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Abstract— This paper deals with the stability analysis and the
stabilization control law for a class of discrete Takagi-Sugeno
(T-S) fuzzy systems with both state and input delays. Based
on the nonquadratic Lyapunov function constructed here, the
stability analysis and the design way of stabilization control
law are derived in the form of linear matrix inequality (LMI)
via a nonparallel distributed compensation (non-PDC) scheme.
The new conclusion is also suitable for a PDC law under
a special situation. Two numerical examples are supplied to
demonstrate the effectiveness of the designed control law. And
both theoretical analysis and numerical examples illustrate
that these novel sufficient conditions are less conservative than
previous results obtained within the quadratic framework.

I. INTRODUCTION

Fuzzy control based on Takagi-Sugeno (T-S) fuzzy model

[9] has attracted considerable attention and is widely applied

to a variety of industrial processes. Recently, a great amount

efforts have been devoted to stability analysis and systematic

design of T-S fuzzy control laws [1-5, 7-10, 12-15]. Most of

the works constructed a quadratic Lyapunov function, i.e.

V (x(t)) = xT (t)Px(t) with P = P T > 0. Employing the

so-called parallel distributed compensation (PDC) scheme

[2], this common matrix P for stabilization of all subsystems

can be found by solving linear matrix inequality (LMI)

constraints with standard numerical softwares.

Moreover, to release the conservatism of the common

quadratic Lyapunov function approach for fuzzy control

systems, many other works can be found dealing with piece-

wise quadratic Lyapunov functions (PQLF) [7, 14]. Another

significant contribution in this area was given in [1, 4, 5,

8-10, 12, 15]. All of these works tackled stability analysis

and stabilization method of both continuous and discrete T-S

fuzzy systems in the nonquadratic framework. Among them,

parameter-dependent Lyapunov functions (PDLF) [8] (also

named as fuzzy Lyapunov functions [4] and multiple Lya-

punov functions [5]), piecewise fuzzy Lyapunov functions

(PFLF) [9, 15] were studied as well in the interest of obtain-

ing less conservative stability and stabilization conditions.

On the other hand, it is well known that there exist many

complex nonlinear systems with time delays in practice

such as communication networks. Usually a time delay is

frequently a source of instability generating oscillations in

many systems. It is thus natural to extend the T-S fuzzy
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model to the corresponding time-delay model [8, 13]. This

paper deals with the stability analysis and the control law

design for a class of discrete T-S fuzzy systems with both

state and input delays based on a nonquadratic Lyapunov

function. By applying a matrix transformation that can be

viewed as an extension to the Schur complement, a non-

PDC control law is systematically designed as a set of LMIs.

The proposed conclusion is also suitable for a PDC law

under a special situation. Two examples illustrate the utility

and advantage of this nonquadratic approach and non-PDC

stabilization method.

The organization of this paper is as follows: Section II

provides preliminaries and the formulation of the control

problem for discrete T-S fuzzy systems. In Section III, stabil-

ity analysis of the open-loop delayed discrete T-S systems on

the basis of a nonquadratic Lyapunov function is considered.

In Section IV a non-PDC control law for stabilization of

T-S fuzzy systems is put forward in terms of LMIs. Two

numerical examples are given in Section V to illustrate the

validity of the design method presented in this paper. And

these are followed by some concluding remarks in Section

VI.

The notations used in this paper are quite standard: R
n

denotes the n−dimensional real Euclidean space; R
n×m

signifies space of n × m real matrices; I and 0 represent

identity matrix and zero matrix of appropriate dimensions;

the superscripts ’T’ and ’−1’ stand for the matrix transpose

and inverse respectively; A > 0 means that A is symmetric

and positive definite; ‖·‖ denotes the spectral norm; λmin(·)
and λmax(·) are the smallest and the largest eigenvalue of a

matrix; diag(A1, · · · ,An) refers to a diagonal matrix with

Ai as its ith diagonal element.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a discrete T-S fuzzy system as follows:

Ri: If ξ1(t) is Mi1 and . . . and ξn(t) is Min, then














x(t + 1) = Aix(t) + Āix(t − τ1) + Biu(t)
+B̄iu(t − τ2),

x(s) = φ(s), s = −τ,−τ + 1, . . . , 0,
i = 1, 2, . . . , r.

(1)

where Ri denotes the ith rule, r is the number of rules,

Mij is the fuzzy set, x(t) ∈ R
n is the state vector,

u(t) ∈ R
m is the control input. ξ(t) = [ξ1(t), . . . , ξn(t)]T

is the measurable premise vector, which is a function of

states and not supposed to depend on the control input.

