
Time Optimal Attitude Control for a Rigid Body

Taeyoung Lee∗†, Melvin Leok∗, and N. Harris McClamroch†

Abstract— A time optimal control problem is studied for
the attitude dynamics of a rigid body. The objective is to
minimize the maneuver time to rotate the rigid body to a desired
attitude and angular velocity while subject to constraints on
the control input. Necessary conditions for optimality are de-
veloped directly on the special orthogonal group using rotation
matrices. They completely avoid singularities associated with
local parameterizations such as Euler angles, and they are
expressed as compact vector equations. In addition, a discrete-
time control method based on a geometric numerical integrator,
referred to as a Lie group variational integrator, is proposed to
compute the optimal control input that respects the underlying
geometric properties of the rigid body. The proposed method is
demonstrated by a large-angle time optimal maneuver for an
elliptic cylinder rigid body.

I. INTRODUCTION

The time optimal control of spacecraft has received consis-

tent interest as rapid attitude maneuvers are critical to various

space missions such as military observation and satellite

communication. The objective is to reorient the attitude of

the spacecraft in a minimal maneuver time with constrained

control moments. To accomplish many space missions, large-

angle attitude maneuvering capabilities are required.

Time optimal attitude maneuvers have been extensively

studied in the literature [1]. The time optimal solution is

found for a single degree of freedom system, where the atti-

tude maneuver is constrained to an eigen-axis rotation, in [2].

It is known that the eigen-axis rotation is not generally time

optimal [3], [4]. The attitude dynamics is often simplified

in an optimality analysis, e.g., by assuming an inertially

symmetric rigid body model [3], [4], [5], linearization [6]

and constant magnitude angular velocity [5].

The attitude is defined as the orientation of a body-fixed

frame with respect to a reference frame, and it is represented

by a rotation matrix that lies in the special orthogonal group,

SO(3). However, most existing optimal control schemes for

the dynamics of a rigid body uses coordinate representations

such as Euler angles or quaternions. The minimal attitude

representations, such as Euler angles and Rodrigues param-

eters, have singularities, so they are not desirable for large-

angle maneuvers. The non-minimal attitude representations,

such as quaternions, have associated problems; besides the

unit norm constraint, the quaternion representation double
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covers SO(3). So, it has an inevitable ambiguity in describing

attitude. There are several possible representations for the

same boundary condition, and they may result in different

computational properties in finding the optimal control input.

The objective of this paper is to solve the time optimal

attitude control problem directly on SO(3) using rotation

matrices without need of any attitude parameterization. Using

a specific property of the special orthogonal group, namely

that the Lie algebra so(3) which consists of skew-symmetric

matrices is isomorphic to R3, necessary conditions for op-

timality are developed and represented as vector equations

on R3. This avoids singularities completely, and the result-

ing necessary optimality conditions are more compact than

expressions obtained in terms of quaternions.

The remainder of this paper is focused on developing a

computational approach to solve this optimal control prob-

lem. The dynamics of a rigid body have certain geometric

features; in addition to the configuration space being a Lie

group, the dynamics are characterized by symplectic, mo-

mentum and energy preserving properties. Most commonly

used numerical integration methods, including the widely

used (non-symplectic) explicit Runge–Kutta schemes, do not

preserve these geometric properties.

Lie group variational integrators are geometric numerical

integrators that preserve these geometric features of the

rigid body dynamics [7]. Based on this structure-preserving

numerical integrator, computational approaches have been

proposed to solve various optimal control problems for the

dynamics of rigid bodies [8], [9]. In this paper, the time

optimal attitude control problem is discretized at the level

of the initial problem formulation, and discrete necessary

conditions for optimality are developed. This provides a

geometrically exact but computationally efficient approach.

This paper is organized as follows. The time optimal

attitude control problem is formulated, and continuous-time

necessary conditions for optimality are developed in Section

II. In a parallel fashion, a discrete-time optimal control

method is presented in Section III, followed by numerical

examples in Section IV.

