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Abstract— An approach for determining the value of in-
formation in a dynamic network is formulated as a data
rate optimization which reduces multi-criteria linear-quadratic-
Gaussian (LQG) controllers with centralized information to
controllers with distributed or decentralized information. The
dynamic network can be an array of vehicles, but the theory is
more general. Two essential notions are used to decompose a
centralized controller for each vehicle. First, given a quadratic
cost criterion for each vehicle, a LQG Nash equilibrium is
established where each controller has access to all the infor-
mation in the network. The resulting optimal deterministic
cost criteria become functions of the system parameters and
statistics. Secondly, by augmenting these criteria with costs
associated with transmitting the measurement and control
values within the network, data rate parameters, bounded
between zero and one, are determined through a deterministic
multi-criteria optimization. If the data rate associated with a
measurement is zero, then that measurement is not transmitted
and no longer used in the local state estimator. If the control
used by a vehicle is not transmitted, then that control can
only be constructed from the local estimates. To simplify the
computations, a static optimization problem is also suggested to
obtain suboptimal solutions. Examples composed of a string of
vehicles are presented. For simplification only data rates of zero
or one are considered. The results of the optimization show that
the control values should not be transmitted when a minimal
number of measurements are used. It appears that with this
minimal number of measurements, a priori knowledge of the
control structure produces observable and detectable systems
when no control is transmitted, whereas the knowledge of the
control value and the minimal measurement set leads to an
unobservable system and therefore, system instability.

Index Terms— Decentralized control, limiting information

I. INTRODUCTION

Consider a formation of a large number of vehicles. Abso-
lute and relative position, velocity and attitude information
of all the vehicles in the formation is useful to maintain
the formation within the closest tolerances, but all these
measurements may not be needed to meet the system require-
ments. For example, it may be useful to have the absolute
and relative position, velocity and attitude information of
the vehicles near by to be transmitted at high data rates,
but not necessarily for those vehicles that are remote where
the transmission data rates could be significantly reduced.
However, it has been shown in [1] that string stability of
a platoon of vehicles requires only that each individual
vehicle know the relative position of the vehicle just in
front of it and the absolute velocity of the lead vehicle.
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Although string stability was shown, no formal method was
developed to indicate that this is the minimal amount of
information in some sense. Our objective is to develop a
methodology applicable to more complex formations for
determining the minimal information structure required in
a swarm of vehicles.

Techniques for determining decentralized controllers for
large systems are found in [2]. However, to determine
the minimal information structure required in a swarm of
vehicles, a methodology is sought. Our procedure assumes
that the controllers are affine. It is known [3] that even for
the LQG problem the denial of information leads to optimal
controllers that are nonlinear. Our notion is to determine
a procedure that only removes information which modestly
degrades performance. Another scheme that assumes linear
controllers puts an explicit constraint on the information
allowed [4], but obtains explicit gains under a condition
called quadratic invariance. Although determining the con-
troller gains could be part of the optimization process, in this
paper we only limit the transmission of the measurement and
control values. Therefore, if only subsets of the information
are required, then this methodology allows a decomposition
of the centralized control system to a set of decentralized
systems, possibly overlapping. This decomposition appears
possible for swarms because of the structure of the dynamic
system and the measurements, which are essential in deter-
mining a decomposition. The dynamics for each vehicle in
the swarm are usually uncoupled from all the other vehicles.
The syntheses of the controller, based on the measurement
structure and the performance criterion, form the intercon-
nection or coupling among all the vehicles. The design of
controllers based on all information in the formation leads to
complex communication and costly instrumentation systems.
Based on the particular characteristics of the formation, a
procedure that forms a minimal information design is to be
developed.

In Section II the system dynamics, measurement, and LQG
cost criterion for each of the vehicles are formulated. In
Section III a multi-criteria LQG Nash equilibrium solution
is obtained assuming that all the measurements and controls
are transmitted over the array. In Section IV the notion
of measurement and control data rates are introduced to
represent the information flow in the dynamic network. By
optimizing the cost of each vehicle with respect to the data
rates of the measurements and controls, the measurement
and control transmissions are determined. In Section V a
static optimization methodology is proposed and in Section
VI two simple examples illustrate the approach. We conclude
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in Section VII.