Ai, Āi ∈ R
n×n, Bi, B̄i ∈ R

n×m. τ1, τ2 ∈ (0,∞) are two real

positive constants representing state delay and input delay
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respectively. φ(s) is a discrete vector-valued initial function

on {−τ,−τ + 1, . . . , 0}, where τ = max{τ1, τ2}.

Given a pair of (x(t), u(t)), the final output of the fuzzy

system as follows may be inferred by using a singleton

fuzzifier, product inference and a center-average defuzzifier:






x(t + 1) =
∑r

i=1 hi(ξ(t))(Aix(t) + Āix(t − τ1)
+Biu(t) + B̄iu(t − τ2)),

x(s) = φ(s), s = −τ,−τ + 1, . . . , 0.
(2)

where hi(ξ(t)) denotes the normalized weight for each

rule and, hi(ξ(t)) = µi(ξ(t))/
∑r

i=1 µi(ξ(t)); µi(ξ(t)) =
∏n

j=1 Mij(ξj(t)). Mij(ξj(t)) is the grade of membership

function of ξj(t) in the fuzzy set Mij . In this paper,

we presume that µi(ξ(t)) ≥ 0 (for i=1, 2, . . . , r) and
∑r

i=1 µi(ξ(t)) > 0 for all t. Thus we get hi(ξ(t)) ≥ 0
and

∑r

i=1 hi(ξ(t)) = 1.

In this paper, the following notations will be

employed for simplicity: Xξ =
∑r

i=1 hi(ξ(t))Xi,

Xξ+1 =
∑r

i=1 hi(ξ(t + 1))Xi and also X−1
ξ =

(
∑r

i=1 hi(ξ(t))Xi)
−1. Then the discrete T-S fuzzy

system (2) can be described in the following form:






x(t + 1) = Aξx(t) + Āξx(t − τ1) + Bξu(t)
+B̄ξu(t − τ2),

x(s) = φ(s), s = −τ,−τ + 1, . . . , 0.
(3)

For the nonquadratic case, the principal results are derived

from a property due to [6], which is slightly modified as:

Lemma 1. Λ and Θ are two matrices with proper dimensions.

The following conditions are equivalent:

(i) There exists a symmetric matrix P > 0 such that

Λ
T PΛ − Θ < 0. (4)

(ii) There exist a symmetric matrix P > 0 and a matrix Υ

with proper dimension such that
[

Θ ∗
ΥΛ Υ + Υ

T − P

]

> 0. (5)

Proof. Multiplying (5) by Y := [I −Λ
T ] on the left and

by Y T on the right we get (4) which establishes that (ii)

implies (i). Then by choosing Υ = Υ
T = P and applying

Schur complement (4) can be recovered. Hence (i) implies

(ii) and concludes this proof. ¤

III. BASIC STABILITY ANALYSIS

We first recall the free T-S fuzzy system with time delay,

i.e., u ≡ 0,

x(t + 1) = Aξx(t) + Āξx(t − τ1). (6)

In order to develop the sufficient stability conditions of

system (6) via nonquadratic Lyapunov function, first let us

define:

Ω
l
ij =









Pi ∗ 0 ∗
Gi S 0 0

0 0 S ∗
AiGj 0 ĀiS Gl + GT

l − Pl









,

i, j, l ∈ {1, . . . , r}.

(7)

In addition, some definitions are given as follows:

Definition 1.[3] For a discrete system X(k + 1) =
f(X(k)),X(k) ∈ R

n, f(X(k)) ∈ R
n is a function vector

with the property f(0) = 0 for all k. If there exists a scalar

function V (X(k)) continuous in x(k) such that:

a) V (0) = 0;

b) V (X(k)) > 0 for all X(k) 6= 0;

c) V (X(k)) → ∞ as ‖X(k)‖ → ∞;

d) L , V (X(k + 1)) − V (X(k)) < 0 for all X(k) 6= 0.

Then the system equilibrium state X(k) = 0 is asymptoti-

cally stable in the large for all k and, V (X(k)) is a Lyapunov

function.

Definition 2. The unforced T-S fuzzy system with time delay

described by (6) is globally asymptotically stable for any

τ ∈ (0,∞) if, there exists a Lyapunov function V (x(t))
such that for all x(t) 6= 0, the inequality L , V (x(t+1))−
V (x(t)) < 0 is guaranteed.