II. TIME OPTIMAL ATTITUDE CONTROL

A. Equations of Motion

We consider the attitude dynamics of a rigid body. The

configuration space is the special orthogonal group

SO(3) =
{
R ∈ R3×3

∣∣ RT R = I3×3, detR = 1
}

,

where the rotation matrix R ∈ SO(3) represents the linear

transformation from the body-fixed frame to the inertial

frame.
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The continuous equations of motion for the attitude dy-

namics of a rigid body are given by

JΩ̇ + Ω × JΩ = u, (1)

Ṙ = RΩ̂, (2)

where the matrix J ∈ R3×3 is the inertia matrix, the vector

Ω ∈ R3 is the angular velocity expressed in the body-fixed

frame, and the external control moment is denoted by u ∈
R3. The hat map ·̂ : R3 7→ so(3) is an isomorphism from

R3 to skew-symmetric matrices so(3), and is defined by the

condition x̂y = x × y for all x, y ∈ R3. The inverse map is

denoted by the vee map (·)∨ : so(3) 7→ R3.

B. Time Optimal Attitude Control Problem

The objective of the time optimal attitude control problem

is to transfer a given initial attitude and angular velocity

(R◦,Ω◦) of the rigid body to desired values (Rf ,Ωf )
within a minimal maneuver time tf with constrained control

moment ‖u‖ ≤ u for a given control limit u ∈ R.

For given: (R◦,Ω◦), (Rf ,Ωf ), ū

min
u

{
J =

∫ tf

0

1 dt

}
,

such that R(tf ) = Rf , Ω(tf ) = Ωf ,

subject to ‖u(t)‖ ≤ ū ∀t ∈ [0, tf ] and (1), (2).

C. Necessary Conditions for Optimality

We solve this optimal control problem using variational

principles applied on SO(3). Expressions for variations of a

rotation matrix, and transversality conditions are presented,

and necessary conditions for optimality are developed.

Expressions for variations: We represent a variation of

a rotation matrix using the exponential map, exp : so(3) 7→
SO(3)

Rǫ = R exp ǫη̂, (3)

where ǫ ∈ (−c, c) for c > 0, and η̂ ∈ so(3) for η ∈ R3.

Since the exponential map is a local diffeomorphism, this

expression is well-defined for some constant c for given η̂.

The infinitesimal variation of the rotation matrix is given by

δR =
d

dǫ

∣∣∣∣
ǫ=0

R exp ǫη̂ = Rη̂. (4)

The infinitesimal variation of RT Ṙ is obtained from (2) and

(4) as

δ(RT Ṙ) = δRT Ṙ + RT δṘ = −η̂RT Ṙ + RT (Ṙη̂ + R ˆ̇η)

= ˆ̇η + Ω̂η̂ − η̂Ω̂ = (η̇ + Ω × η)̂ . (5)

The variational expressions given by (4) and (5) are the key

ingredients to developing necessary conditions for optimality

for an arbitrary optimal attitude maneuver.

Transversality conditions: The differentials in the termi-

nal attitude and the terminal angular velocity are composed

of the variation for a fixed time and a term due to the terminal

time variation. Since the terminal boundary conditions are

fixed, the transversality conditions are

δR(tf ) + Ṙ(tf )dtf = R(tf )η̂(tf ) + Ṙ(tf )dtf = 0, (6)

δΩ(tf ) + Ω̇(tf )dtf = 0. (7)

Necessary conditions for optimality: Define the aug-

mented performance index as

Ja =

∫ tf

0

1 + λΩ · (u − Ω × JΩ − JΩ̇)

+ λR · (Ω̂ − RT Ṙ)∨ dt,

where λΩ, λR ∈ R3 are Lagrange multipliers.

Using (5), the infinitesimal variation of the augmented

performance index is given by

δJa =

∫ tf

0

λΩ · (δu − δΩ × JΩ − Ω × JδΩ − JδΩ̇)

+ λR · (δΩ − η̇ − Ω × η) dt

+
{
1 + λΩ · (u − Ω × JΩ − JΩ̇) + λR · (Ω̂ − RT Ṙ)∨

}∣∣∣
tf

dtf .