II. FORMULATION

In the following a control problem for vehicle arrays
based on linear dynamics, an expectation of a quadratic
performance index, and additive Gaussian noise for each
vehicle is formulated. Consider a dynamic system composed
of M vehicles

ẋ = Ax+
M∑
j=1

Bj ũj + Γw

y = Cx+ v

(1)

where x ∈ Rn is the state vector of the M vehicle system,
ũj ∈ Rmj , j = 1 · · ·M is the control vector of the jth

vehicle, w ∈ Rp is the zero mean Gaussian white process
noise with power spectral density W , y ∈ Rq is the
measurement vector, and v ∈ Rq is the zero mean Gaussian
white measurement noise with power spectral density V ,
assumed to be independent between measurements. Let Yt
be the measurement history

Yt
def= {y(s) : 0 ≤ s ≤ t}

In order to structure the problem, we note that the matrices
A, Bj , Γ may decompose into M distinct systems. The
elements A may represent a coupling among the vehicles.
However, here we have only assumed that the control through
Bj affects only one vehicle.

The following cost criterion Ji, developed for the ith

vehicle, is given as

Ji = E

[
E

[
1
2

∫ T

0

{xTQix+ ũT
i Riũi}dt|Yt

]]

= E

[
1
2

∫ T

0

{x̂TQix̂+ ũT
i Riũi + tr(QiP )}dt

]
(2)

where E[·] is the expectation operator, E[·|Yt] is the con-
ditional expectation operator, x̂ def= E[x|Yt] ∈ Rn is the
conditional mean, the error variance is P def= E[(x− x̂)(x−
x̂)T|Yt] ∈ Rn×n, Qi

def= DT
i Di and Ri > 0 are the weighting

on the state estimate and control, respectively. The dynamic
system may be simplified by using the minimal realization
of the triple (Di, A,Bi). Although our approach applies to
vehicle systems with block diagonal A and controls that
effect one vehicle so that the system coupling comes only
from the cost criteria and the measurements, all that needs
to be assumed is that (A,B,C) be a minimal realization.

The conditional mean x̂ and the error variance P are
associated with the centralized estimator where each vehicle
has access to all the information and the controls used in the
vehicle array. The centralized estimator and associate error
variance are

˙̂x = Ax̂+
M∑
j=1

Bj ũj + PCTV −1(y − Cx̂), (3)

Ṗ = AP + PAT + ΓWΓT − PCTV −1CP. (4)

Our approach is to first solve the centralized stochastic
multiple criteria LQG problem (Section III). The cost criteria
can then be written in terms of the statistics of the centralized
estimator. However, each vehicle does not need access to all
the data to perform almost optimally. Therefore, in Section
IV by augmenting the cost criterion (2) of each vehicle by a
cost imposed on the data rate among vehicles, a multiple
criteria optimization problem is formulated in the system
statistics.

III. MULTI-CRITERIA CONTROLLER WITH THE
CENTRALIZED ESTIMATOR

We suggest below the following multi-person optimization
with respect to ũi(Yt), but with centralized information, i.e.
all measurement and control values are transmitted. For this
centralized information problem, the dynamic programming
approach to the deterministic LQG Nash equilibrium control
problem of [5] is extended to include the stochastic LQG
Nash equilibrium control problem. In Section IV the notion
of data rates is introduced which are used to limit the trans-
mission of information. Once the controller is determined
for the centralized information problem, the data rates are
allowed to vary and become control variables for a new
matrix deterministic Nash equilibrium problem.

Let the optimal value of ũi be ũ0
i and the ith cost criterion

be defined in (2). Then, the Nash equilibrium is determined
from the following person-by-person optimization:

minũ1(Yt) J1(ũ1, ũ
0
2 · · · , ũ0

M )
...

minũM (Yt) JM (ũ0
1, · · · ũ0

M−1, ũM )
(5)

subject to

˙̂x = Ax̂+
M∑
j=1

Bj ũj + PCTV −1(y − Cx̂) (6)

Ṗ = AP + PAT + ΓWΓT − PCTV −1CP (7)

Note that all the controls are required in the estimator, but
it is only each local control ũi that enters into the local
optimization.