Theorem 1. Consider the free T-S fuzzy system with time

delay represented by (6). With Ω
l
ij defined in (7), if there

exist matrices Pi > 0, S > 0 and matrices Gi with proper

dimensions such that

Ω
l
ii > 0, i, l ∈ {1, . . . , r}, (8)

Ω
l
ij + Ω

l
ji > 0, i < j, i, j, l ∈ {1, . . . , r}. (9)

then the free system (6) is globally asymptotically stable for

any τ1 ∈ (0,∞).

Proof. Let us construct a candidate nonquadratic Lyapunov

function with S > 0, Pi > 0, and proper dimensional

matrices Gi, i ∈ {1, . . . , r} as follows:

V (x(t)) = xT (t)(
∑r

i=1 hi(ξ(t))Gi)
−T (

∑r

i=1 hi(ξ(t))Pi)
(
∑r

i=1 hi(ξ(t))Gi)
−1x(t) +

∑τ1

i=1 xT (t − i)
×S−1x(t − i)

= xT (t)G−T
ξ PξG

−1
ξ x(t) +

∑τ1

i=1 xT (t − i)S−1

×x(t − i).
(10)

It is necessary to check first the validity of the candidate

Lyapunov function. As ∀i, Pi > 0 and hi(ξ(t)) ≥ 0
having a convex sum property, Pξ > 0 for every ξ(t).
The regularity of Gi is ensured by the last blocks of

conditions (8) in the sense that with conditions (8) hold-

ing true we have Gi + GT
i > Pi > 0. Therefore the

existence of G−1
ξ = (

∑r

i=1 hi(ξ(t))Gi)
−1 is guaranteed.

Moreover, taking S > 0 into account, the following in-

equality can be derived: λmin(Pξ)λmax(GξG
T
ξ )‖x‖2 ≤

V ≤ λmax(Pξ)λmin(GξG
T
ξ )‖x‖2 + τ1λmin(S)‖x(t)‖2,

that ensures V to be a valid Lyapunov function.

The variation of the nonquadratic Lyapunov function (10)

is given by

L , V (x(t + 1)) − V (x(t))

= xT (t + 1)G−T
ξ+1Pξ+1G

−1
ξ+1x(t + 1)

+
∑τ1

i=1 xT (t + 1 − i)S−1x(t + 1 − i) − xT (t)G−T
ξ

×PξG
−1
ξ x(t) −

∑τ1

i=1 xT (t − i)S−1x(t − i)

= xT (t)(AT
ξ G−T

ξ+1Pξ+1G
−1
ξ+1Aξ + S−1 − G−T

ξ PξG
−1
ξ )
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×x(t) + xT (t − τ1)(Ā
T
ξ G−T

ξ+1Pξ+1G
−1
ξ+1Āξ − S−1)

×x(t − τ1) + xT (t)AT
ξ G−T

ξ+1Pξ+1G
−1
ξ+1Āξx(t − τ1)

+xT (t − τ1)Ā
T
ξ G−T

ξ+1Pξ+1G
−1
ξ+1Aξx(t)

=
[

xT (t) xT (t − τ1)
]

×






(

AT
ξ G−T

ξ+1Pξ+1G
−1
ξ+1Aξ

+S−1 − G−T
ξ PξG

−1
ξ

)

∗

ĀT
ξ G−T

ξ+1Pξ+1G
−1
ξ+1Aξ (2, 2)







[

x(t)
x(t − τ1)

]

,

(11)

where (2, 2) = ĀT
ξ G−T

ξ+1Pξ+1G
−1
ξ+1Āξ − S−1. Thus L < 0

indicates
[

AT
ξ G−T

ξ+1Pξ+1G
−1
ξ+1Aξ + S−1 − G−T

ξ PξG
−1
ξ ∗

ĀT
ξ G−T

ξ+1Pξ+1G
−1
ξ+1Aξ (2, 2)

]

< 0.
(12)

Multiplying left and right by diag(GT
ξ ,ST ) and

diag(Gξ,S) to (12) respectively, the following inequality

equivalent to (12) can be obtained:





(

GT
ξ AT

ξ G−T
ξ+1Pξ+1G

−1
ξ+1AξGξ

+GT
ξ S−1Gξ − Pξ

)

∗

ST ĀT
ξ G−T

ξ+1Pξ+1G
−1
ξ+1AξGξ ST (2, 2)S





=

[

GT
ξ S−1Gξ − Pξ 0

0 −S

]

+

[

GT
ξ AT

ξ

ST ĀT
ξ

]

G−T
ξ+1Pξ+1

×G−1
ξ+1

[

AξGξ ĀξS
]

< 0.
(13)

According to Lemma 1, let Λ = G−1
ξ+1

[

AξGξ ĀξS
]

,

(13) can be rewritten in the following form:




Pξ − GT
ξ S−1Gξ 0 ∗

0 S ∗
AξGξ ĀξS Gξ+1 + GT

ξ+1 − Pξ+1



 > 0.

