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Abstract— In this paper, we discuss infinite-horizon soft-
constrained stochastic Nash games involving state-dependent
noise in weakly coupled large-scale systems. First, linear
quadratic differential games are formulated in which robustness
is attained against model uncertainty. In particular, conditions
for the existence of robust equilibria have been derived from
the solutions of the sets of cross-coupled stochastic algebraic
Riccati equations (CSAREs) for the first time. After establishing
an asymptotic structure along with positive semidefiniteness
for CSARE solutions, we derive a new algorithm based on
Lyapunov iterations for solving the CSAREs. Consequently, we
show that the proposed algorithm attains linear convergence
and reduced-order computations for a sufficiently small value of
ε. Finally, numerical example is provided to verify the efficiency
of the proposed algorithm.

I. INTRODUCTION

The stochastic control problems governed by Itô’s dif-

ferential equation have become a popular research topic

during the past decade. Particularly, a practical example of

the flexible structure comprising a mass-spring system has

been demonstrated [1]. It has been shown that the so-called

’Langevin equation’ driven by Gaussian white noise has two

different uncertainties involving deterministic and stochastic

portions. Moreover, the stochastic H∞ control problem with

state- and control-dependent noise have been investigated. It

has attracted much attention and has been widely applied in

various fields. In particular, the stochastic H2/H∞ control

with state-dependent noise has been addressed [3].

Linear quadratic Nash games and their applications have

been widely investigated in many literatures (see e.g. [11]).

Recently, robust equilibria in indefinite linear quadratic

differential games under a deterministic disturbance input

affecting the systems have been discussed [5], [6]. These

results are based on the steady-state feedback saddle-point

solution for soft-constrained Nash games [7]. Although the

results in [5], [6] are very elegant in theory and it is

easy to obtain a strategy pair by solving the cross-coupled

algebraic Riccati equations, stochastic uncertainty has not

been considered.

In this paper, we discuss a theoretical and a numerical

aspect by extending the results of [5], [6] in the deter-

ministic case to the soft-constrained stochastic Nash games

governed by Itô’s differential equations with state-dependent
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noise. It should be noted that earlier studies on weakly

coupled stochastic Nash games [8] have not taken the state-

dependent noise into consideration. Further, in [13], even the

deterministic disturbance input has not been considered. On

the other hand, although the stochastic H2/H∞ control has

been considered, stochastic noise and unknown deterministic

disturbance [3] involving multiple players have not been

addressed. Hence, the concept of Nash equilibrium cannot

be ascertained. The main contributions of this paper are

as follows. First, linear quadratic differential games are

investigated with respect to an infinite horizon. It should be

noted that systems governed by Ito’s differential equations

are disturbed by deterministic noise and strategy spaces

involve the linear feedback strategy with a memory-less

perfect-state information structure [9]. After formulating the

soft-constrained problem for the one-player case, a set of

sufficient conditions is given as the saddle-point solution.

Moreover, in order to guarantee the existence of strat-

egy pairs, sets of cross-coupled stochastic algebraic Riccati

equations (CSAREs) are introduced for the first time. As

a result, these strategy pairs can be obtained by solving

the CSAREs. Second, the soft-constrained stochastic Nash

games for weakly coupled large-scale systems are inves-

tigated from the numerical viewpoint. Since the proposed

numerical computation is based on the Lyapunov iterations,

linear convergence is guaranteed for a sufficiently small

parameter ε. Finally, in order to demonstrate the efficiency

of the proposed algorithm, numerical example is included.

Notation: The notations used in this paper are fairly standard.

Superscript T denotes the matrix transpose. M = (mij)
denotes standard notation of a matrix (mij are the elements

of M ). In denotes an n × n identity matrix. block diag

denotes a block diagonal matrix. || · || denotes the Euclidean

norm of a matrix. E denotes the expectation. ⊗ denotes the

Kronecker product. The space of the Rk-valued functions

that are quadratically integrable on (0, ∞) are denoted by

Lk
2(0, ∞).