The Nash equilibrium strategy set is defined [5] by
satisfying (5), which implies person by person optimality
for a cooperative game. For the LQG stochastic dynamic
programming extension of [5] the value function for the
ith player is defined as the piecewise differentiable function
Vi(x̂, t) = 1

2 x̂
TSix̂ + ai(t) which satisfies the generalized

Hamilton-Jacobi equation for the LQG problem

−Vit = min
ũi

[
1
2
x̂TQix̂+

1
2
uT
i Riui+

Vix̂(Ax̂+
M∑
j=1

Biuj)+ (8)

tr(Vix̂x̂PCTV −1CP )], i = 1, · · · ,M

After substituting Vi(x̂, t) = 1
2 x̂

TSix̂ + ai(t) into (8) and
minimizing with respect to ũi, the optimal ith controller is

ũ0
i = −R−1

i BT
i Six̂

def= −Gix̂, i = 1, · · · ,M (9)
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where Si is the ith solution to the coupled Riccati equation
determined by substitution of (9) into (8) as

−Ṡi =Qi + SiBiR
−1
i BT

i Si+

SiA+ATSi −
M∑
j=1

(SjBjR−1
j BT

j Si+ (10)

SiBjR
−1
j BT

j Sj), i = 1, · · · ,
−ȧi =tr(SiPCTV −1CP ), i = 1, · · · ,M (11)

Substituting (9) into the cost criterion (2) and taking the
expectation produces optimal deterministic cost criterion in
the variances of x, x̂, and e = x− x̂ as X = E[xxT], X̂ =
E[x̂x̂T] and the estimation error variance P , respectively, as

Joi =
1
2

∫ T

0

tr{(Qi + SiBiR
−1
i BT

i Si)X̂ +QiP}dt,

=
1
2

∫ T

0

tr{QiX + SiBiR
−1
i BT

i SiX̂}dt, (12)

i = 1, · · · ,M

The cost criterion (12) can be manipulated into a somewhat
simpler form by adding to it the identically zero quantity
(Note that Si(T) = 0)

−tr(Si(0)X(0)) =
∫ T

0

tr(ṠiX + SiẊ)dt (13)

where the state covariance is propagated as

Ẋ = (A−
M∑
j=1

BjR
−1
j BT

j Sj)X̂+

X̂(A−
M∑
j=1

BjR
−1
j BT

j Sj)
T+ (14)

AP + PAT + ΓWΓT

The deterministic cost criterion (12) for centralized informa-
tion becomes

J̄oi = tr(Si(0)X(0)) +
∫ T

0

L̄oi dt, i = 1, · · · ,M (15)

where the Lagrangian is

L̄oi = tr[
M∑
j=1

(PSjBjR−1
j BT

j Si+

SiBjR
−1
j BT

j SjP )− (16)

SiBiR
−1
i BT

i SiP + SiΓWΓT]

It should be emphasized that a Nash equilibrium is obtained
as the solution, which is a person-by-person optimum. How-
ever, the choice of Qi can produce either a very coordinated
array or relaxed coordination.

IV. OPTIMAL DATA RATES FOR MEASUREMENT AND
CONTROL INFORMATION FLOW

In this section we first define the notion of data rates for
the transmission of the measurements and controls. Using
these definitions, a multiple person-by-person optimization
is formulated in the statistics of the system dynamics. The
controllers using centralized information are decomposed
into local controllers whose information has been restricted
to that which is the most valuable. Since we retain the cen-
tralized controller structure, this solution will not produce the
optimal decentralized controllers. For the problem described
below, the data rates are assumed to be functions of time and
not a function of the estimated states as in the centralized
information LQG Nash equilibrium control problem. Finally,
necessary conditions for optimality, which can lead to a
numerical method for obtaining the optimal data rates, are
given.

A. Measurement Data Rates

To determine the value of the transmission of a measure-
ment, a new measurement for the ith vehicle is defined as a
summation of transmitted and estimated data

yi
def= µiy + (I − µi)ŷi (17)

where µi, i = 1 · · ·M, is a q × q diagonal matrix and ŷi
is the estimated measurements (ŷi = Cx̂i). The essential
innovation is the introduction of the time-varying parameters
µi in which each diagonal element j of µi associated with
all the measurements is bounded as 0 ≤ µji ≤ 1.
• If µji = 1, then the associate measurement is important

to the performance of controller i.
• If µji = 0, then the associated measurement is not

important to the performance of controller i.
• If µji takes on interior values, then that measurement is

taken intermittently, depending on the value of µji and
can be associated with the data rate.