(14)

Applying Schur complement to (14) we can get








Pξ ∗ 0 ∗
Gξ S 0 0

0 0 S ∗
AξGξ 0 ĀξS Gξ+1 + GT

ξ+1 − Pξ+1









> 0. (15)

When conditions (8) and (9) hold true,
∑r

l=1 hl(ξ(t +
1))(

∑r

i=1 h2
i (ξ(t))Ωl

ii+
∑r

i=1

∑

i<j hi(ξ(t))hj(ξ(t))(Ωl
ij+

Ω
l
ji)) > 0, which leads to (15) and L < 0 is ensured. Thus

the free system (6) is globally asymptotically stable. ¤

Remark 1. Theorem 1 is a generalization of the previous

quadratic results. Actually, for all i ∈ {1, · · · , r}, the

CQLF case can be recovered from using P−1 = Gi = Pi,

while the simple PDLF case can be deduced by choosing

Gi = Pi, i.e. V (x(t)) = xT (t)(
∑r

i=1 hi(ξ(t))Pi)
−1x(t) +

∑τ1

i=1 xT (t − i)S−1x(t − i).

Remark 2. The conditions (9) and (10) in Theorem 1 are

all LMIs, which can be readily checked by using standard

numerical software packages, for example, LMI toolbox in

MATLAB.

Remark 3. Theorem 1 is less conservative than the quadratic

case due to the presence of the extra degree of freedom

provided by the introduction of matrices Gi which are

not even constrained to be symmetric, that leads to the

Lyapunov matrices Pi is not involved in any product with

the dynamic matrices Ai and delay state matrices Āi.

However, this relaxed condition is obtained at the cost

of the increment of LMIs. Noting that in Theorem 1 the

number of LMIs is r2(1 + r)/2 instead of r2 in the PDLF

case and r in the CQLF case.

IV. STABILIZATION CONTROL LAW DESIGN VIA

NON-PDC SCHEME

Consider a non-PDC control law as

u(t) = −(
∑r

i=1 hi(ξ(t))Fi)(
∑r

j=1 hj(ξ(t))Gj)
−1x(t)

= −FξG
−1
ξ x(t).

(16)

Then the closed-loop T-S fuzzy system composed of (3)

and (16) is described by







x(t + 1) = (Aξ − BξFξG
−1
ξ )x(t) + Āξx(t − τ1)

−B̄ξFξG
−1
ξ x(t − τ2),

x(s) = φ(s), s = −τ,−τ + 1, . . . , 0.
(17)

In the balance of this section, based on the nonquadratic

Lyapunov function, the control law design for stabilization

of the T-S fuzzy system with time delay as (17) via the non-

PDC scheme (16) is studied.

Theorem 2. For a discrete T-S fuzzy system with both state

and input delays represented by (17), if there exist symmetric

matrices Pi > 0,S > 0,Q > 0, and matrices Fi,Gi with

proper dimensions such that Eqs. (8), (9) are satisfied, where

Ω
l
ij =













Pi − Q ∗ 0 0 ∗
Gi S 0 0 0

0 0 S 0 ∗
0 0 0 Q ∗

AiGj − BiFj 0 ĀiS −B̄iFj Gl + GT
l − Pl













,

i, j, l ∈ {1, . . . , r},
(18)

then the non-PDC control law (16) makes the closed-loop T-S

fuzzy system (17) globally asymptotically stable.

Proof. First the following nonquadratic Lyapunov function

is constructed with proper dimensional matrices Gi and

symmetric matrices Pi > 0, i ∈ {1, . . . , r}, S > 0, Q > 0.

V (x(t)) = xT (t)G−T
ξ PξG

−1
ξ x(t) +

∑τ1

i=1 xT (t − i)

×S−1x(t − i) +
∑τ2

i=1 xT (t − i)G−T
ξ Q

×G−1
ξ x(t − i).

(19)

The proof of the Lyapunov function’s validity is almost

the same as in Theorem 1 and is omitted.