II. SOFT-CONSTRAINED STOCHASTIC NASH

GAMES

Consider stochastic linear time-invariant weakly coupled

large-scale systems.

dx(t) = [Aεx(t) + B1εu1(t) + B2εu2(t) + Eεv(t)]dt

+A1εx(t)dw(t), x(0) = x0, (1)
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where

x(t) :=

[

x1(t)
x2(t)

]

, v(t) :=

[

v1(t)
v2(t)

]

,

Aε :=

[

A11 εA12

εA21 A22

]

, A1ε :=

[

A111 εA112

εA121 A122

]

,

B1ε :=

[

B11

εB21

]

, B2ε :=

[

εB12

B22

]

, Eε :=

[

E11 εE12

εE21 E22

]

.

xi(t) ∈ Rni, i = 1, 2 represent the i-th state vectors.

ui(t) ∈ Rmi , i = 1, 2 represent the i-th control inputs.

vi(t) ∈ Rli , i = 1, 2 represent the i-th disturbance.

w(t) ∈ R is a one-dimensional standard Wiener process

defined in the filtered probability space [1], [2], [3], [4].

Moreover, vi(t) ∈ Lli
2 (0, ∞) is considered to be an unknown

finite-energy stochastic disturbance that adversely affects the

to-be-controlled output (whose desired value is represented

by 0) [2]. Here, ε denotes a relatively small positive cou-

pling parameter that relates the linear system with the other

subsystems.

The cost function for each strategy subset is defined by

Ji(u1, u2, v, x(0))

= E

∫ ∞

0

[

xT (t)Qiεx(t) + uT
i (t)Riiui(t)

+εuT
j (t)Rijuj(t) − vT (t)Viεv(t)

]

dt, (2)

where i, j = 1, 2, i �= j, Qiε = QT
iε ≥ 0,

Q1ε =

[

Q111 εQ112

εQT
112 εQ122

]

, Q2ε =

[

εQ211 εQ212

εQT
212 Q222

]

,

Rii = RT
ii > 0 ∈ Rmi×mi , Rij = RT

ij ≥ 0 ∈ Rmj×mj ,

V1ε = block diag
(

V11 ε−1V12

)

> 0,

V2ε = block diag
(

ε−1V21 V22

)

> 0.

Stabilizability-an essential assumption in this paper-has been

introduced [3].

Definition 1: The stochastically controlled system gov-

erned by the Itô’s equation dx = (Fx + Gu)dt + G1xdw1,

x(0) = x0 is called stabilizable in the mean-square sense

if there exists a feedback law u = Kx such that for

any x0, the closed-loop system dx = (F + GK)xdt +
G1xdw1, x(0) = x0 is asymptotically mean-square stable,

i.e., limt→∞ ExT (t)x(t) = 0, where K is a constant matrix.

For the matrices Aε, Bjε, j = 1, ... , N and A1ε, the set

FN is defined as FN :=

{

(F1ε, ... , FNε) | The closed-loop

system dx(t) = [Aε +
∑N

p=1 BpεFpε]x(t)dt+A1εx(t)dw(t)

is asymptotically mean-square stable.

}

.

The soft-constrained stochastic Nash equilibrium strategy

pair (u∗
1, u∗

2), u∗
i (t) := F ∗

iεx(t) is defined such that it

satisfies the following conditions [5], [6].

J̄1(F
∗
1εx, F ∗

2εx, x(0)) ≤ J̄1(F1εx, F ∗
2εx, x(0)), (3a)

J̄2(F
∗
1εx, F ∗

2εx, x(0)) ≤ J̄2(F
∗
1εx, F2εx, x(0)), (3b)

where

J̄i(F1εx, F2εx, x(0)) := sup
v∈Lk̄

2(0, ∞)

Ji(F1εx, F2εx, v, x(0)),

Ji(F1εx, F2εx, v, x(0))

= E

∫ ∞

0

[

xT (t)(Qiε + F T
iεRiiFiε

+εFT
jεRijFjε)x(t) − vT (t)Viεv(t)

]

dt,

for all x(0) and for all (F1ε, F2ε) that satisfy (F ∗
1ε, F2ε) ∈

F2, (F1ε, F ∗
2ε) ∈ F2, and (F ∗

1ε, F ∗
2ε) ∈ F2.

