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Abstract— Although guidance of all aircraft is affected by
wind disturbances, micro-UAVs are especially susceptible. To
estimate unknown wind disturbance, we consider two illus-
trative scenarios for planar flight. In the first scenario, we
assume that measurements of the heading angle are available,
while, in the second scenario, we assume that measurements
of the heading angle are not available. Since the disturbance
estimation problem is nonlinear, we develop an extension of
the unscented Kalman filter that provides an estimate of the
unknown wind disturbance. Furthermore, we show through
simulations that, when the heading angle is not measured, a
kinematic ambiguity is introduced. However, when the initial
heading angle is known and the subsequent heading angle is
not measured, this kinematic ambiguity is resolved and accurate
estimates of the wind velocity are obtained.

I. INTRODUCTION

Small and micro air vehicles are increasingly being used

to improve situational awareness by conducting surveillance,

patrolling, and convoy protection [15]. These vehicles pro-

vide imagery reconnaissance capability out to five to ten

miles at the company/platoon/squad level. Due to their small

size, these aircraft have limited payload capacity and usually

carry fixed cameras (which require accurate pointing, there-

fore accurate knowledge of heading) and commercial off-the-

shelf autopilots (which often have poor heading measurement

accuracy) [6].

Although guidance of all aircraft is affected by the atmo-

spheric motion relative to the Earth, that is, wind, micro-

UAVs are especially susceptible. Localized wind-field esti-

mation, especially winds at low velocity, is difficult. Conse-

quently, alternative means must be used to assess the effects

of wind. Efforts in this direction include wind estimation [16,

19], and techniques for path planning in wind, for example

[1, 13], which assume constant known wind fields, and [20,

22], which make use of gimbaled cameras.

In the present paper we develop a technique for using

available measurements to estimate the local wind-field ve-

locity. To do this, we use state-estimation techniques that

have the ability to reconstruct exogenous disturbance signals

that are not directly measured.

In the case of linear systems, early work on reconstructing

exogenous signals includes input reconstruction through sys-

tem inversion [14, 21], while methods using optimal filters

are developed in [2, 5, 8, 23]. More recently, a technique for

reconstructing unknown exogenous disturbances has been
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developed in [4, 17, 18] as an extension of unbiased minimum

variance filtering [12].

In this paper, we extend the techniques in [18] for esti-

mating unknown external disturbances for nonlinear systems.

This technique is based on the unscented Kalman filter

(UKF) [9, 10] for state estimation for nonlinear systems,

which is an example of a sigma point Kalman filters

(SPKF) [24]. Recent work [10, 24] illustrates the improved

performance of SPKFs compared to the extended Kalman

filter (EKF), which is prone to numerical problems such as

initialization sensitivity, bias (divergence), and instability for

strongly nonlinear systems.

The nature of the disturbance estimation (input recon-

struction) problem depends on the type of measurements

available. In the present paper we consider two illustrative

scenarios for planar flight. In the first scenario, we assume

that measurements of the heading angle are available. In this

case, the estimation problem is linear, and the techniques of

[4, 17, 18] are applicable. In the second scenario, we assume

that measurements of the heading angle are not available. In

this case, the disturbance estimation problem is nonlinear,

and we therefore develop an extension of the unscented

Kalman filter that provides an estimate of the unknown

disturbance.

After describing the basic setting in Section 2, the two

scenarios described above are developed in sections 3 and

4. For each scenario, we consider flight involving straight

line and circular motion in the presence of a wind field that

varies as a triangular waveform in both of its components. In

the case of unknown heading angle, we show that wind field

estimation requires knowledge of the initial heading angle in

order to remove a kinematic ambiguity.

II. WIND-FIELD ESTIMATION

Consider the planar flight equations

ẋ = VAC/W cosψ + VW/E cosφ, (2.1)

ẏ = VAC/W sinψ + VW/E sinφ, (2.2)

ψ̇ = ω, (2.3)

where x and y are the ground coordinates of the vehicle,

VAC/W is the airspeed of the vehicle, ψ is the heading angle,

ω is the steering angle rate, VW/E is the wind speed, and φ is

the angle of the direction of the wind as measured from the ı̂

axis. The magnitude and direction of velocity of the vehicle

with respect to the Earth is VAC/E
△
=

√

ẋ2 + ẏ2 and θ
△
=

tan−1
(

ẏ
ẋ

)

, respectively, and note that VAC/E = VAC/W +

VW/E. The relationship between the various components of
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velocities is illustrated in Figure 1. Throughout this paper,

we assume that measurements of x and y are available from

GPS, and that measurements of VAC/W are available from

an airspeed sensor that measures angle of attack and sideslip.

