
  

  

Abstract—Traditional congestion control algorithms exhibit 
low convergence rate to equilibrium when the network capacity 
is very large. In this paper, we present a new algorithm called 
Quick Kelly Control (QKC) to accelerate the convergence rate. 
The link utilization ratio functions are used as feedback signal 
and a novel nonlinear update law is constructed. The stability of 
this new algorithm is partly proved without considering delay. 
We also compare this algorithm with two classic algorithms and 
give simulation results. It is shown that QKC has powerful 
bandwidth scalability and offers fast convergence rate without 
sacrificing proportional fairness. 

I. INTRODUCTION 
hanges in communication networks over the last 

decades have forced researchers to closely examine the 
network congestion control, particularly for the Internet. 

Congestion control is a distributed method to share network 
resources among competing sources. It consists of two 
components: a source algorithm that dynamically adjusts 
sending rate (or window size) in response to congestion in its 
path, and a link algorithm that updates congestion 
information and sends it back, implicitly or explicitly, to 
sources using that link.  

The traditional algorithms were designed during a time 
when the Internet was a relatively small network compared to 
its size today. Therefore, researchers must reexamine the role 
of congestion control with the goal enhancing TCP to make it 
scalable to high-speed networks.  

A large amount of theoretical and experimental work has 
been done to design stable congestion control for high-speed 
networks. Such examples include Fast TCP [2], Scalable TCP 
[3] [20], HSTCP [4], XCP [5], and BIC-TCP [6]. All of these 
methods aim to get quick convergence to efficiency, stable 
rate trajectories, fair bandwidth sharing, and low packet loss. 
Another different direction in congestion control is to model 
the network from an optimization or game theoretic point of 

 
Manuscript received September 16, 2007. This work was supported in part 

by the NSFC Projects (No. 60621001), the Outstanding Overseas Chinese 
Scholars Fund of Chinese Academy of Sciences (No. 2005-1-11), the 
National 863 Program (No.2007AA04Z239),  the National 973 Project 
(2006CB705500),  and K. C. Wong Education Foundation, Hong Kong . 

Yanping.Xiang. is with the Key Lab of Complex Systems and Intelligence 
Science, Institute of Automation, Chinese Academy of Sciences, Beijing, 
Haidian, CO 100080  P.R. China (phone: 086-010- 82615422; fax: 
086-010-82615422; e-mail: yanping.xiang@ia.ac.cn).  

Jianqiang.Yi . is with the Key Lab of Complex Systems and Intelligence 
Science, Institute of Automation, Chinese Academy of Sciences, Beijing, 
Haidian, CO 100080  P.R. China (e-mail: jianqiang.yi@ia.ac.cn).  

Dongbin.Zhao. is with the Key Lab of Complex Systems and Intelligence 
Science, Institute of Automation, Chinese Academy of Sciences, Beijing, 
Haidian, CO 100080  P.R. China (e-mail: dongbin.zhao@ia.ac.cn). 

view [7] [8] [9] [10] [11].The original work is done by Kelly 
[12].   

In [12], a model for elastic traffic is described. In this 
model, each user chooses the charge per unit time that the 
user is willing to pay; thereafter the user’s sending rate is 
determined by the network according to a proportional 
fairness criterion.  In [1], two complementary congestion 
control algorithms are proposed: primal algorithm and dual 
algorithm. However, these algorithms only exhibit linear 
convergence to efficiency. To get an exponential 
convergence rate, a variant version of Kelly’s algorithms 
which is called Max-min Kelly Control (MKC), is proposed 
in [13]. MKC utilizes negative network feedback which 
improves its convergence rate of efficiency from linear to 
exponential. However, MKC abandons proportional fairness 
and follows the max-min fairness criterion [13]. 

 In this paper, we aim to propose a new algorithm which 
can achieve quick convergence rate, proportional fairness and 
max-min fairness. In this new algorithm, a link utilization 
ratio function, which is always positive, is utilized as network 
feedback signal. We construct a link utilization ratio based 
nonlinear source controller to accelerate the convergence rate. 
A dynamic link control law is also proposed to give 
corresponding link prices. The source sending rate is then 
dynamically updated based on these link prices. The stability 
and performance of the algorithm is proved by theory and 
simulation results. 

 The rest of this paper is organized as follows. In section II, 
we give the basic network model and review related works. In 
section III, we present QKC and give analysis of its stability 
and proportional fairness. In section IV, simulation results are 
given. In section V, we conclude our work and suggest 
directions of future research.  