It should be noted that in this study, the strategies u∗
i are

restricted as the linear feedback strategies [9]. The weighting

matrix Viµ is always symmetric and positive definite for all

i = 1, 2. Since Ji is negative, this matrix constrains the

disturbance vector v in an indirect way; therefore, it can be

used to describe the aversion to the model risk of player i
[5]. In particular, if the quantity vT Viµv is large for vector v,

this means that player i does not expect large deviations in

the nominal dynamics in the direction of Eεv. In a previous

result [5] and numerous existing results, this so-called soft-

constrained formulation has been used.

A. ONE-PLAYER CASE

First, a one-player case is discussed. The result obtained

for that particular case will be used as the basis for the

derivation of the results for the general 2-player case.

Consider a linear time-invariant stochastic stabilizable

system

dx(t) = [Aεx(t) + B1εu1(t) + Eεv(t)]dt

+A1εx(t)dw(t), x(0) = x0, (4)

where u1(t, x) := F1εx(t), F1ε ∈ F1. The cost function is

given below.

J(u1, v, x(0))

= E

∫ ∞

0

[

xT (t)Q1εx(t) + uT
1 (t)R11u1(t)

−vT (t)V1εv(t)
]

dt. (5)

Let us define the strategies spaces Γu := {u1(t, x) :=
F1εx(t) | F1ε ∈ F1} and Γv := {v(t) | v(t) ∈ Ll̄(0, ∞)}.

Definition 2: A strategy pair (u∗
1, v∗) ∈ Γu × Γv is in

saddle-point equilibrium if

J(u∗
1, v, x(0))≤J(u∗

1, v∗, x(0))≤J(u1, v∗, x(0)) (6)

for all (u∗
1, v) ∈ Γu × Γv and (u1, v∗) ∈ Γu × Γv .

The following theorem generalizes the existing results of

[5], [6], which is a very important result in deterministic

soft-constrained Nash games, to a stochastic case.

Theorem 1: Assume that for any u1(t) and v(t), the

stochastic system is stabilizable. Suppose that the following

stochastic algebraic Riccati equation (SARE) has the solution

Pε ≥ 0.

PεAε + AT
ε Pε + AT

1εPεA1ε

−Pε(S1ε − M1ε)Pε + Q1ε = 0, (7)
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where S1ε := B1εR
−1
11 BT

1ε, M1ε := EεV
−1
1ε ET

ε .

The strategy pair

u∗
1(t, x) = F ∗

1εx(t) = −R−1
11 BT

1εPεx(t), (8a)

v∗(t) = V −1
1ε ET

ε Pεx̃(t), (8b)

dx̃(t) = [Aε − (S1ε − M1ε)Pε]x̃(t)dt

+A1εx̃(t)dw(t), x̃(0) = x0 (8c)

is in saddle-point equilibrium if it is asymptotically mean-

square stable and F ∗
1ε ∈ F1. That is, inequality (6) related

to the cost function J(u1, v, x(0)) is satisfied. Moreover,

J(u∗
1, v∗, x(0)) = xT (0)Pεx(0).
Proof: Since we assume that for any u1(t) and v(t),

the stochastic system is stabilizable, there exists a feedback

law u = Kx such that limt→∞ ExT (t)x(t) = 0. Thus, by

applying the Itô’s formula to (4) and considering (8a), we

get

J(u1, v, x(0))

= xT (0)Pεx(0) + E

∫ ∞

0

[

||u1(t) − u∗
1(t)||

2
R11

−||v(t) − V −1
1ε ET

ε Pεx(t)||2V1ε

]

dt. (9)

From this, it follows that

J(u∗
1, v, x(0))

= xT (0)Pεx(0) − E

∫ ∞

0

||v(t) − V −1
1ε ET

ε Pεx̃(t)||2V1ε
dt

≤ xT (0)Pεx(0), (10)

where x̌(t) is governed by

dx̃(t) =

[

(Aε − S1εPε)x̃(t) + Eεv(t)

]

dt

+A1εx̃(t)dw(t), x̃(0) = x0.