Using integration by parts, we obtain

δJa =

∫ tf

0

λΩ · (δu − δΩ × JΩ − Ω × JδΩ) + λ̇Ω · JδΩ

+ λR · (δΩ − Ω × η) + λ̇R · η dt

− {λΩ · JδΩ + λR · η}
∣∣∣
tf

0

+
{
1 + λΩ · (u − Ω × JΩ − JΩ̇) + λR · (Ω̂ − RT Ṙ)∨

}∣∣∣
tf

dtf .

Since the initial attitude and the initial angular velocity

are fixed, we have η(0) = 0, δΩ(0) = 0. Substituting

and rearranging, the infinitesimal variation of the augmented

performance index is given by

δJa =

∫ tf

0

δΩ · {−JΩ × λΩ − J(λΩ × Ω) + Jλ̇Ω + λR}

+ η ·
{

Ω × λR + λ̇R
}

+ δu · λΩ dt

+
{
1 + λΩ · (u − Ω × JΩ) + λR · Ω

}∣∣∣
tf

dtf .

We choose multiplier equations and boundary conditions

such that the expressions in the braces in the above equations

are identically zero. Then, we have

δJa =

∫ tf

0

δu · λΩ dt.

The optimal control input u must satisfy

λΩ · δu ≥ 0, (8)

for all admissible δu in t ∈ [0, tf ]. If λΩ = 0 on a finite

time period, the control input is not determined by (8). Such

solutions are referred to as singular arcs. Later, it is shown

that there is no singular arc in this optimal control problem.
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In summary, the necessary conditions for optimality are

given by

• Multiplier equations

Jλ̇Ω + J(Ω × λΩ) − JΩ × λΩ + λR = 0, (9)

λ̇R + Ω × λR = 0, (10)

• Optimality condition

u = −ū (λΩ/
∥∥λΩ

∥∥), (11)

• Boundary and transversality conditions

(R(0),Ω(0)) = (R◦,Ω◦), (12)

(R(tf ),Ω(tf )) = (Rf ,Ωf ), (13)
{
1 + λΩ · (u − Ω × JΩ) + λR · Ω

} ∣∣∣
tf

= 0, (14)

Assuming that the rigid body is inertially symmetric, J =
I3×3, the multiplier equation (9) is reduced to λ̇Ω +λR = 0.

Remarks: Use of the rotation matrix is often avoided,

since it is thought that representing a 3-dimensional attitude

using 9 real elements with 6 constraints is inefficient. This

redundancy is eliminated by using the exponential map; in

practice, the analytical development is carried out in R3 and

the resulting necessary conditions are written as compact

vector equations on R3. These equations are more compact

than the necessary conditions expressed in terms of quater-

nions. The proposed necessary conditions have the benefit

that the rotation matrix has no singularity or ambiguity.

D. Singular arcs

In this subsection, we show that singular arcs do not exist

along a solution of this time optimal control problem. Sup-

pose that there exists a singular interval, i.e. λΩ(t) = 0 for

a finite time period in [0, tf ]. Then, the minimum principle

given by (8) does not lead to a well-defined condition for the

optimal control input. Instead, the control input is determined

by the requirement that the time derivative of λΩ is zero.

Let an integer q be the order of the singular arc [10].

In other words, the 2q-th time derivative of λΩ is the

lowest order derivative in which the control input u appears

explicitly with a coefficient that is not identically zero on the

singular interval. Here, due to the special linear structure of

this multiplier equation, the singular arc must have infinite

order. If the condition λΩ = λ̇Ω = 0 is satisfied at a single

point along the trajectory, λR = λ̇R = 0, and these are

satisfied identically throughout the trajectory. In this case, it

is clear that the boundary condition (14) cannot be satisfied.

Thus, there is no singular arc.