II. BASIC NETWORK FLOW CONTROL MODEL AND RELATED 
WORK  

A. Network Mode 
Network flows are modeled as the interconnection of 

information sources and communication links through the 
routing matrices [1] [8] [14]. Suppose we have a set of 
users, R , and a set of links, L . For each user r R∈ , its route 
involves a set of links, which is a subset of L , denoted rL .  

For each link l L∈ , it has a fixed capacity lc . Based on its 
congestion, a link price lp  is computed. Associate each user 
r with a sending rate rx . Thus, each link rl L∈ has an 
associated link aggregate rate ly . Suppose all links only feed 
back price information to the sources that utilize them. Set 
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1lrA = , if rl L∈  and set 0lrA =  otherwise. So we have the 
following relationship [14]: 

 
y Ax=    Tq A p=                              (1) 

 
where Nx R∈ is the source rate vector, Ly R∈ is the 
aggregate rate vector, Lp R∈ is the link price vector and 

Nq R∈ is the aggregate price vector. In this paper, we assume 
that there is no delay in the loop. 

The network flow control problem can be decomposed into 
a static resource allocation optimization problem and a 
dynamic stabilization problem.  

B. Static optimization problem  
The static resource allocation optimization problem is to 

maximize the whole networks’ performances. Its solution 
provides the desired steady state equilibrium: *x , *y , *p , 

and *q . 
To define a fair resource allocation problem, each user r is 

associated with a utility function ( )r rU x  which indicates the 
utility to the user r. Then the static resource allocation 
optimization problem [1] is to maximize the sum of the source 
utility functions ( )r rU x  under the capacity constraints in the 
links. That is 
 

1

max  ( )
N

r r
r

U x
=

∑  

subject to    
Ax C≤ , 0x >  

(2)

where C is a vector of the link capacities lc  and ( )r rU x  is an 
increasing, strictly concave and continuous differentiable 
function. The Lagrangian for the system problem is:  

 

    

( , ) ( ) ( )r r l l l
r R l L

L x p U x p c y
∈ ∈

= + −∑ ∑  .             (3) 

 
The above expression associates each link l with a 

Lagrange multiplier lp . This multiplier is the shadow price of 
the link. In many algorithms it summarizes the link 
congestion information.  

Since 
:   

r l
l l Lr

q p
∈

= ∑ , rewriting the Lagrangian, we can get 

 

  R   

( , ) ( ( ) )r r r r l l
r l L

L x p U x x q p c
∈ ∈

= − +∑ ∑            (4) 

 
So the first order condition for the optimization problem (2) is  

 
( ,  ) 0

r

L x p
x

∂
=

∂
.                                    (5) 

 

Since ( )r rU x  is a continuous differentiable function, this 
gives the following set of equations: 

 
' ( ) 0r r rU x q− = ,              r R∈ .           (6) 

 
Similarly, the condition for the Lagrange multiplier is [12]  

 
0,
0,

l l
l

l l

if y c
p

if y c
= <⎧

⎨≥ =⎩
 ,          r R∈ .          (7) 

 

C. Dynamic optimization problem 
The dynamic problem is to design the source rate update 

law based on the aggregate price, and the link price update 
law based on the aggregate rate, to guarantee stability and 
robustness of the equilibrium.  

In [1], Kelly’s congestion controller is a well-known 
gradient algorithm, which is widely used in optimization 
theory [15]. For each user r,   

 
'( )( ( ) )r r r r r rx k x U x q= −

i
                          (8) 

 
where ( )r rk x  is an appropriately chosen scaling function. 
For each link l, the link price is computed by a static price 
function 
 

    
2

( )
( ) l l

l l l
y c

p f y
ε

ε

+− +
= = .                 (9) 

 
where ( )lf i   can be an increasing function and can be 
considered as the penalty function or the price of link l . 

