

V. ESTIMATION OF SYSTEM NONLINEARITIES 
As previously stated, the objective of this paper is to 

maximize the aerodynamic rotor power of a variable 
speed wind turbine with structurally uncertain system 
nonlinearities. This model property requires that the 
system nonlinearities be estimated. The estimate of ( ) ,f ⋅  

denoted by ( )ˆ ,f ⋅  is developed for two reasons:  

I. ( )f̂ ⋅  is used as a feed-forward term in the control 

design, through ( )ˆ ,sf ⋅ to reduce the magnitude of the 

control input torque, ( )tτ . 

II. From Remarks 1 and (3), ( )aeroP t  is unmeasurable. 

By  utilizing  ( ) ( ) ( )aero
ˆ ˆˆ ,

T
f Nτ⎡ ⎤⋅ = ⋅ ⋅⎣ ⎦  an estimate 

of the captured power, ( )aeroP̂ t , can be realized 

where ( ) ( ) ( )aero aero
ˆ ˆ .P t t tτ ω=  

Now consider the two systems 

( ) ( )ˆˆ, , ,c cMX f X v MX fτ β τ= − = − ⋅���� �  (13) 

where ( ) 2 1X̂ t ×∈\  denotes the estimate of the states, and 

( )f̂ ⋅  is the estimate of ( )f ⋅ .  
The objective of the estimator is to track the system 

nonlinearities ( )f ⋅  such that ( ) ( )f̂ f⋅ → ⋅ as t → ∞ . To 
quantify this objective, the observation errors, 

( ) ( ) 2 1,X t f t ×∈� �� \  are defined as  

ˆˆ ,X X X f f f= − = −�� �� �                 (14) 
The filtered observation error, denoted by ( ) 2 1r t ×∈\ , is 
defined to facilitate the subsequent design and analysis 

r X X= + Δ�� �� �           (15) 
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where +Δ ∈\  is a constant. After taking the time 
derivative of (15) and pre-multiplying by ,M  it may be 
shown that 

ˆMr MX MX f f X= + Δ = − + + Φ −���� �� ��� � ��              (16) 

where MX XΦ = Δ +�� �� �  
Remark 6: Φ can be upper bound such that N zρΦ ≤  

where ( ) ( ) ( ) T
,z t t r tω= ⎡ ⎤⎣ ⎦� and Nρ +∈\  is a constant. 

Based on the structure of (16) as well as the subsequent 
stability analysis, the following implementable continuous 
estimator law is proposed to achieve the stated estimator 
objectives  

( ) ( )0
ˆ sgnf k r Xρ= + Δ +� ��         (17) 

where 0,k ρ +∈\ are control gains. 
Before presenting the stability analysis, the following 

lemma will be introduced and later invoked. 
Lemma 1: Let the auxiliary function ( )L t ∈\  be 

defined as  

( )( )0 sgnTL r f Xρ− �� ��   (18) 

If the control gain 0ρ  is selected to satisfy the sufficient 

condition ( )
( )

0 ,
f

fρ
⋅

⋅ +
Δ

>
��

�  then ( )
0

0

t

t
L dτ τ ζ≤∫  

where the positive constant 0ζ ∈\  is  

( ) ( ) ( )0 0 0 0
1

T
o X t X t f tζ ρ +� � �� ��      (19) 

Proof: See [17]-[19] for similar proof. 
Theorem 2: The estimator law of (17) ensures that all 

system signals are bounded and we obtain asymptotic 
tracking in the sense that ( ) ( ) ( )lim , , 0

t
X t X t r t

→∞
=� ��� � . 

Proof: See [17]-[19] for similar proof. 
From (13), the following relationship can be obtained. 

ˆMX f f f= − = −�� ��                    (20) 

 From (20), ( ) 0f t →�  as t → ∞ , which implies that 

( ) ( )aeroˆaero t tτ τ→ . 

VI. TRAJECTORY GENERATOR 
In Remark 2, it is assumed that a desired trajectory 

( ) ( ) ( ) T
d d dt t tξ ω β= ⎡ ⎤⎣ ⎦  can be generated such that 

( ) ( ) ( ) ( ), , ,d d d dt t t tξ ξ ξ β ∞∈� �� ��� L  and *
dξ ξ→ where *ξ  is 

an unknown set of constants that maximizes the 
aerodynamic rotor power ( )aeroP t . As stated previously, 

( )aeroP t  is unmeasurable. Thus, the estimated captured 

power aero
ˆ ˆaeroP τ ω=  can be used instead. The optimum 

seeking algorithm used in this study is the Powell’s 
method. Powell’s method only requires measurement of 

the output function ( )aeroP̂ t  and an initial guess (not 

required to be close to the value of *ξ ). Powell’s method 
can then find *ξ  by performing a series of one 
dimensional line maximizations (using Brent’s method) 
with convergence due to the non-trivial choice of search 
directions [20] (i.e., new directions are calculated using 
the extended parallel subspace property to avoid linear 
dependence).  