We consider the problem of estimating the unknown wind

speed VW/E and angle φ of the wind.

̂

ı̂

VAC/W

VAC/E

VW/E

ψ
θ

φ

Fig. 1. Schematic of relationship between components of
velocities in an Earth-fixed frame and the body-fixed frame.

III. MEASURED HEADING ANGLE

We first consider the case in which the heading angle ψ

is measured. In this case, we use (2.1) and (2.2) to estimate

VW/E and φ. By defining

VW/E,x
△
= VW/E cosφ, (3.1)

VW/E,y
△
= VW/E sinφ, (3.2)

it follows that (2.1), (2.2) are linear in the unknowns VW/E,x

and VW/E,y. Once estimates of the VW/E,x and VW/E,y are

obtained, the wind speed VW/E and angle φ can be obtained

using the relationships

VW/E =
√

V 2
W/E,x + V 2

W/E,y, (3.3)

φ = tan−1

(

VW/E,y

VW/E,x

)

. (3.4)

Thus the problem is stated as

Problem 1. Equations:

ẋ = VAC/W cosψ + VW/E,x, (3.5)

ẏ = VAC/W sinψ + VW/E,y. (3.6)

Available measurements: x, y, VAC/W, and ψ.

Unknowns: VW/E,x and VW/E,y.

Since Problem 1 is linear in the states and linear in the

unknowns VW/E,x and VW/E,y, we can use the unbiased

minimum-variance filter [18] for linear systems to estimate

the states and the unknown inputs. We briefly review the

Kalman filter and the unbiased minimum-variance filter.

A. Kalman Filter

For the linear stochastic discrete-time dynamic system

xk = Ak−1xk−1 +Bk−1uk−1 +Gk−1wk−1, (3.7)

yk = Ckxk + vk, (3.8)

where Ak−1 ∈ R
n×n, Bk−1 ∈ R

n×p, Gk−1 ∈ R
n×q,

and Ck ∈ R
m×n are known matrices, the state-estimation

problem can be described as follows. Assume that, for all

k ≥ 1, the known data are the measurements yk ∈ R
m,

the inputs uk−1 ∈ R
p, and the statistical properties of

x0, wk−1 and vk. The initial state vector x0 ∈ R
n is

assumed to be Gaussian with mean x̂0 and error-covariance

P xx
0 , E

[

(x0 − x̂0)(x0 − x̂0)
T
]

. The process noise wk−1 ∈
R

q , which represents unknown input disturbances, and the

measurement noise vk ∈ R
m, concerning inaccuracies in the

measurements, are assumed white, Gaussian, zero mean, and

mutually independent with known covariance matrices Qk−1

and Rk, respectively. Next, define the cost function

J(xk) , ρ(xk|(y1, . . . , yk)), (3.9)

which is the conditional probability density function of the

state vector xk ∈ R
n given the past and present measured

data y1, . . . , yk. Under the stated assumptions, the maxi-

mization of (3.9) is the state estimation problem, while the

maximizer x̂k of J is the optimal state estimate.

The optimal state estimate x̂k is given by the Kalman filter

[11], whose forecast step is given by

x̂k|k−1 = Ak−1x̂k−1 +Bk−1uk−1, (3.10)

P xx
k|k−1 = Ak−1P

xx
k−1A

T
k−1 +Gk−1Qk−1G

T
k−1,

(3.11)

ŷk|k−1 = Ckx̂k|k−1, (3.12)

P
yy
k|k−1 = CkP

xx
k|k−1C

T
k +Rk, (3.13)

P
xy
k|k−1 = P xx

k|k−1C
T
k , (3.14)

where P xx
k|k−1 , E

[

(xk − x̂k|k−1)(xk − x̂k|k−1)
T
]

,

P
yy
k|k−1 , E

[

(yk − ŷk|k−1)(yk − ŷk|k−1)
T
]

, and

P
xy
k|k−1 , E

[

(xk − x̂k|k−1)(yk − ŷk|k−1)
T
]