However, using the penalty function method, the algorithm 
only solves the problem (2) approximately. Clearly, the 
congestion controller will converge to the optimal solution of 
(2) if the equilibrium prices *

lp  are indeed the Lagrange 
multipliers of the problem (2). To this end, instead of 
computing lp  via the static function, the following dynamic 
equation is used to update lp [14] [16] [17] [18]:   

 

( )( )l l l llp g p y c += −
i

                        (10) 
 

where it is assumed that ( ) 0l lg p > . The congestion 
controller (8) can be considered as computing the primal 
variables which are the source rates. The dynamic price 
update law (10) can be considered as computing the dual 
variables [21] or the Lagrange multipliers. Therefore, (8) and 
(10) can be regarded as the primal-dual algorithm. In [14], its 
global stability in the absence of feedback delay is proved. 
However, these algorithms are “too slow” for high-speed 
networks. In [1], let ( )r r rk x xκ=  and ' ( ) /r r r rU x w x= . 
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Substituting these into (7), we can get 
 

( )r
r r r

r

w
x x q

x
κ= −

i
                              (11) 

 
In general, no price is charged at those links which are not 

full utilized. Under these circumstances, the sources increase 
their rates by rwκ  per unit time before they reach full link 
utilization at the slowest link. This results in linear 
AIMD-like probing for new bandwidth. The sources increase 
their rates by a constant rwκ  no matter how large the links’ 
capacities are. Thus the link utilization is very low in 
high-speed networks. This algorithm is un-scalable to large 
link capacity. 

To accelerate the convergence rate of efficiency, a variant 
version of Kelly’s algorithms which is called Max-min Kelly 
Control (MKC) is proposed in [13]. MKC abandons 
proportional fairness and utilizes negative network feedback 
which encourages the sources to increase their sending rates 
when l ly c< . Its price function can be expressed as follow:  

  
l l

l
l

y c
p

y
−

=                                    (12) 

:   
maxr ll l Lr

q p
∈

=                                  (13) 

 
MKC achieves max-min fairness and exponential 

convergence to efficiency. However, MKC only achieves 
linear convergence to fairness when the network cannot 
provide the scale information of the number of flows [13]. In 
practical network, it is difficult to get the number of flows. 
When the link capacity is very large and the number of flows 
is unknown, MKC sources need a long time to converge to 
max-min fairness.  

III. QUICK KELLY CONTROL (QKC) 
In this section, a new version of Kelly control, called Quick 
Kelly Control (QKC) is presented.  

We start our discussion with the following observations. 
To overcome the drawback of classic Kelly control, MKC 
utilizes negative feedback price which includes the links’ 
state information when the links are not fully utilized. 
Negative feedback price accelerates the convergence rate. 
However, it leads to large overshoot to the links’ capacity in 
the steady state if the sources rely on the sum of feedback 
functions [13]. To avoid large overshoot in the steady state, 
MKC abandons proportional fairness. MKC resources only 
feed back the most-congested link’s state information and 
satisfy the max-min fairness criterion. 

In [13], the author gives a conclusion: “Kelly’s 
proportional fairness, or any mechanism that relies on the 
sum of feedback functions from individual routers, always 
exhibits linear convergence to efficiency.” However, we 
don’t think that proportional fairness or the form of “sum of 

feedback function” do have relationship with the algorithm’s 
convergence rate. MKC’s quick convergence rate benefits 
from negative feedback prices which provide more sufficient 
link state information. In the following part we will show that 
proportional fairness and quick convergence rate do not 
conflict. Feedback information and the source update law are 
the key points we should focus on. 

Now, our problem is how to feedback sufficient link state 
information when those links are not fully utilized. In fact, 
negative price is only one of the possible choices and any 
price form which gives sufficient link state information is 
feasible. Note that, computing link utilization ratio is one of 
the most direct ways to express the link state information. So 
links can feed back their utilization ratios to the sources that 
utilize them. Then each source uses the sum of the utilization 
ratios that it can receive as an input of the sending rate 
controller. Obviously, the sum of the utilization ratios is 
always positive and those large links with low utilization 
ratios have small weights. This idea provides credible link 
prices even certain sources use those links with huge 
difference.  

Let ' ( ) r
r r

r

w
U x

x
= , where rw  is a positive constant. 

Substituting it to equation (6), we can get 
 

0r
r

r

w
q

x
− =                                      (14)  

 
Since 0rx > and 0rq > , equation (14) can be rewritten as 
 

0r
r r

r

w
x q

q
− =                                 (15) 

 
Consider the system of differential equations  
 

( )r
r r r

r

w
x k x q

q
= −

i
                          (16) 

 
:   

r l
l l Lr

q p
∈

= ∑                                         (17) 

 
Let      

             0 l
l

l

y
p

c
=                                                (18) 

  0 0 0( ) exp[ ( 1)]l l l lp h p p pλ= ⋅ ⋅ −               (19) 
 

where ( )h i  is an increasing function. It can be considered as 
a price discounter factor. Obviously the price function is a 
positive increasing function. 