A cost is imposed on the data rate among vehicles by
augmenting the cost criterion of each vehicle, as will be
detailed in Section IV-C.

B. Control Data Rates

In a manner similar to (17), the transmission of the
controls can be structured as

ũij
def= αji ũj(Yj) + (I − αji )ũj(Yi) (18)

where αji is a mj × mj diagonal matrix and Yi is the
information at the ith vehicle used to construct its best
estimate of the control used by vehicle j. The diagonal
elements of αji are to be determined within the interval
[0, 1]. If a diagonal element of αji is one, we use the control
from agent j in the estimation of x̂i. On the other hand if a
diagonal element of αji is zero, then the control for agent j
is not transmitted and we estimate it using the state estimate
from vehicle i. In particular, in (18) ũj(Yj) = −Gj x̂j and
ũj(Yi) = −Gj x̂i are used where Gj is the control gain
defined in (9).
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C. Formulation of the Data Rate Optimization Problem

To reduce the amount of information shared among agents,
we formulate an optimization problem that simultaneously
optimizes both the measurement and the control transmis-
sions among agents.

Consider the following system dynamics

ẋ = Ax+
M∑
j=1

Bj ũj(Yj) + Γw

˙̂xi = Ax̂i +
M∑
j=1

Bj ũ
i
j +Ki(yi − ŷi)

= Ax̂i +
M∑
j=1

Bj ũ
i
j +Ki{µiy + (1− µi)ŷi

− µiŷi − (1− µi)ŷi}

= Ax̂i +
M∑
j=1

Bj ũ
i
j +Kiµi(y − ŷi)

= Ax̂i +
M∑
j=1

Bj ũ
i
j +Kiµi(Cx+ v − Cx̂i)

where Yj is the information available at the jth vehicle and
used to construct its local control and ũij is the estimate of
the control in the jth vehicle used in the estimator of the
ith vehicle and is defined in (18). Ki is the approximate
Kalman gain, Ki = PiiC

TV −1, and x̂i = x̂i(Yi) is the state
estimate with respect to the measurements history of vehicle
i. Pii is computed from an error variance associated with
the enlarged system with restricted information flow, defined
below.

Defining ei
def= x− x̂i, we get:

ėi =Aei +
M∑
j=1

Bj ũj(Yj)

−
M∑
j=1

Bj ũ
i
j + Γw −KiµiCei −Kiµiv (19)

Construct the control at vehicle j to be used in the filter of
vehicle i as given in (18). This yields:

ėi =Aei +
M∑
j=1

Bj [ũj(Yj)− αji ũj(Yj)

− (I − αji )ũj(Yi)] + Γw −KiµiCei −Kiµiv

=Aei +
M∑
j=1

Bj

(
I − αji

)
(ũj(Yj)− ũj(Yi))

+ Γw −KiµiCei −Kiµiv , i = 1, · · · ,M

Since ũj(Yj) = −Gj x̂j and ũj(Yi) = −Gj x̂i where Gj

is the control gain defined in (9),

ėi =Aei +
M∑
j=1

Bj

(
I − αji

)
(−Gj x̂j +Gj x̂i)

+ Γw −KiµiCei −Kiµiv

=Aei +
M∑
j=1

Bj

(
I − αji

)
Gj(ej − ei) (20)

+ Γw −KiµiCei −Kiµiv

To get the equation that propagates the M · n × M · n
covariance, P̄ , we define:

Ψ = [ēēT] =


e1e

T
1 e1e

T
2 . . . e1e

T
N

e2e
T
1 . . . . . . e2e

T
N

...
...