, and whose

data-assimilation step is given by

Kk = P
xy
k|k−1(P

yy
k|k−1)

−1, (3.15)

x̂k = x̂k|k−1 +Kk(yk − ŷk|k−1), (3.16)

P xx
k = P xx

k|k−1 −KkP
yy
k|k−1K

T
k , (3.17)

where P xx
k , E

[

(xk − x̂k)(xk − x̂k)T
]

is the error-

covariance matrix and Kk is the Kalman gain matrix. The

notation ẑk|k−1 indicates an estimate of zk at time k based

on information available up to and including time k − 1.

Likewise, ẑk indicates an estimate of z at time k using

information available up to and including time k. Model

information is used during the forecast step, while measure-

ment data are injected into the estimates during the data-

assimilation step, specifically, (3.16).

B. Unbiased Minimum-variance Filter

Consider the system

xk = Ak−1xk−1 +Bk−1uk−1 +Hk−1ek−1 +Gk−1wk−1,

(3.18)

yk = Ckxk + vk. (3.19)

where xk, yk, uk−1, ek−1, Ak−1, Bk−1, Gk−1 and Ck are

defined as in section III-A, while ek−1 ∈ R
l represents the
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unknown input and Hk−1 ∈ R
n×l is the input matrix. We

assume that Ak−1, Bk−1, Ck, Dk, and Hk−1 are known,

while ek−1 is unknown.

Due to the presence of the unknown non-zero-mean term

Hk−1ek−1, the Kalman filter estimate in Section III-A is

biased in general. The optimal unbiased state estimate x̂k is

given by the Unbiased Minimum-Variance filter (UMV) [18],

whose forecast step is given by (3.10) - (3.14), and whose

data-assimilation step is given by

Vk
△
= CkHk−1, (3.20)

Πk
△
= (V T

k (P yy
k|k−1)

−1Vk)−1V T
k (P yy

k|k−1)
−1, (3.21)

Lk = Hk−1Πk + P
xy
k|k−1(P

yy
k|k−1)

−1(I − VkΠk),

(3.22)

x̂k = x̂k|k−1 + Lk(yk − ŷk|k−1), (3.23)

P xx
k = P xx

k|k−1 − LkP
yy
k|k−1L

T
k , (3.24)

where Lk is the UMV filter gain matrix. Finally, the estimate

of the unknown signal ek−1 is given by

êk−1 = H
†
k−1Lk(yk − Ckx̂k|k−1 −Dkuk). (3.25)

C. Results: Wind Estimation with Measured Heading Angle

The steering angle is chosen to be alternating sequences

of zeros and ones, which represents the aircraft flying al-

ternately in a straight line and in circles. The wind-velocity

component profiles are chosen to be triangular waveforms.

Figure 2 shows the flight path in the absence of wind

disturbance, while Figure 3 shows the flight path in the

presence of the wind disturbance.
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Fig. 2. Flight path of the aircraft in the absence of wind
disturbance. The steering angle is an alternating sequence of
zeros and ones, which represents the aircraft flying in a straight
lines and in circles alternately.

Since Problem 1 is linear in the unknown wind-velocity

components, we apply the UMV filter (3.20)-(3.24) and

(3.25) to estimate the states and unknown inputs, respec-
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Fig. 3. Flight path of the aircraft in the presence of wind
disturbance. The steering angle is an alternating sequence
of zeros and ones, which represents the aircraft flying in a
straight lines and in circles alternately. The two arrows show
the extremities of the wind direction, which is a time-varying
triangular waveform.

tively. Figure 4 compares the actual flight path and their

estimates using the Kalman filter and the UMV filter. Figure

5 shows a magnified version of the time interval from 32 sec

to 48 sec of Figure 4. Although measurements of x and y

positions are available, the state estimates using the UMV

filter are seen to be better than the state estimates using

the Kalman filter. Finally, Figure 6 shows the actual wind

velocity components and their estimates from (3.25) for both

the UMV filter and the Kalman filter, while Figure 7 shows

a zoomed in portion of the interval between 32 sec and 48

sec from Figure 6.

In practice, although measurements of the heading angle

ψ are available, they are often unreliable due to the size

and cost restrictions of the sensors on a micro-UAV. Hence,

we next consider the case in which the heading angle ψ is

unknown.