III. DISCRETE-TIME TIME OPTIMAL ATTITUDE

CONTROL

In this section, we present a computational approach,

referred to as discrete optimal control of discrete Lagrangian

systems [11], to solve the time optimal attitude control prob-

lem numerically. In this approach, the dynamics of the rigid

body is discretized using the discrete Hamilton’s principle,

in order to obtain a Lie group variational integrator [7]. The

corresponding discrete equations of motion are imposed as

dynamic constraints to be satisfied by using Lagrange multi-

pliers, and necessary conditions for optimality, expressed as

discrete-time multiplier equations, are obtained.

This method yields substantial computational advantages

in finding an optimal control solution. The discrete-time

dynamics are faithful to the continuous equations of motion,

and consequently more accurate solutions to the optimal

control problem are obtained. It has been shown that the

discrete-time dynamics is more reliable even for controlled

system as it computes the energy dissipation rate more

accurately [12]. In particular, the discrete flow of the Lie

group variational integrator remains on SO(3).
Optimal solutions, computed using an indirect approach,

are usually sensitive to small variations of the multipliers.

This causes difficulties, such as numerical ill-conditioning,

when solving the necessary conditions for optimality ex-

pressed as a two-point boundary value problem. Sensitivity

derivatives, computed using the discrete-time necessary con-

ditions, are not corrupted by numerical dissipation caused

by conventional numerical integration schemes. Thus, the

proposed computational approach is numerically robust, and

the necessary conditions can be solved efficiently.

A. Lie Group Variational Integrator

Since the dynamics of a rigid body has the structure of

a Lagrangian or Hamiltonian system, they are symplectic,

momentum and energy preserving. These geometric features

determine the qualitative behavior of the rigid body dynam-

ics.

In contrast, the most common numerical integration meth-

ods, including the widely used (non-symplectic) explicit

Runge–Kutta schemes, preserve neither the Lie group struc-

ture nor these geometric properties. Additionally, if we

integrate (2) using a typical Runge–Kutta scheme, the quan-

tity RT R inevitably drifts from the identity matrix as the

simulation time increases.

In [7], Lie group variational integrators are constructed by

explicitly adapting Lie group methods [13] to the discrete

variational principle [12]. They have the desirable property

that they are symplectic and momentum preserving, and they

exhibit good energy behavior for an exponentially long time

period. They also preserve the Lie group structure. These ge-

ometrically exact numerical integration methods yield highly

efficient and accurate computational algorithms for rigid

body dynamics, and avoid singularities and ambiguities.

Using the results presented in [7], a Lie group variational

integrator on SO(3) for equations (1), (2) is given by

hĴΩk = FkJd − JdF
T
k , (15)

Rk+1 = RkFk, (16)

JΩk+1 = FT
k JΩk + huk+1, (17)

where the subscript k denotes the k-th step for a fixed

integration step size h ∈ R. The matrix Jd ∈ R3×3 is a

nonstandard inertia matrix defined by Jd = 1

2
tr[J ]I3×3−J ∈

R3×3. The matrix Fk ∈ SO(3) denotes the relative attitude

between adjacent integration steps.
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For given (Rk, xk) and control input, (15) is solved to find

Fk. Then (Rk+1,Ωk+1) are obtained by (16) and (17). This

yields a map (Rk,Ωk) 7→ (Rk+1,Ωk+1), and this process

is repeated. The only implicit part is (15). In essence, the

attitude update Fk is computed in R3; we represent Fk in

terms of the Lie algebra so(3) ≃ R3 by using the Cayley

transformation, and we rewrite (15) as an equivalent vector

equation, to which Newton iteration is applied. Since Fk rep-

resents a small attitude update near the identity matrix, it can

be easily computed by using the Cayley transformation. This

approach avoids the 6 dimensional nonlinear constraints on

the rotation matrix, as one numerically solves an equivalent

vector equation in R3.

One of the distinct features of the Lie group variational

integrator is that it preserves both the symplectic property

and the Lie group structure of the rigid body dynamics.