Furthermore, if J(u∗
1, v, x(0)) = xT (0)Pεx(0), then v(t) =

v∗(t). Hence, J(u∗
1, v, x(0)) < xT (0)Pεx(0), for all v(t) �=

v∗(t) and J(u∗
1, v∗, x(0)) = xT (0)Pεx(0).

Let x̂(t) and x̄(t) be governed by

dx̂(t) = [Aεx̂(t) + B1εF1εx̂(t) + Eεv
∗(t)]dt

+A1εx̂(t)dw(t), x̂(0) = x0, (11a)

dx̄(t) = [Aεx̄(t) + B1εF
∗
1εx̄(t) + Eεv

∗(t)]dt

+A1εx̄(t)dw(t), x̄(0) = x0, (11b)

respectively. Furthermore, define ν(t) := (F ∗
1ε − F1ε)x̂(t)

and η(t) := v∗(t) − V −1
1µ ET

ε Pεx̂(t).
Then,

J(u1, v∗, x(0)) − J(u∗
1, v∗, x(0))

= E

∫ ∞

0

[

||ν(t)||2R11
− ||η(t)||2V1ε

]

dt. (12)

Introducing ξ(t) := x̄(t) − x̂(t), the following equation is

satisfied.

dξ(t) = [(Aε − S1εPε)ξ(t) + B1εν(t)]dt

+A1εξ(t)dw(t), ξ(0) = 0, η(t) = V −1
1ε ET

ε ξ(t). (13)

Hence, taking into account the fact that for any ν(t), the

closed-loop system is asymptotically mean-square stable,

E

∫ ∞

0

d

dt
ξT (t)Pεξ(t)dt = 0. (14)

Thus, the following inequality holds.

J(u1, v∗, x(0)) − J(u∗
1, v∗, x(0))

= E

∫ ∞

0

[

||ν(t)||2R11
− ||η(t)||2V1ε

−
d

dt
ξT (t)Pεξ(t)

]

dt

= E

∫ ∞

0

[

||ν(t) + F ∗
1εξ(t)||

2
R11

+ ξT (t)Q1εξ(t)

]

dt ≥ 0. (15)

This is the desired result.

B. SOFT-CONSTRAINED STOCHASTIC NASH EQUILIB-

RIUM

The soft-constrained stochastic Nash games are given

below.

Theorem 2: Suppose there exists positive semidefinite

symmetric matrices Piε.

Gi(ε, P1ε, P2ε)

= Piε (Aε − SjεPjε) + (Aε − SjεPjε)
T

Piε + AT
1εPiεA1ε

−PiεSiεPiε+εPjεSijεPjε+PiεMiεPiε+Qiε = 0, (16)

where i, j = 1, 2, i �= j, Siε := BiεR
−1
ii BT

iε, Sijε :=
BjεR

−1
jj RijR

−1
jj BT

jε, Miε := EεV
−1
iε ET

ε .

The strategy set (F ∗
1ε, F ∗

2ε) is defined by

u∗
i (t) := F ∗

iεx(t) = −R−1
ii BT

iεPiεx(t), i = 1, 2. (17)

Then, (F ∗
1ε, F ∗

2ε) ∈ F2 and this strategy set denote

soft-constrained stochastic Nash equilibrium. Furthermore,

J̄i(F
∗
1ε, F ∗

2ε, x(0)) = xT (0)Piεx(0).
Proof: Now, let us consider the following problem in

which the cost function (18) is minimal at Fiε = F ∗
iε.