To ensure that ( ) ( ) ( ) ( ), , ,d d d dt t t tξ ξ ξ β ∞∈� �� ��� L , a filter 
based form of Powell’s method is used, wherein at each 
iteration, ( )d kξ is passed through a set of third order 
stable and proper low pass filters to generate continuous 
bounded signals for ( ) ( ) ( ) ( ), , ,d d d dt t t tξ ξ ξ β� �� ��� . The filters 
shown in (21)-(24) are used in this study, where 

1 2 3 4, , ,ζ ζ ζ ζ +∈\  are filter constants. The optimization 
algorithm waits until certain error thresholds are met 
before making the next guess (i.e., if ( ) ( ) 1d dt k eξ ξ− ≤ , 

( ) 2f e⋅ ≤�  and ( ) ( ) 3dt t eξ ξ− ≤  then 1k k= + ) where 

1 2 3, ,e e e +∈\  are constants and 1, 2,k = …  

( ) ( )1
3 2 3

2 3 4
d dt k

s s s
ζξ ξ

ζ ζ ζ
=

+ + +
            (21)                  

( ) ( )1
3 2 3

2 3 4
d d

s
t k

s s s
ζξ ξ

ζ ζ ζ
=

+ + +
�            (22) 

( ) ( )
2

1
3 2 3

2 3 4
d d

s
t k

s s s
ζξ ξ

ζ ζ ζ
=

+ + +
��           (23) 

( ) ( )
3

1
3 2 3

2 3 4
d d

s
t k

s s s
ζβ β

ζ ζ ζ
=

+ + +
���           (24) 

VII. SIMULATION RESULTS  
A numerical simulation is presented in this section to 

illustrate the performance of the controller introduced in 
(11),  and to demonstrate the numerical-based optimum 
seeking reference trajectory generator. The system model 
in (5) corresponded to a small turbine and was assumed to 
have the following system nonlinearities 

( ) ( ) 3,1 0
2

T
pC

f A v
λ β

ρ
ω

⎡ ⎤
⋅ = −⎢ ⎥

⎢ ⎥⎣ ⎦
        (25) 

The model parameters are listed in Appendix A. The 
desired and actual rotor angular speeds, ( )d tω  and ( )tω , 

respectively, are shown in Fig. 1. It is clear that ( )tω  

successfully tracks ( )d tω . Similarly, it is clear that ( )tβ  

successfully tracks ( )d tβ as shown in Fig.2. The power 

coefficient function ( ),pC λ β , illustrated in Fig. 3, was 
obtained using blade-element momentum theory in [21]. 
For this case, max 0.4405pC =  at 
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* *8 2.4λ β⎡ ⎤= =⎣ ⎦ which according to (2), corresponds 

to  * *6 2.4ω β⎡ ⎤= =⎣ ⎦ . The numerical-based optimum 

seeking algorithm converged to * *6.075 2.3ω β⎡ ⎤= =⎣ ⎦  
as shown in Figs. 1 and 2. In Fig. 4, the maximum 
simulated power coefficient ( )pC t , converges to 

max 0.4401pC = . After analysis, the following four 
conclusions can be made. First, From Figs. 2 and 3, it can 
be concluded that ( ) ( ) ( ) ( ),d dt t t tω ω β β→ →  and 

( ) * ,d tω ω→  ( ) *
d tβ β→ , thus ( ) *tω ω→ and 

( ) * ,tβ β→  which fulfills the stated control objective. 
Second, the results of the optimum seeking algorithm 
were within five percent of the nominal optimum blade 
pitch angle and rotor speed. Next, the tracking 
errors, ( ) ( )1 2, ,e t e t for both subsystems settle to a 

neighborhood of  65 10−± ×  around zero after 400 seconds. 
Finally, the control input ( )tτ  is bounded as shown in 
Fig. 5. Overall, the control strategy proposed in this study 
produced favorable results. 
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VIII. CONCLUSIONS 
A nonlinear controller has been developed for a 

variable speed wind turbine system to optimize the energy 
captured by the wind turbine. A desired blade pitch angle 
and rotor speed trajectory generator is provided that seeks 
the unknown optimal set-point while ensuring the 
trajectory remains bounded and sufficiently differentiable. 
To track the desired trajectory, a robust controller is 
developed, which is proven to yield a globally uniformly 
ultimately bounded stable closed-loop system via 
Lyapunov-based analysis. The simulation results 
demonstrated the excellent performance of the robust 
controller and the numerical-based optimum seeking 
algorithm. 
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APPENDIX 

A. Simulation parameters 
Table I shows the values of the parameters used in the 

numerical simulation of Section VII. 
 

TABLE I 
SIMULATION PARAMETERS AND VALUES 

Variables Value Units 

M  
5 0
0 5
⎡ ⎤
⎢ ⎥
⎣ ⎦

 kg.m2 

R  2 m 
v  1.5 m.s2 

A  12.6 m2 

ρ  1.2 kg/m3 

ε  0.1 - 
K  10 - 
μ  3 - 
k  10 - 
Δ  2 - 
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