...
...

eNe
T
1 . . . . . . eNe

T
N

 (21)

Applying the Itô stochastic differential on an element-by-
element basis and collecting all the individual terms:

Ψ̇ = ˙̄eēT + ē ˙̄eT + Γ̄W̄ Γ̄T + K̄V̄ K̄T (22)

Using the results from (20) and keeping in mind that P̄ =
E[ēēT], we get the covariance propagation equation

˙̄P = (Ā−K̄C̄)P̄ + P̄ (Ā−K̄C̄)T +Γ̄W̄ Γ̄T +K̄V̄ K̄T (23)

where:
Γ̄W̄ Γ̄T = ones(M)⊗ ΓWΓT,

ones(M) denotes an M×M matrix having all elements as 1,

⊗ denotes the Kroencker product,
C̄ = Blockdiag(C) , V̄ = Blockdiag(V ),
K̄ = Blockdiag(K1µ1, · · · ,KNµN ),

KiµiV µjK
T
j = PiiC

TµiV
−1µjCPjj ,

Ā =


Ā11 Ā12 . . . Ā1M

Ā21 Ā22 . . . Ā2M

...
...

. . .
...

ĀM1 ĀM2 . . . ĀMM


with

Āaa = A−
M∑

j=1
j 6=a

Bj(I − αja)Gj

Āab = Bb(I − αba)Gb

and

P̄ =


P11 P12 . . . P1M

P21 P22 . . . P2M

...
...

. . .
...

PM1 PM2 . . . PMM


Note that if the centralized filter gain K is used rather than
Ki, then (23) is a Lyapunov equation.

The associated information cost is chosen as

Liy =
q∑
j=1

µji b
j
yi

(24)
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where {bjyi
} are constant weightings for the cost of trans-

mitting measurement information. Similarly, the associated
control cost is chosen as

Liu =
M∑
j=1

αji b
j
ui

(25)

where {bjui
} are constant weightings for the cost of trans-

mitting control information.
The augmented cost function for this problem then be-

comes:

J̌i = tr(Si(0)X(0)) +
∫ T

0

Ľidt (26)

where:
Ľi = L̄oi + Liy + Liu (27)

and where L̄oi is given in (16), but with P replaced by Pii.
This problem needs to be solved by simultaneously mini-

mizing for the cost of sharing measurement information and
the cost of sharing control information as

min
µ1,α1

J̌1 (µ1, µ
∗
2, · · · , µ∗M , α1, α

∗
2, · · · , α∗M )

...

min
µM ,αM

J̌M
(
µ∗1, · · · , µ∗M−1, µM , α

∗
1, · · · , α∗M−1, αM

)
(28)

subject to the dynamic constraint (23). The diagonal matrices
µi ∈ Rq×q and αji ∈ Rmj×mj , j = 1, · · · ,M are consid-
ered variables whose elements have values in the interval
[0, 1]. The µi are used to determine the measurements that
need to be shared among vehicles while the

αi ,
[
α1
i , · · · , αi−1

i , αi+1
i , . . . , αMi

]
, i = 1, · · · ,M

are used to determine the controls information that needs
to be shared among the vehicles. This person-by-person
optimization produces the measurement history Yi, i =
1, · · · ,M and the control vectors that are to be transmitted to
the ith vehicle from all the others. Although the cost criterion
(26) for each vehicle i only contains its own µi and αi and
not those of the other vehicles, the dynamic constraint (23)
does include the other vehicles’ µj and αj and therefore, the
above person-by-person optimal problem does not reduce to
M independent optimal control problems. Note that using
the costs (24) and (25), the optimization problem (28) is
bilinear in µi and αi.

D. Necessary Conditions for Optimality

The optimization problem for solving the Nash solution
for J̌i’s with respect to the (µi, αi ∀i) is difficult. Here,
we present a set of necessary conditions for optimality. The
difficulty is finding an efficient numerical scheme to satisfy
these necessary conditions. The anticipated result will be a
set of controllers, each choosing the information it needs for
good performance.