Consider the variation of the nonquadratic Lyapunov func-
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tion (19):

L , V (x(t + 1)) − V (x(t))

=
[

(Aξ − BξFξG
−1
ξ )x(t) + Āξx(t − τ1) − B̄ξFξ

× G−1
ξ x(t − τ2)

]T

G−T
ξ+1Pξ+1G

−1
ξ+1 [(Aξ − BξFξ

× G−1
ξ )x(t) + Āξx(t − τ1) − B̄ξFξG

−1
ξ x(t − τ2)

]

+
∑τ1

i=1 xT (t + 1 − i)S−1x(t + 1 − i)

+
∑τ2

i=1 xT (t + 1 − i)G−T
ξ+1QG−1

ξ+1x(t + 1 − i)

−xT (t)G−T
ξ PξG

−1
ξ x(t) −

∑τ1

i=1 xT (t − i)S−1

×x(t − i) −
∑τ2

i=1 xT (t − i)G−T
ξ QG−1

ξ x(t − i)

=
[

xT (t) xT (t − τ1) xT (t − τ2)
]

×Ψξ(ξ+1)





xT (t)
xT (t − τ1)
xT (t − τ2)



 ,

(20)

where

Ψξ(ξ+1) =





(1, 1) ∗ ∗
ĀT

ξ Φξ+1Mξ ĀT
ξ Φξ+1Āξ − S−1 ∗

−NT
ξ Φξ+1Mξ −NT

ξ Φξ+1Āξ (3, 3)





and

(1, 1) = MT
ξ Φξ+1Mξ − Φξ + S−1 + G−T QG−1,

(3, 3) = NT
ξ Φξ+1Nξ − G−T QG−1,

Mξ = Aξ − BξFξG
−1
ξ , Nξ = B̄ξFξG

−1
ξ ,

Φξ = G−T
ξ PξG

−1
ξ .

Thus from L < 0, we have Ψξ(ξ+1) < 0. Pre-

multiplying by diag(GT
ξ ,ST ,GT

ξ ) and post-multiplying by

diag(Gξ,S,Gξ) to Ψξ(ξ+1), the following inequality equiv-

alent to Ψξ(ξ+1) < 0 can be deduced:

diag(−Pξ + GT
ξ S−1Gξ + Q, −S, −Q)

+





(MξGξ)
T

(ĀξS)T

−(NξGξ)
T



Φξ+1

[

MξGξ ĀξS − NξGξ

]

< 0.

(21)

Select Λ = G−1
ξ+1

[

MξGξ ĀξS − NξGξ

]

, (21) can

be rewritten in the following form according to Lemma 1:












(

−GT
ξ S−1Gξ

+Pξ − Q

)

0 0 ∗

0 S 0 ∗
0 0 Q ∗

MξGξ ĀξS −NξGξ Ξ













> 0, (22)

whereΞ = Gξ+1 + GT
ξ+1 − Pξ+1. Then utilizing Schur

complement to (22) yields












Pξ ∗ 0 0 ∗
Gξ S 0 0 0

0 0 S 0 ∗
0 0 0 Q ∗

AξGξ − BξFξ 0 ĀξS −B̄ξFξ Ξ













=
∑r

l=1 hl(ξ(t + 1))
(
∑r

i=1 h2
i (ξ(t))Ωl

ii

+
∑r

i=1

∑

i<j hi(ξ(t))hj(ξ(t))(Ωl
ij + Ω

l
ji)

)

> 0.

(23)

Obviously, (23) can be guaranteed when (8) and (9) hold

true. Therefore L < 0 is ensured to make the system (17)

asymptotically stable. The proof is concluded. ¤

Corollary 1. The discrete T-S fuzzy system with both state

and input delays represented by (17) is globally asymptoti-

cally stable if there exist symmetric matrices Pi > 0,S > 0

and matrices Fi,G with proper dimensions satisfying Eqs. (8)

and (9), where

Ω
l
ij =













Pi − Q ∗ 0 0 ∗
G S 0 0 ∗
0 0 S 0 ∗
0 0 0 Q ∗

AiG − BiFj 0 ĀiS −B̄iFj G + GT − Pl













,

i, j, l ∈ {1, . . . , r}.
(24)

Proof. Select Gi = Gj = Gl = G, then the conclusion is

recovered from Theorem 3. ¤

Remark 4. Corollary 1 applies PDC law with the feedback

gain Yi = FiG
−1 rather than non-PDC law.

V. EXAMPLES

A. Example 1

Consider the unforced system x(t + 1) = Aξx(t) +
Āξx(t − τ1) with

A1 =

[

−0.31 1
0 0.95

]

, A2 =

[

−0.09 0
0.8 −0.2

]

;

Ā1 =

[

0.012 0.014
0 0.015

]

, Ā2 =

[

0.01 0
0.01 0.015

]

.