φ(Fε) := sup
v∈Lk̄

2(0, ∞)

E

∫ ∞

0

[

xT (t)(Qiε + F T
iεRiiFiε

+εPT
jεSijPjε)x(t) − vT (t)Viεv(t)

]

dt, (18)

where x(t) follows from

dx(t) =
[

(Aε − SjεPjε + BiεFiε)x(t) + Eεv(t)
]

dt

+A1εx(t)dw(t), x(0) = x0. (19)

Note that the function φ coincides with function J in The-

orem 1. Applying Theorem 1 to this minimization problem

as

Aε − SjεPjε ⇒ Aε, Biε ⇒ B1ε,

Qiε + εP T
jεSijPjε ⇒ Q1ε, Rii ⇒ R11, Viε ⇒ V1ε

yields the fact that the function φ is minimal at

F1ε = −R−1
ii BT

iεPiε = F ∗
iε. (20)

Moreover, the minimal value is xT (0)Piεx(0).
It should be noted that the asymptotically mean-square

stable can be proved by using the similar technique used in

[1].
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III. ASYMPTOTIC STRUCTURE OF CSARES

Firstly, in order to obtain the strategy set based on nu-

merical solutions, the asymptotic structure of CSARE (16)

is established. Since Aε, A1ε, Siε, Sijε, Qiε and Miε include

the term of the parameter ε, the solution Piε of CSARE (16)-

if it exists-should contain the parameter ε. By considering

this fact, the solution Piε of CSARE (16) is assumed to have

the following structure.

P1ε =

[

P111 εP112

εP T
112 εP122

]

, P2ε =

[

εP211 εP212

εP T
212 P222

]

. (21)

Substituting the matrices Aε, A1ε, Siε, Sijε, Qiε, Miε and

Piε into CSARE (16), letting ε = 0, and partitioning CSARE

(16), the following reduced-order stochastic algebraic Riccati

equation (SARE) is obtained, where P̄iii, i = 1, 2 is the

0-order solutions of CSARE (16) as ε = 0.

P̄iiiAii + AT
iiP̄iii + AT

1iiP̄iiiA1ii

−P̄iii(Sii − Mii)P̄iii + Qiii = 0, (22)

where Sii := BiiR
−1
ii BT

ii and Mii := EiiV
−1
ii ET

ii .

The following condition is assumed.

Assumption 1: SARE (22) has a positive semidefinite so-

lution.

The asymptotic expansion of CSARE (16) for ε = 0 is

described by the following lemma.

Lemma 1: Under Assumption 1, there exists a small con-

stant σ∗ such that for all ε ∈ (0, σ∗), CSARE (16) admits

a positive semidefinite solution P ∗
iε that can be expressed as

Piε := P ∗
iε = P̄i + O(ε), (23)

where

P̄1 =block diag
(

P̄111 0
)

, P̄2 =block diag
(

0 P̄222

)

.
Proof: Since the result of Lemma 1 can be proved by

using a technique similar to that used in [13], the proof is

omitted.

IV. LYAPUNOV ITERATIONS FOR SOLVING

CSARES

When CSARE (16) is solved, the existence of the cross-

coupled term makes it difficult to directly solve this equation.

Thus, in order to avoid the cross-coupled term, Lyapunov

iterations [12] can be applied. It has been shown that

Lyapunov iterations yield the positive semidefinite stabiliz-

ing solution for the sign-indefinite cross-coupled algebraic

Riccati equation (CARE) [12]. However, there are no results

for CSARE (16). It should be noted that CSARE (16) is

quite different from the existing CARE because there is the

stochastic term AT
1εPiεA1ε in CSARE (16). This can be

convincing motivation to establish a new Lyapunov iteration

for solving CSARE (16). On the other hand, when Newton’s

method and two fixed-point iterations for solving CSARE

[13] are applied, many procedure is needed. By using the

Lyapunov iteration, the reduction of the required operation

count is attained. As a result, the reduction of the CPU time

would be guaranteed.

In order to obtain the solution of CSAREs (16), the

following useful algorithm is given.

P
(k+1)
iε

(

Aε −

2
∑

p=1

SpεP
(k)
pε + MiεP

(k)
iε

)

+

(

Aε −

2
∑

p=1

SpεP
(k)
pε + MiεP

(k)
iε

)T

P
(k+1)
iε

+AT
1εP

(k+1)
iε A1ε + P

(k)
iε SiεP

(k)
iε − P

(k)
iε MiεP

(k)
iε

+εP
(k)
jε SijεP

(k)
jε + Qiε = 0, k = 0, 1, ... , (24a)

P
(k)
1ε :=

[

P
(k)
111 εP

(k)
112

εP
(k)T
112 εP

(k)
122

]

, P
(k)
2ε :=

[

εP
(k)
211 εP

(k)
212

εP
(k)T
212 P

(k)
222

]

(24b)

with the initial conditions

P
(0)
iε = P̄i. (25)

The following theorem indicates that the proposed algorithm

which is based on Lyapunov iterations attain the linear

convergence.