The necessary conditions for a Nash equilibrium are ob-
tained in [5] by an extension of the variational methods used
in optimal control theory. We are seeking optimal solutions
for (µi, αi ∀i) as a function of time. In our extension we state

the necessary conditions for a Nash equilibrium subject to
a matrix differential equation [6]. Therefore, we define the
variational Hamiltonian as

Hk(P̄ , t, µ∗1, · · · , µ∗k−1, µk, µ
∗
k+1, · · · , µ∗M , α∗1, · · · ,

α∗k−1, αk, α
∗
k+1, · · · , α∗M ,Λk)

= Ľk + trΛk[(Ā− K̄C̄)P̄ + P̄ (Ā− K̄C̄)T (29)

+ Γ̄W̄ Γ̄T + K̄V̄ K̄T]

where Λk ∈ RMn×Mn is the matrix Lagrange multiplier
and µ∗i , α

∗
i are the optimal person by person measurement

and control information rate vector values, respectively. A
Nash equilibrium trajectory must satisfy, for k = 1, · · ·M ,
the following conditions

˙̄P = (Ā− K̄C̄)P̄ + P̄ (Ā− K̄C̄)T + Γ̄W̄ Γ̄T + K̄V̄ K̄T

Λ̇k = −∂Hk

∂P̄
, Λk(T) = 0, (30)

min
µk,αk

Hk(µ∗1, · · · , µ∗k−1, µk, µ
∗
k+1, · · · , µ∗M ,

α∗1, · · · , α∗k−1, αk, α
∗
k+1, · · · , α∗M )

The result of this person-by-person optimization process is
that every vehicle has its own information set Yi

def= {yis :
0 ≤ s ≤ t} for i = 1, · · · ,M where Yi is the measurement
history available at the ith vehicle by direct measurement or
transmission.

V. STATIC OPTIMIZATION

Since the variational problem is numerically difficult, a
simpler problem to solve first would be the static problem
where the Lagrangians Ľi, i = 1, · · · ,M (26) are person-
by-person minimized subject to the steady state variance
algebraic constraints, where the left hand side of (23) is set
equal to zero. For the measurement and control data rate,
µi, αi, i = 1, · · · ,M , the multi-person static deterministic
optimization is

min
µi,αi

Ľi(µ∗1, · · · , µ∗i−1, µi, µ
∗
i+1, · · · , µ∗M ,

α∗1, · · · , α∗i−1, αi, α
∗
i+1, · · · , α∗M ), i = 1, · · · ,M (31)

subject to

0 = (Ā− K̄C̄)P̄ + P̄ (Ā− K̄C̄)T + Γ̄W̄ Γ̄T + K̄V̄ K̄T

i = 1, · · · ,M. (32)

An example of this static optimization is given below.

VI. SIMULATION EXAMPLES

Two examples are presented. The first considers two carts
in a platoon and then, four carts in a platoon formation. The
objective of these two examples are to reveal some of the
special characteristics that occur in this class of optimization
problems. To simplify the optimization, only the upper (one)
and lower (zero) bounds of µji and αji are considered in the
static optimization problem of Section V.
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A. Two Vehicle System

Consider a system composed of two vehicles traveling
in a single file. The state vector is x = [d v1 v2]T.
d denotes relative position between 1st and 2nd vehicle
(i.e. d = p1 − p2)
v1 is the velocity of the first vehicle
v2 is the velocity of the second vehicle

Measurements are the entire vector x. Each vehicle controls
its own acceleration. Thus, system dynamics in relative
position and velocity useful for LQG Nash equilibrium
computation are

d

dt

 dv1

v2

 =

0 1 −1
0 0 0
0 0 0


︸ ︷︷ ︸

A

 dv1

v2



+

0 0
1 0
0 1


︸ ︷︷ ︸

B

[
u1

u2

]
+

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

Γ

w1

w2

w3


y = I3×3︸︷︷︸

C

[
d v1 v2

]T + v

The system dynamics for the two vehicle system are

ẋ = Ax+B1ũ1(y1) +B2ũ2(y2) + Γw
˙̂x1 = Ax̂1 +B1ũ

1
1 +B2ũ

1
2 +K1µ1(Cx+ v − Cx̂1)

˙̂x2 = Ax̂2 +B1ũ
2
1 +B2ũ

2
2 +K2µ2(Cx+ v − Cx̂2)

The process and measurement noises are Gaussian, v ∼
N(0, V ), w ∼ N(0,W ) and the matrices Γ, C, W and
V are all taken to be identity matrices of the appropriate
dimensions. By definition, ei = x− x̂i, i = 1, 2, we get:

ė1 = [A−B2(1− α2
1)G2 −K1µ1C]e1

+B2(1− α2
1)G2e2 + Γw −K1µ1v

ė2 = B1(1− α1
2)G1e1 + [A−B1(1− α1

2)G1

−K2µ2C]e2 + Γw −K2µ2v

By applying Itô stochastic differential, we get the covariance
propagation equation

˙̄P = (Ā− K̄C̄)P̄ + P̄ (Ā − K̄C̄)T + Γ̄W̄ Γ̄T + K̄V̄ K̄T

where,

Ā =
[
A−B2(1− α2

1)G2 B2(1− α2
1)G2

B1(1− α1
2)G1 A−B1(1− α1

2)G1

]
P̄ =

[
P11 P12

P21 P22

]

K̄V̄ K̄T =
[
K1V K1

T K1V K2
T

K2V K1
T K2V K2

T

]
=[

P11C
TV −1µ1µ1

TCP11 P11C
TV −1µ1µ2

TCP22

P22C
TV −1µ2µ1

TCP11 P22C
TV −1µ2µ2

TCP22

]
and K̄C̄ = Blockdiag(K1µ1C,K2µ2C) and Γ̄W̄ Γ̄T =
ones(2)⊗ ΓWΓT

Fig. 1. Measurement and Control Data Rates Optimization Algorithm

The controller gains G1 and G2 are

Gi = R−1
i BTi Si, i = 1, 2

where the solution Si of the coupled Riccati equation of
Hamilton-Jacobi equation for the LQG Nash equilibrium,
given in (10), are integrated backwards to steady state as

S1 =

 1.2694 0.6405 −0.4603
0.6405 1.4441 −0.3128
−0.4603 −0.3128 0.6311


S2 =

 1.2694 0.4603 −0.6405
0.4603 0.6311 −0.3128
−0.6405 −0.3128 1.4441


where the weights in the cost are chosen as Qi = I and
Ri = 1. Estimation gains K1 and K2 are computed from a
diagonal matrix element Pii of the error variance P̄ as

Ki = PiiC
TV −1µi, i = 1, 2

The procedure for determining the optimal data rates uses
the algorithm depicted in Figure 1. The iteration process

miualphaWeighting

miualphaWeighting ( )i )( i

( )i )( i

1.0,1.0 j
u

j
y ii

bb

10, 10
i i

j j
y ub b

50, 50
i i

j j
y ub b

1, 10
i i

j j
y ub b

10, 1
i i

j j
y ub b

1 1 1
1 1 1

diag
diag

0 0
0 0

[1 ]
[2 ]

st

nd

car
car

0 1 0
1 0 1

diag
diag

0 0
0 0

0 1 0
1 0 0

diag
diag

0 0
0 0

1 1 0
1 0 1

diag
diag

0 1 0
1 0 1

diag
diag

0 0
0 0

0 0
0 0

Fig. 2. Data Rates from the Optimization of the Two Car Platoon
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starts with the unity values of (µ(0)
i , α

(0)
i , i = 1, · · · ,M)

used in the centralized controllers. Then, we optimize pair-
wise for µ(j)

i and α
(j)
i in a manner illustrated in Figure

1. Although convergence is not guaranteed, it appears that
convergence was obtained for this problem and the results are
shown in Figure 2. The bjyi

’s and bjui
’s are the values of the

weights in (24) and (25), respectively. Note that αji is always
chosen as zero for all bjyi

’s and bjui
’s chosen, suggesting that

the control values should, in general, never be transmitted.
As the values of bjyi

and bjui
increase, fewer measurements

are transmitted. It appears that the minimal measurement
transmission (note that it can be local information here)
is that the 1st car uses its own velocity information and
the 2nd car uses only the relative position (bjyi

= 50,
bjui

= 50). In Figure 3 it is shown that for full measurement
transmission, transmitting the control values gives the same
value of the error variance as when the control values are
not transmitted. However, for measurements resulting from
bjui

= 50 and bjui
= 50, transmitting the control values

leads to instability and not transmitting the control values
produces a stable system. The difference is that if the control
values are not transmitted, then the a priori knowledge of
the control structure is explicit in the error variance equation
for P̄ , in particular, Ā, and for αji = 0 is shown to be
stable. In contrast, when αji = 1 the propagation of P̄
uses A which is only neutrally stable. To better understand