IV. HEADING ANGLE NOT MEASURED

We now assume that measurements of the heading angle

ψ are not available. Since ψ must be estimated, we consider

the complete equations (2.1) - (2.3). Thus the problem can

be stated as

Problem 2.

ẋ = VAC/W cosψ + VW/E,x, (4.1)

ẏ = VAC/W sinψ + VW/E,y, (4.2)

ψ̇ = ω. (4.3)

Available measurements: x, y, VAC/W, and ω.

Unknowns: ψ, VW/E,x, and VW/E,y.

In this case, since ψ is not measured the state equations

are nonlinear. We thus require a filter for nonlinear systems.
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Fig. 4. Actual flight path and estimate of the flight path using
the Kalman filter and the unbiased minimum-variance filter in
the presence of an unknown wind disturbance.
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Fig. 5. Actual flight path and estimate of the flight path using
the Kalman filter and the unbiased minimum-variance filter in
the presence of an unknown wind disturbance.

A. State Estimation for Nonlinear Systems

Consider the nonlinear stochastic discrete-time dynamic

system

xk = fk−1 (xk−1, uk−1, wk−1) , (4.4)

yk = hk (xk) + vk, (4.5)

where fk−1 : R
n × R

p × R
q → R

n and hk : R
n → R

m

are, respectively, the process and observation models. The

objective of the state-estimation problem is, for all k ≥ 1,

to maximize (3.9). However, the solution to this problem

is complicated [3] by the fact that, for nonlinear systems,

ρ(xk|(y1, . . . , yk)) is not completely characterized by its first
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Fig. 6. Actual wind velocity and filter estimate when
measurements of the heading angle are available.

and second-order moments. We thus use an approximation

based on the classical Kalman filter to provide a suboptimal

solution to the nonlinear case.

B. Unscented Kalman Filter

First, for nonlinear systems, we consider the unscented

Kalman filter (UKF) [9] to provide a suboptimal solution

to the state-estimation problem. Instead of analytically lin-

earizing (4.4)-(4.5) and using (3.10)-(3.17), UKF employs

the unscented transform (UT) [10], which approximates the

posterior mean ŷ ∈ R
m and covariance P yy ∈ R

m×m of a

random vector y obtained from the nonlinear transformation

y = h(x), where x is a prior random vector whose mean

x̂ ∈ R
n and covariance P xx ∈ R

n×n are assumed known.

UT yields the actual mean ŷ and the actual covariance P yy

if h = h1 + h2, where h1 is linear and h2 is quadratic

[10]. Otherwise, ŷk is a pseudo mean and P yy is a pseudo

covariance.

UT is based on a set of deterministically chosen vectors

known as sigma points. To capture the mean x̂a
k−1 of the

augmented prior state vector

xa
k−1 ,

[

xk−1

wk−1

]

, (4.6)

where xa
k−1 ∈ R

na and na , n+q, as well as the augmented

prior error covariance

P xxa
k−1 ,

[

P xx
k−1|k−2 0n×q

0q×n Qk−1

]

, (4.7)
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the sigma-point matrix Xk−1 ∈ R
na×(2na+1) is chosen as















































col0(Xk−1) , x̂a
k−1,

coli(Xk−1) , x̂a
k−1

+
√

(na + λ) coli

[

(

P xxa
k−1

)1/2
]

,

i = 1, . . . , na,

coli+na
(Xk−1) , x̂a

k−1

−
√

(na + λ) coli

[

(

P xxa
k−1

)1/2
]

,

i = 1, . . . , na,

with weights


































γ
(m)
0 ,

λ

na + λ
,

γ
(c)
0 ,

λ

na + λ
+ 1 − α2 + β,

γ
(m)
i , γ

(c)
i , γ

(m)
i+na

, γ
(c)
i+na

,
1

2(na + λ)
,

i = 1, . . . , na,

where coli
[

(·)1/2
]

is the ith column of the Cholesky square

root, 0 < α ≤ 1, β ≥ 0, κ ≥ 0, and λ , α2(κ+ na) − na.

We set α = 1 and κ = 0 [7] such that λ = 0 [9] and set

β = 2 [7]. Alternative schemes for choosing sigma points

are given in [9].