As such, it exhibits substantially improved computational

accuracy and efficiency compared with other geometric inte-

grators that preserve only one of these properties such as non-

symplectic Lie group methods [14]. The symplectic property

is important even in the case of controlled dynamics, since

the dissipation rate of the total energy is typically computed

inaccurately by non-symplectic integrators [12].

B. Discrete-time Time Optimal Attitude Control Problem

The objective is to transfer the rigid body in a prescribed

way within a minimal discrete maneuver time N .

For given: (R◦,Ω◦), (Rf ,Ωf ), ū

min
uk+1

{
J =

N−1∑

k=0

1

}
,

such that RN = Rf , ΩN = Ωf ,

subject to ‖uk+1‖ ≤ ū ∀k ∈ [0, N− 1] and (15)−(17).

C. Discrete-Time Necessary Conditions for Optimality

Expressions for variations: Similar to (4), the variation

of rotation matrices Rk and Fk are expressed as

δRk = Rkη̂k, δFk = Fk ξ̂k (18)

for ηk, ξk ∈ R3. Using this and (16), the variation of

RT
k Rk+1 is given by

δ(RT
k Rk+1) = δRT

k Rk+1 + RT
k δRk+1

= −η̂Fk + Fkη̂k+1

= Fk(−FT
k ηk + ηk+1)̂ , (19)

where the property F̂T x = FT x̂F for any x ∈ R3 and

F ∈ SO(3) is used in the last step.

Now we develop an expression for a constrained variation

corresponding to (15). Taking a variation of (15), we obtain

hĴδΩk = Fk ξ̂kJd + Jdξ̂kFT
k .

Using the property, x̂A + AT x̂ = ({tr[A] I3×3 − A}x)∧ for

all x ∈ R3, A ∈ R3×3, the above equation can be written as

hJδΩ̂k = F̂kξkFkJd + JdF
T
k F̂kξk

= ({tr[FkJd] I3×3 − FkJd}Fkξk)∧.

Thus, the vector ξk is expressed in terms of δΩk as

ξk = BkJδΩk, (20)

where Bk = hFT
k {tr[FkJd] I3×3 − FkJd}

−1
∈ R3×3. This

shows the relationship between δΩk and δFk.

Transversality conditions: Similar to (7), we choose the

transversality conditions for the angular velocity as

δΩN + (ΩN − ΩN−1)δN = 0. (21)

The variation of the terminal attitude due to the terminal time

change is expressed as

RN

{
1

2
RT

N−1(RN − RN−1) +
1

2
RT

N (RN − RN−1)

}
δN

=
1

2
RN

{
FN−1 − FT

N−1

}
δN.

This expression is chosen such that it respects the skew-

symmetry of a Lie algebra so(3) element. Using this, the

transversality conditions for the attitude are given by

RN η̂N +
1

2
RN

{
FN−1 − FT

N−1

}
δN = 0. (22)

Necessary conditions for optimality: Define the aug-

mented performance index as

Ja =
N−1∑

k=0

1 + λΩ
k ·

{
−JΩk+1 + FT

k JΩk + huk+1

}

+ λR
k ·

1

2

(
(Fk − FT

k )∨ − (RT
k Rk+1 − RT

k+1Rk)∨
)
.

Here we assume that the time step size h is small so that the

relative attitude rotation between adjacent integration steps

is less than π
2

, i.e. ‖(logmFk)∨‖ < π
2

. Then, Fk is equal to

RT
k Rk+1 if and only if their skew parts are identical, which

can be easily shown using Rodrigues’ formula. Equation (15)

is imposed implicitly using a constrained variation.

Using (19), the infinitesimal variation of the augmented

performance index is given by

δJa =

N−1∑

k=0

λΩ
k ·

{
hδuk+1 − JδΩk+1 + δFT

k JΩk + FT
k JδΩk

}

+ λR
k ·

1

2

{
Fk(ξk + FT

k ηk − ηk+1)
∧

+ (ξk + FT
k ηk − ηk+1)

∧FT
k

}∨

+ {1 + λΩ
N−1 ·

{
−JΩN + FT

N−1JΩN−1 + huN

}
}δN

+ λR
N−1 ·

1

2
(FN−1 − FT

N−1)
∨δN

− λR
N−1 ·

1

2
(RT

N−1RN − RT
NRN−1)

∨δN.