Theorem 3: Under Assumption 1, there exists the small

constant σ̄ such that for all ε ∈ (0, σ̄), σ̄ ≤ σ∗, the iterative

algorithm (24a) converges to the exact solution of P ∗
iε with

the rate of the linear convergence, where P
(k)
iε is positive

semidefinite matrix and Aε − SjεP
(k)
jε + MiεP

(k)
iε is stable

matrix. That is, the following conditions are satisfied.

||P
(k)
iε − P ∗

iε|| = O(εk+1), (26a)

Reλ

[

Aε −

2
∑

p=1

SpεP
(k)
pε + MiεP

(k)
iε

]

< 0, k = 0, 1, ... .(26b)

The following lemma will play an important role in

establishing (26a).

Lemma 2: If dz(t) = Az(t)dt +
∑N

p=1 Apz(t)dwp(t)

is exponentially mean-square stable and Q = QT ,

zT (0)Pz(0) =
∫ ∞

0 zT (t)Qz(t)dt where P satisfies the

stochastic algebraic Lyapunov equation (SALE) AT P +
PA +

∑N

p=1 AT
p PAp + Q = 0.

Proof: The proof of this theorem can be derived by

using the mathematical induction. When k = 0, taking

(23) into account, it is easy to verify that the first order

approximations P ∗
iε corresponding to the small parameter ε

are the same as P
(0)
iε . Moreover, since

Aε −

2
∑

p=1

SpεP
(0)
pε + M1εP

(0)
1ε

= block diag
(

D11 H11

)

+ O(ε) := D1 + O(ε),

Aε −

2
∑

p=1

SpεP
(0)
pε + M2εP

(0)
2ε

= block diag
(

H22 D22

)

+ O(ε) := D2 + O(ε),

where Dii := Aii − SiiP̄iii + MiiP̄iii, Hii = Aii −
SiiP̄iii, i = 1, 2, there exists the small perturbation

parameter σ0 such that Aε −
∑2

p=1 SpεP
(0)
pε + MiεP

(0)
iε is
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stable because Di is stable for sufficiently small ε. When

k = h, h ≥ 1, it is assumed that

||P
(h)
iε − P ∗

iε|| = O(εh+1), (27a)

Reλ

[

Aε −

2
∑

p=1

SpεP
(h)
pε + MiεP

(h)
iε

]

< 0. (27b)

Subtracting (16) from (24a) and setting k = h, the following

equations are satisfied.

(

P
(h+1)
iε − P ∗

iε

)

(

Aε −

2
∑

p=1

SpεP
(h)
pε + MiεP

(h)
iε

)

+

(

Aε −
2

∑

p=1

SpεP
(h)
pε + MiεP

(h)
iε

)T
(

P
(h+1)
iε − P ∗

iε

)

+AT
1ε

(

P
(h+1)
iε − P ∗

iε

)

A1ε

+P ∗
iεSjε

(

P ∗
jε − P

(h)
jε

)

+
(

P ∗
jε − P

(h)
jε

)

SjεP
∗
iε

+
(

P
(h)
iε − P ∗

iε

)

Siε

(

P
(h)
iε − P ∗

iε

)

−
(

P
(h)
iε − P ∗

iε

)

Miε

(

P
(h)
iε − P ∗

iε

)

+ε
[

P
(h)
jε SijεP

(h)
jε − P ∗

jεSijεP
∗
jε

]

= 0. (28)

Using the fact that the assumption (27a) holds, it is easy to

derive that

P ∗
iεSjε

(

P ∗
jε − P

(h)
jε

)

= O(εh+2),
(

P
(h)
iε − P ∗

iε

)

Siε

(

P
(h)
iε − P ∗

iε

)

= O(ε2h+2),
(

P
(h)
iε − P ∗

iε

)

Miε

(

P
(h)
iε − P ∗

iε

)

= O(ε2h+2),

ε
[

P
(h)
jε SijεP

(h)
jε − P ∗

jεSijεP
∗
jε

]

= O(εh+2).