The UKF forecast equations are given by

Xk−1 =
[

x̂a
k−1 x̂a

k−111×na
+

√

(na + λ)
(

P xxa
k−1

)1/2
x̂a

k−111×na
−

√

(na + λ)
(

P xxa
k−1

)1/2
]

,

(4.8)

coli(X
x
k|k−1) = fk−1(coli(X

x
k−1), uk−1, coli(X

w
k−1)), i = 0, . . . , 2na, (4.9)

x̂k|k−1 =

2na
∑

i=0

γ
(m)
i coli(X

x
k|k−1), (4.10)

P xx
k|k−1 =

2na
∑

i=0

γ
(c)
i [coli(X

x
k|k−1) − x̂k|k−1][coli(X

x
k|k−1) − x̂k|k−1]

T, (4.11)

coli(Yk|k−1) = hk(coli(X
x
k|k−1)), i = 0, . . . , 2na, (4.12)

ŷk|k−1 =

2na
∑

i=0

γ
(m)
i coli(Yk|k−1), (4.13)

P
yy
k|k−1 =

2na
∑

i=0

γ
(c)
i [coli(Yk|k−1) − ŷk|k−1][coli(Yk|k−1) − ŷk|k−1]

T +Rk, (4.14)

P
xy
k|k−1 =

2na
∑

i=0

γ
(c)
i [coli(X

x
k|k−1) − x̂k|k−1][coli(Yk|k−1) − ŷk|k−1]

T, (4.15)

where

[

Xx
k−1

Xw
k−1

]

, Xk−1, Xx
k−1 ∈ R

n×(2na+1), and

Xw
k−1 ∈ R

q×(2na+1). The UKF data-assimilation equations

are given by (3.15)-(3.17).

C. Unbiased Minimum-variance Unscented Filter

Next, for nonlinear systems with unknown inputs, we

consider an extension of the UKF along the lines of the linear

UMV filter. Thus, to obtain the pseudo mean and the pseudo

error covariances we use the unscented transform, and to es-

timate the states and unknown inputs, we use the expressions

derived for the UMV filter. Thus, the forecast equations for
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Fig. 7. Actual wind velocity and filter estimate when
measurements of the heading angle are available.

the unbiased minimum-variance unscented (UMVU) filter are

given by (4.8) - (4.15). The data-assimilation equations for

the UMVU filter are given by (3.20) - (3.24).

D. Results: Wind Estimation with Heading Angle not Mea-

sured

To estimate the states and the unknown inputs in Problem

2, we use the UMVU filter described above. We use the

same simulation parameters as in the known heading case.

Figure 8 shows the actual wind velocity components and

their estimates obtained from the UMVU filter.

As can be seen from Figure 8, the estimates of the wind

velocity do not match the actual wind velocity. This is due

to the fact that there is a kinematic ambiguity because of the

combined effect of unknown heading angle and unknown

wind velocity. This kinematic ambiguity is resolved by
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assuming that the initial heading angle is known. This is

a reasonable assumption in practice since many small and

micro UAV’s are launched from catapults. When the initial

heading angle is assumed to be known, but the subsequent

heading is not measured, the estimates of the wind velocity

components using the UMVU filter are shown in Figure 9.
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Fig. 8. Actual wind velocity and filter estimate when the heading
angle is not measured. Due to a kinematic ambiguity, accurate
estimates of the wind are not obtained.
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Fig. 9. Actual wind velocity and filter estimate when the heading
angle is not measured. When the initial heading is assumed to be
known, the kinematic ambiguity is resolved and accurate estimates
of the wind disturbances are obtained.

V. CONCLUSIONS

To estimate unknown wind disturbances, we considered

two illustrative scenarios for planar flight. In the first sce-

nario, we assumed that measurements of the heading angle

are available. In this case, since the estimation problem

is linear, we applied techniques of [18] to estimate the

wind disturbance. In the second scenario, we assumed that

measurements of the heading angle were not available. In the

second scenario, since the disturbance estimation problem

is nonlinear, we developed an extension of the unscented

Kalman filter that provided an estimate of the unknown wind

disturbance. When the heading angle is not measured, a kine-

matic ambiguity was introduced. However, when the initial

heading angle was known and the subsequent heading angle

was not measured, this kinematic ambiguity was resolved and

accurate estimates of the wind disturbance were obtained.
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