Several algebraic manipulations are required here; (i) using

the property x̂A+ AT x̂ = ({tr[A] I3×3 − A}x)∧ for all x ∈
R3 and A ∈ R3×3, the expression in the second braces is

written as a vector form, (ii) equation (20) is substituted

to express ξk in terms of δΩk, and (iii) using the fact that

η0 = 0, δΩ0 = 0, the summation indices for the variables at
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the k + 1-th step are rewritten, which is the discrete analog

of integration by parts. Then, we obtain

δJa =

N−1∑

k=0

λΩ
k · hδuk+1

+
N−1∑

k=1

δΩk ·
{
− JλΩ

k−1 + J(Fk − BT
k F̂T

k JΩk)λΩ
k

+
1

2
JBT

k (tr[Fk] I − Fk)λR
k

}

+

N−1∑

k=1

ηk ·
{1

2
(tr[Fk−1] I − Fk−1)λ

R
k−1

−
1

2
Fk(tr[Fk] I − Fk)λR

k

}

− λΩ
N−1 · JδΩN − λR

N−1 ·
1

2
(tr[FN−1] I − FT

N−1)ηN

+ {1 + λΩ
N−1 ·

{
−JΩN + FT

N−1JΩN−1 + huN

}
}δN

+ λR
N−1 ·

1

2
(FN−1 − FT

N−1)
∨δN

− λR
N−1 ·

1

2
(RT

N−1RN − RT
NRN−1)

∨δN. (23)

Substituting the transversality conditions (21) and (22), all

of the expressions in the last four lines of the above equation

are reduced to
{

1 + λΩ
N−1 ·

{
−JΩN−1 + FT

N−1JΩN−1 + huN

}

+ λR
N−1 ·

1

4

(
(FN−1)

2 − (FT
N−1)

2
)∨ }

δN. (24)

We choose discrete multiplier equations such that the

expressions in the first two braces in (23) are identically

zero, and we choose transversality condition such that the

expression given by (24) is equal to zero. Then, we have

δJa =

N−1∑

k=0

λΩ
k · hδuk+1.

The optimal control input uk+1 must satisfy

λΩ
k · δuk+1 ≥ 0,

for all admissible δuk+1 and k ∈ {0, · · · , N − 1}. There is

no singular arc in the optimal control problem as presented

in Section II-D. In summary, the discrete-time necessary

conditions for optimality are given by

• Multiplier equations

−JλΩ
k−1 + J(Fk − BT

k F̂T
k JΩk)λΩ

k

+
1

2
JBT

k (tr[Fk] I − Fk)λR
k = 0,

(25)

(tr[Fk−1] I − Fk−1)λ
R
k−1 − Fk(tr[Fk] I − Fk)λR

k = 0. (26)

• Optimality condition

uk+1 = −ū (λΩ
k /

∥∥λΩ
k

∥∥) (27)

• Boundary and transversality conditions

(R0,Ω0) = (R◦,Ω◦), (28)

(RN ,ΩN ) = (Rf ,Ωf ), (29)

1 + λΩ
N−1 ·

{
−JΩN−1 + FT

N−1JΩN−1 + huN

}

+ λR
N−1 ·

1

4

(
(FN−1)

2 − (FT
N−1)

2
)∨

= 0.
(30)

In the above equations, the only implicit part is (15). For a

given initial condition {(R0,Ω0), (λ
R
0 , λΩ

0 )}, we solve (15)

to obtain F0, and we find the control input u1 by (27).

Then, (R1,Ω1) are obtained by (16) and (17). Using Ω1,

we solve (15) to obtain F1. Finally, (λR
1 , λΩ

1 ) are obtained

by (26) and (25). This yields a map {(R0,Ω0), (λ
R
0 , λΩ

0 )} 7→
{(R1,Ω1), (λ

R
1 , λΩ

1 )}, and this process is repeated.