It should be noted that if i �= j, P ∗
iεSjε = O(ε) holds. Thus,

the following relation is satisfied.

(

P
(h+1)
iε − P ∗

iε

)

(

Aε −

2
∑

p=1

SpεP
(h)
pε + MiεP

(h)
iε

)

+

(

Aε −

2
∑

p=1

SpεP
(h)
pε + MiεP

(h)
iε

)T
(

P
(h+1)
iε − P ∗

iε

)

+AT
1ε

(

P
(h+1)
iε − P ∗

iε

)

A1ε + O(εh+2) = 0. (29)

By using Lemma 2 and taking into account the fact that

the stability assumption (27b) holds, the following result is

satisfied.

||P
(h+1)
iε − P ∗

iε|| = O(εh+2). (30)

Furthermore, it is shown that there exists the small positive

perturbation parameter σh+1 such that

Aε −

2
∑

p=1

SpεP
(h+1)
pε + MiεP

(h+1)
iε

= Aε −

2
∑

p=1

SpεP
∗
pε + MiεP

∗
iε + O(εh+2) = Di + O(ε)

is stable. Consequently, choosing σ̄ := min{σ0, ... , σh+1},

the relation (27b) holds for all k ∈ N. This completes the

proof of Theorem 3 concerned with the Lyapunov iterations.

Using the asymptotic structure of the solutions (23), the

local uniqueness of the convergence solutions is studied.

Theorem 4: Under Assumption 1, there exist the suffi-

ciently small constant σ̂ such that for all ε ∈ (0, σ̂), σ̂ ≤
σ̄ ≤ σ∗, the convergence solution P ∗

iε of the iterative solution

P
(k)
iε is unique in the neighborhood of ε = 0.

Proof: First, under Assumption 1, there exists the

neighborhood of ε = 0 such that the CSARE (16) admits

a unique positive semidefinite solution P ∗
iε by means of the

implicit function theorem (see the proof of Lemma 1). That

is, for sufficiently small ε, the CSARE (16) has a unique

positive semidefinite solution P ∗
iε. Taking into account the

fact that the solutions P ∗
iε of (23) and (27a) are equivalent,

the iterative solution P
(k)
iε converges to P ∗

iε and it is a unique

solution for sufficiently small ε.

It seems to be formidable for solving the stochastic

algebraic Lyapunov equation (SALE) (24a) because such

equations are not the ordinary algebraic Lyapunov equation

(ALE). In fact, The MATLAB function lyap cannot be

used. Then, using the gradient-based (GI) algorithm [10],

it can be easily solved with the same order dimension of the

systems.

For example, let us consider the SALE (24a) in the

following general form.

ΞT Y + Y Ξ + ΞT
1 Y Ξ1 + U = 0, (31)

where Ξ, Ξ1, Y = Y T ≥ 0, U = UT ∈ Rni×ni.

It should be noted that for SALE (31),

Aε −

2
∑

p=1

SpεP
(k)
pε + MiεP

(k)
iε ⇒ Ξ,

A1ε ⇒ Ξ1, P
(k+1)
iε ⇒ Y,

P
(k)
iε SiεP

(k)
iε −P

(k)
iε MiεP

(k)
iε +εP

(k)
jε SijεP

(k)
jε +Qiε ⇒ U.

The GI algorithm for solving the SALE (31) is given below

[10].

Y (m) =
Ys1(m) + Ys2(m) + Y1(m)

3
, (32)

where

Ys1(m) := Y (m − 1) + λΘ(m)ΞT ,

Ys2(m) := Y (m − 1) + λΞΘ(m),

Y1(m) := Y (m− 1) + λΞ1Θ(m)ΞT
1 ,

Θ(m) := U − ΞT Y (m) − Y (m)Ξ − ΞT
1 Y (m)Ξj ,

Y (0) = 0, λ−1 := 2||Ξ||+ ||Ξ1||
2.