If one uses common Lyapunov function V (x(t)) =
xT (t)Px(t) +

∑τ1

i=1 xT (t − i)Sx(t − i), then the corre-

sponding conditions can be described as Theorem 6 in [13],

that is
[

AT
i PAi − P + S AT

i PĀi

ĀT
i PAi ĀT

i PĀi − S

]

< 0, i = 1, 2.

(25)

It can be checked that LMIs (25) are infeasible by employ-

ing MATLAB LMI Control Toolbox. However, a feasible

solution for LMIs (8) and (9) is as follows:

S =

[

11.7476 4.7434
4.7434 13.8537

]

,

P1 =

[

1.5572 0.1440
0.1440 1.0270

]

, G1 =

[

2.0994 0.6365
0.1664 0.9726

]

,

P2 =

[

1.5760 0.6287
0.6287 1.9052

]

, G2 =

[

1.3127 0.5776
0.6854 1.5661

]

.

Thus the stability of this unforced system is guaranteed

by Theorem 1 presented in this paper while can not be

ensured by Theorem 6 in [13]. As expected, results based

on nonquadratic Lyapunov functions are less conservative

than those based on common quadratic Lyapunov functions.
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B. Example 2

Consider a nonlinear discrete-time system with both state

and input delays as follows:














x1(t + 1) = x1(t) + 0.02x1(t)x2(t) + 0.3x1(t − τ1)
+0.1x2(t − τ1) + 6u(t) + 0.6u(t − τ2);

x2(t + 1) = 0.05x2
1(t) − 0.5x2(t) + 0.2x2(t − τ1)

+6u(t) + 0.6u(t − τ2).
(26)

In (26) x1(t) is measurable and x1(t) ∈ [−2, 3]. Define

F 1
1 (x1(t)) = (x1(t) + 2)/5 and F 2

1 (x1(t)) = (3− x1(t))/5.

In this way, the nonlinear model can be exactly represented

by the following two rules of discrete T-S fuzzy model with

h1(ξ(t)) = F 1
1 (x1(t)), h2(ξ(t)) = F 2

1 (x1(t)):

Rule 1 : If x1(t) is MAX, then

x(t + 1) =

[

1 0.06
0.15 −0.5

]

x(t) +

[

0.3 0.1
0 0.2

]

x(t − τ1)

+

[

6
6

]

u(t) +

[

0.6
0.6

]

u(t − τ2),

Rule 2 : If x1(t) is MIN, then

x(t + 1) =

[

1 −0.04
−0.1 −0.5

]

x(t) +

[

0.3 0.1
0 0.2

]

x(t − τ1)

+

[

6
6

]

u(t) +

[

0.6
0.6

]

u(t − τ2).

The corresponding result with Theorem 2 applied is

S =

[

10.3032 −1.8612
−1.8612 12.2324

]

,Q =

[

1.5893 −0.6909
−0.6909 2.8423

]

,

P1 =

[

6.6972 −1.9155
−1.9155 9.7065

]

,G1 =

[

5.0055 −1.9599
−1.6116 7.0788

]

,

F1 = [0.5744 − 0.4143] ,

P2 =

[

6.5781 −2.0005
−2.0005 9.7089

]

,G2 =

[

4.8290 −1.4620
−2.1834 7.1223

]

,

F2 = [0.5052 − 0.4015] .

The initial conditions for the simulation are given by

x(1) = [2 − 1]T . Figs. 1-3 show the closed-loop results

with control law (16).

VI. CONCLUSION

In this paper, some new stability and stabilization con-

ditions for discrete time-delayed fuzzy systems have been

put forward by defining a nonquadratic Lyapunov function

and adopting a matrix transformation. These conditions can

be readily solved by using available numerical software.

The stability analysis of the open-loop fuzzy system demon-

strated that former quadratic cases could be implied by the

nonquadratic Lyapunov function approach presented here,

based on which a stabilization control law for closed-loop

T-S systems associated with non-PDC scheme has been

derived. Two numerical examples illustrated the advantage of

the proposed function approach. However, this nonquadratic

framework still needs a lot of calculation. Therefore it is a

challenging work calling for further investigation to reduce

such computational burdens.
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Fig. 1. Evolutions of the state variables x1, x2.
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Fig. 2. Evolutions of the control signal u.
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Fig. 3. Lyapunov function.
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