The discrete-time necessary conditions for optimality are

given as a two-point boundary value problem. This is to

find the optimal discrete flow, multipliers, control input,

and terminal maneuver time to satisfy the equations of

motion (15)–(17), multiplier equations (25), (26), optimality

condition (27), and boundary and transversality conditions

(28)–(30) simultaneously.

We use a neighboring extremal method [15]. A nominal

solution satisfying all of the necessary conditions except

the boundary conditions is chosen. The unspecified initial

multiplier is updated so as to satisfy the specified terminal

boundary conditions in the limit. This is also referred to as

a shooting method. The main advantage of the neighboring

extremal method is that the number of iteration variables is

small. In other approaches, the initial guess of control input

history or multiplier variables are iterated, so the number of

optimization parameters are proportional to the number of

discrete time steps.

A potential difficulty is that the extremal solutions are

sensitive to small changes in the unspecified initial multiplier

values. The nonlinearities also make it hard to construct an

accurate estimate of sensitivity, and it may result in nu-

merical ill-conditioning. By adopting a geometric numerical

integrator approach, sensitivity derivatives along the discrete-

time necessary conditions are not corrupted by numerical

dissipation. Thus, the necessary conditions are solved in a

computationally efficient manner.

IV. NUMERICAL EXAMPLE

We choose an elliptic cylinder for a rigid body

model with semi-major axis 0.8 m, semi-minor axis 0.2 m,

height 0.6 m, mass 1, kg. The inertia matrix is J =
diag[0.04, 0.19, 0.17] kgm2, and the maximum control in-

puts is chosen as u = 0.1 Nm. The desired attitude maneuver

is a rest-to-rest large angle rotation given by (R◦,Ω◦) =
(I3×3, 0), (Rf ,Ωf ) = (exp θv, 0), where v = 1√

3
[1, 1, 1] ∈

R3, and θ is varied as 120◦ and 180◦.

In the numerical computation, we fix the number of steps

as N = 1000 in this particular numerical example, and we

vary the timestep h. In essence, we find the seven parameters,

initial multipliers (λR
0 , λΩ

0 ) and the time step h, satisfying the

seven-dimensional terminal boundary conditions (28)–(30)

under the discrete-time equations of motion, the multiplier

equation, and the optimality condition.
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Fig. 1. Time optimal attitude maneuver, θ = 120◦
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Fig. 2. Time optimal attitude maneuver, θ = 180◦

We solve this two-point boundary value problem, inter-

preted as a nonlinear equation by the shooting method,

using a general nonlinear equation solver, namely the Matlab

fsolve function. The multipliers are initialized randomly,

and the time step is initialized as h = 0.002 seconds.

The optimal solutions are found in 94 and 211 seconds,

respectively, on Intel Pentinum M 1.73 GHz processor; the

boundary condition errors are less than 10−15.

The optimized attitude maneuver, angular velocity, and

control input history are presented in Figures 1 and 2.

(Simple animations which show these maneuvers of the

rigid body are available at http://www.umich.edu/

˜tylee.) The optimized maneuver times are 3.39 and 3.82
seconds, respectively.

V. CONCLUSIONS

A time optimal attitude control problem to rotate a rigid

body within a minimal time with constrained control input

is studied. Necessary conditions for optimality are developed

on SO(3) using rotation matrices without need of attitude

parameterizations such as Euler angles and quaternions. This

provides a globally applicable and compact form of nec-

essary conditions for optimality. For overall computational

accuracy and efficiency, a discrete optimal control method is

proposed using a Lie group variational integrator.

In this paper, the two-norm of the control moment is

constrained, and consequently, there is no singular arc in

the optimal solution. The proposed necessary conditions for

optimality can be directly applied, without modification, to

the case where the absolute value of each component of the

control moment is bounded. In this case, the expressions

for optimal singular control can be developed, for example,

by following the approach given in [4], using the compact

multiplier equations presented here.
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