It should be noted that the convergence has been proved in

[10]. Finally, using the GI algorithm (32), the same order

computations of each system dimension can be attained.
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TABLE I

ERROR PER ITERATIONS .

k ||G(k)(1.0e − 02)|| ||G(k)(1.0e − 03)|| ||G(k)(1.0e − 04)|| ||G(k)(1.0e − 05)||
0 1.9380e − 001 1.9346e − 002 1.9342e − 003 1.9341e − 004
1 6.1463e − 004 5.8604e − 006 5.8569e − 008 5.8568e − 010
2 2.9966e − 006 2.8384e − 009 1.9861e − 011 1.9880e − 011
3 2.3193e − 008 1.9879e − 011
4 1.0336e − 010
5 1.9885e − 011

V. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of the proposed al-

gorithm, a numerical example is given. The system matrices

are given as follows.

n1 = n2 = 20, A11 = −I20 + R1, A12 = R1,

A21 = R1, A22 = −1.2I20 + R1,

R1 = (r1
ij), r1

ij := ε sin(i − j),

A111 = 1.0e − 03 × (I20 + R2), A112 = 1.0e− 03 ×R2,

A121 = 1.0e − 03 ×R2, A122 = 1.0e − 03 × (I20 + R2),

R2 = (r2
ij), r2

ij := ε cos2(i − j),

B11 = (b11
ij ), b11

ij := cos(i − j),

B22 = (b22
ij ), b22

ij := sin(i− j), Bij = 0, i �= j,

E11 = (e11
ij ), e11

ij := 0.1 × sin2(i − j),

E22 = (e22
ij ), e22

ij := 0.1 × cos2(i − j), Eij = 0, i �= j,

V1 = block diag
(

V11 µ−1I20

)

,

V2 = block diag
(

µ−1I20 V22

)

,

Vii = diag
(

1 2 · · · 20
)

,

Q1 = block diag
(

Q11 εI20

)

,

Q2 = block diag
(

εI20 Q22

)

,

Q11 = 2I20 + εRT
3 R3, R3 := (r3

ij), r3
ij := sin2(i− j),

Q22 = 2I20 + εRT
4 R4, R4 := (r4

ij), r4
ij := cos2(i − j),

R11 = R22 = 1, R12 = 0, R21 = 0.

Small parameter ε = 0.01 is selected. It should be noted

that algorithm (24a) converges to the exact solution with an

accuracy of ||G(k)(ε)|| < 1.0e−10 after five iterations, where

||G(k)(ε)|| :=
∑2

p=1 ||Gp(ε, P
(k)
1ε , P

(k)
2ε )||.

In order to verify the exactitude of the solution, the

remainder per iteration is calculated by substituting P
(k)
iε

into CSARE (16). In Table 1, the results of the error

||G(k)(ε)|| per iteration are given for several values of ε. As

a result, it can be seen that algorithm (24a) yields linear

convergence. Hence, the proposed algorithms of equation

(24a) in this paper are very attractive. Furthermore, even

if weakly coupled large-scale systems (1) are composed of

two 20-dimensional subsystems, the required workspace is

20. This feature is very useful from the practical viewpoint.

VI. CONCLUSIONS

Infinite-horizon soft-constrained stochastic Nash games

have been discussed. First, conditions required for the exis-

tence of Nash equilibrium have been established by utilizing

CSAREs. Second, a numerical algorithm based on Lyapunov

iterations for solving the CSAREs that arose in the stochastic

Nash games for weakly coupled large-scale systems has been

studied. It has been shown that both linear convergence

and reduced-order computations can be attained. Thus, the

proposed algorithm is expected to be very useful and reliable

for a sufficiently small value of ε. Finally, numerical example

has yielded excellent results using which linear convergence

has been verified and the proposed algorithm has succeeded

in reducing the computational workspace.

The stabilizable assumption needs to be relaxed in estab-

lishing the conditions for future investigation. Moreover, in

order to implement the present control methodology for more

practical plants, it will be need to extend the bound of the

small parameter ε.
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