Compared to the classic Kelly control, instead of probing 
for new bandwidth in a linear AIMD-like manner, the 
resulting control algorithm (16)-(19) computes both increase 
component and decrease component based on the feedback 
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information.  
Similar to [1] [14], we will prove the stability of the control 

algorithm (16)-(19). Instead of solving the resource 
allocation problem (2) exactly, consider the following 
objective [1] [19]: 

 

0
( ) ( ) ( )ly

r r l
r l

V x U x f dϕ ϕ= −∑ ∑∫             (20) 

 
Since ( )lf i   is an increasing function and ( )r rU x  is strictly 
concave and continuous differentiable, it is easy to see that 

( )V x  is a strictly concave function [19]. The optimization 
problem (2) can be approximately replaced by the following 
problem [1] [19]:   
 

   Max   ( )V x ， 0x >                               (21) 
 

Since 
:   

l s
s l Ls

y x
∈

= ∑ , we can get [19]: 

 
'

:   :   

'

( ) ( )

( )

r r l s
l l Ls s l Lsr

r r r

V U x f x
x

U x q
∈ ∈

∂
= −

∂

= −

∑ ∑
                  (22) 

 
The following theorem shows that the congestion control 

system (16)-(19) is globally asymptotically stable. Starting 
from any initial state, as t → ∞ , the sources rates rx  will 

converge to the non-zero rates *
rx  which maximizes (20). 

Theorem 1 Starting from any initial condition, the 
congestion control system (16)-(19) will converge to the 
unique solution *x  maximizing ( )V x . 
Proof 

Since ( )V x  is strictly concave, the maximizing value of 
*x  is thus unique. Let * *

1( ) ( ) ( )V x x V x V x− = − , where 

1(0) 0V = . Because *( ) ( )V x V x≥ , *
1( ) 0V x x− ≥ . *

1( )V x x−  
is a positive definite function. 

Note that 
'1 ( ) r
r r r r

r r

V w
U x q q

x x
∂

= − + = − +
∂

 

Further 
 

1 1
r

r r

dV V d x
dt x dt

∂
= ⋅

∂∑   

( ) ( )r r
r r r

r r

w w
q k x q

x q
= − + −  

2( ) 0r r
r

r r

w x
k q

x q
= − − ≤ . 

 
Observe that 1 / 0dV dt <  for *x x≠  and is equal to zero 

for *x x= . Thus 1V  is strictly decreasing with t , unless 
*x x= . Since the unique *x  maximizes  ( )V x  and 

minimizes *
1( )V x x− , the function *

1( )V x x− is a Lyapunov 
function for the system (16)-(19).  

We thus conclude that *x is globally asymptotically stable. 
The theorem follows.  ,  

It is mentioned in the above section that, if the link price is 
computed by a static price function, the algorithm only solves 
the problem (4) and it does not solve the original resource 
allocation optimization problem (2) exactly. To make the 
congestion controller converge to the optimal solution of (2), 
a dynamic link prices update law is needed. Instead of 
computing lp  via a static function, a first order dynamic link 
price discounter update law is given as follow: 

 
0( 1)l lpδ θ= −

i
                                 (23) 

0( ) exp( )l lh p δ=                               (24) 
 

where θ  and λ  are constants. Note that, an exponential 
function is used as price discounter. This update law is based 
on a very simple motivation: Subject to the capacity 
constraint, all links do their best to maximize their utilization. 
For link l , when the utilization ratio 0 1lp < , its discounter 
factor is decreased smoothly and a lower link price is given to 
encourage the sources that utilize this link. When the 
utilization ratio 0 1lp > , the discounter factor is increased 
smoothly and a larger link price is given to restrain the 
sources that utilize this link. 

We call the resulting control algorithm (16)-(19) and 
(23)-(24) Quick Kelly control (QKC). It is easy to get the 
equilibrium condition of the QKC system: 

 
*

*
r

r
r

w
x

q
= ,           r R∈                            (25) 

* 0,
0,

l l
l

l l

if y c
p

if y c
→ <⎧

⎨ ≥ =⎩
 ,      l L∈            (26) 

 
Since ' ( ) /r r r rU x w x= , this equilibrium is arbitrarily close to 
(6) and (7). So QKC solve the optimization problem (2). The 
stability of the equilibrium can be proved similar to the 
proposition 2 and proposition 5 in [14]. Obviously, QKC and 
Kelly controller have an identical form of the equilibrium. So 
QKC can satisfy proportional fairness criterion too. 