Fig. 3. Two Car Error Variance

the non-intuitive notion that less information (no control
transmissions) produces a stable system whereas more infor-
mation (control transmissions) produces an unstable system,
the system observability is analyzed when all the αji s are
either one or zero for the reduced measurement set of µ1 =
diag[0, 1, 0] and µ2 = diag[1, 0, 0]. When all the αji s are one,
then the observability pair (A, µ1C) for car 1 produces an
observability matrix of rank 2 and the pair (A, µ2C) for car
2 produces an observability matrix of rank 1. Therefore, the

matrix

Ā− K̄C̄ =
[
A−Kµ1C 0

0 A−Kµ2C

]
is unstable for any K. However, if the αji s are zero, then the
dynamic system for each car is

˙̃xi = Ãix̃i +Biui , yi = µiCx , i = 1, 2

where

Ã1 =
[

A −B2G2

K2µ2C A−B1G1 −B2G2 −K2µ2C

]
Ã2 =

[
A −B1G1

K1µ1C A−B1G1 −B2G2 −K1µ1C

]
x̃1 =

[
x
x̂2

]
, x̃2 =

[
x
x̂1

]
For this case where the αji s are zero, a necessary condition
for the stability of

Ā− K̄C̄ = A(1) −
[
K
0

]
[µ1C 0]

= A(2) −
[

0
K

]
[0 µ2C],

where A(i) are similar to Ãi, is that the observability pair
(Ãi, µiC) be detectable. The similarity transform is based
on using x−x̂i rather than x̂i in x̃i. For this two car problem,
the observability pair (Ã1, µ1C) for car 1 is observable and
the observability pair (Ã2, µ2C) for car 2 is not observable,
but detectable where the observability matrix is rank 1.

B. Four Vehicle System

Let us consider a system composed of four
vehicles traveling in a platoon formation. This
system is represented by (1). The state vector for
this system is x = [d1 d2 d3 v1 v2 v3 v4]T, where:
d1 denotes relative position of 1st and 2nd vehicles.
d2 denotes relative position of 2nd and 3rd vehicles.
d3 denotes relative position of 3rd and 4th vehicles.
v1 is the velocity of the first vehicle
v2 is the velocity of the second vehicle
v3 is the velocity of the third vehicle
v4 is the velocity of the fourth vehicle

A =



0 0 0 1 −1 0 0
0 0 0 0 1 −1 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


and B is a 7×4 matrix where the upper three rows have zero
elements and the lower 4×4 block is the identity matrix. The
process and measurement noises are Gaussian, v ∼ N(0, V ),
w ∼ N(0,W ) and the matrices Γ, C, W and V are all taken
to be identity matrices of the appropriate dimensions.

We first design the control system for this problem by
solving the set of coupled Riccati equations (10) presented
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diag
diag
diag
diag

0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

diag
diag
diag
diag

0 0 0 1 0 0 0
1 1 0 1 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

diag
diag
diag
diag

Fig. 4. Data Rates from the Optimization of the four vehicle platoon

in section III for a four player problem where these Riccati
equations are integrated backwards to steady state. Unity
weights for Qi and Ri in the above equations are chosen.
Similar results occur when each vehicle keeps track of its
own velocity and its relative position with respect to the
vehicle directly ahead.

The results of the optimization process are given in Figure
4 for increasing values of bjyi

and bjui
. Again, for all values

of bjyi
and bjui

, it is optimal not to transmit the control values.
The a priori shared control structure induces stability as
given by Ā for αji = 0

VII. CONCLUSIONS

The above formulation is an approach to the resolution
of the information transmission over a distributed vehicle

system network for a class of LQG problems. We approach
this problem by minimizing the information flow within
the formation by considering the information needs of each
individual vehicle. Data rate variables are established for
both the measurement and control transmission. The essential
objective is to minimize local cost criteria with respect to
these data rate variables so that the information flow can be
reduced without significant deterioration in performance. The
numerical characteristics of this class of optimal information
transmission problems are established, and a simplification is
made based on a static optimization. The approach developed
here contributes to the beginning of a formal methodology
to establish performance measures and procedures for dis-
tributed control schemes.
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