 The performances of this algorithm are confirmed by 
simulation results which are given in the next section. 

IV. SIMULATION RESULTS  
To illustrate the performance of the new congestion controller 
presented in this paper, we consider a simple 
four-source/three-link example which is presented in [14]. 
The corresponding routing matrix is 
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1 0 1 0
1 1 1 0
1 1 0 1

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Its topology structure is shown in Fig.1. We assume that 

the link capacities are all 0c . For those algorithms (KC, QKC) 
which follow proportional fairness criterion, suppose that all 
source utility functions are ( ) log( )r r rU x x= . The solution to 
the optimization problem (1) [14] is 

 
*

0 0 0 0[0.25 0.25 0.5 0.5 ]Tx c c c c=  

[ ]*
0 0 00.75 Ty c c c=  

 
For those algorithms (MKC, QKC) which follow Max-min 

fairness criterion, the solution to the optimization problem (1) 
is 

 
*

0 0 0 0
1 1 1 1[ ]
3 3 3 3

Tx c c c c= ,  

*
0 0 0

2
3

T

y c c c⎡ ⎤= ⎢ ⎥⎣ ⎦
 

 
The initial source rate is set to 

 

[ ]0 0 0 0(0) 0.1 0.2 0.25 0.15 Tx c c c c=  
 

The time step is set to 0.2. 
Consider the following control systems: 

KC:  (8), (9) and (17). Set: 0.5rκ = , 1rw = , 00.02cε = .  

MKC:  (8), (12) and (13).   Set:  0.5rκ = ,  1rw =  

PDQKC:   (16), (17), (18), (19), (23) and (24).   

Set:  0.5rκ = ,  1rw = , 0.05θ = , 2.0λ = , 0.000001ω = , 

0(0) 0.8ln cδ = − .   

To compare the bandwidth scalability of these controllers, 
two Euclidean distance functions, which describe the relative 
distance between the current state and the equilibrium point, 
are defined by (27) and (28). 

 
**

2
1 * *( )r r

r r

x xx xd
x x

−−
= = ∑ .                  (27) 

**
2

2 * *( )l l

l l

y yy yd
y y

−−
= = ∑ .                 (28) 

 
If the equilibrium is asymptotically stable, starting from the 

initial state, the sources and the links will converge to *x and 
*y  respectively as t → ∞ . It is clear that, 1 0d →  as 

*x x→ and 2 0d →  as *y y→ . Set 0 100c = , 0 1000c =  
and 0 10000c =  respectively. By logarithmizing the time 
steps, Fig.2-4 show the bandwidth scalability of these 
controllers.  

KC exhibits linear convergence to efficiency and fairness 
[13]. In Fig.2, both 1d  and 2d  approximately tend to zero as 
the time increases. The convergence time of 1d  and the 
convergence time of 2d  are proportional to the link capacities. 
In Fig.3, 2d  is sharply decreased and all the links tend to their 
equilibrium exponentially no matter how large the link 

Fig. 1.  A network example.  
Fig. 2.  1d  and 2d  of  KC. 
 

 
Fig. 3.  1d  and 2d of   MKC. 
 

 
Fig. 4.  1d  and 2d of  QKC.  
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capacities are. However, except for the early state, the process 
of 1d  is similar to the KC’s. In Fig.4, QKC shows its 
powerful bandwidth scalability and fast convergence to 
efficiency and fairness. Both 1d  and 2d  converge to zero in a 
short time. As the link capacities grow from 100 to 10000, 
only small variation of the convergence time is observed. If 
we change the form of price aggregate expression, QKC can 
also satisfy the max-min criterion. A max-min form of QKC 
is obtained by replacing (17) by (13). 

Although MKC offers exponential convergence to 
efficiency, its source convergence rate to fairness is much 
slower than QKC. In practical network, to avoid impacting 
the network, large rate acceleration is not expected at the 
early state. Thus, it doesn’t make much sense to get pure 
exponential convergence to efficiency. 

V. CONCLUSIONS  
This paper has presented a novel nonlinear network 

congestion control algorithm called Quick Kelly control 
(QKC). In QKC, a link utilization ratio function is used as 
feedback signal to accelerate convergence rate and improve 
the bandwidth scalability. Comparing to classical Kelly 
control and MKC, QKC can achieve fast convergence to the 
equilibrium and has powerful bandwidth scalability. All the 
analysis and simulation results based on an assumption that 
there is no delay in the loop. Our future work involves the 
improvement of dynamic performance and delay stability.  
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