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Abstract— In this paper, the optimal filtering problem for
polynomial system states with polynomial multiplicative noise
over linear observations with an arbitrary, not necessarily
invertible, observation matrix is treated proceeding from the
general expression for the stochastic Ito differential of the
optimal estimate and the error variance. As a result, the
Ito differentials for the optimal estimate and error variance
corresponding to the stated filtering problem are first derived.
A transformation of the observation equation is introduced to
reduce the original problem to the previously solved one with
an invertible observation matrix. The procedure for obtaining a
closed system of the filtering equations for any polynomial state
with polynomial multiplicative noise over linear observations
is then established, which yields the explicit closed form of
the filtering equations in the particular cases of linear and
bilinear state equations. In the example, performance of the
designed optimal filter is verified against the optimal filter
for a quadratic state with a state-independent noise and a
conventional extended Kalman-Bucy filter.

I. INTRODUCTION

Although the general optimal solution of the filtering prob-

lem for nonlinear state and observation equations confused

with white Gaussian noises is given by the equation for the

conditional density of an unobserved state with respect to

observations [1], there are a very few known examples of

nonlinear systems where that equation can be reduced to a

finite-dimensional closed system of filtering equations for

a certain number of lower conditional moments. The most

famous result, the Kalman-Bucy filter [2], is related to the

case of linear state and observation equations, where only

two moments, the estimate itself and its variance, form a

closed system of filtering equations. However, the optimal

nonlinear finite-dimensional filter can be obtained in some

other cases, if, for example, the state vector can take only a

finite number of admissible states [3] or if the observation

equation is linear and the drift term in the state equation

satisfies the Riccati equation d f /dx + f 2 = x2 (see [4]).

The complete classification of the ”general situation” cases

(this means that there are no special assumptions on the

structure of state and observation equations and the initial

conditions), where the optimal nonlinear finite-dimensional

filter exists, is given in [5]. The last two papers actually deal

with specific types of polynomial filtering systems. There

also exists a considerable bibliography on robust filtering
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for the ”general situation” systems (see, for example, [6]–

[11]). Apart form the ”general situation,” the optimal finite-

dimensional filters have recently been designed ([12]–[15])

for certain classes of polynomial system states with Gaussian

initial conditions over linear observations with an invertible

observation matrix.

This paper presents the optimal finite-dimensional filter

for incompletely measured polynomial system states with

polynomial multiplicative noise over linear observations with

an arbitrary, not necessarily invertible, observation matrix,

thus generalizing the results of ([12], [13], [14]). Designing

the optimal filter for polynomial systems with polynomial

multiplicative noise over observations with a non-invertible

observation matrix presents a significant advantage in the

filtering theory and practice, since it enables one to address

the optimal filtering problems for incompletely measured

polynomial states with polynomial observation nonlineari-

ties, such as the optimal cubic sensor problem (see [16])

in the presence of unmeasured states. The optimal filtering

problem is treated proceeding from the general expression for

the stochastic Ito differential of the optimal estimate and the

error variance [17]. As the first result, the Ito differentials for

the optimal estimate and error variance corresponding to the

stated filtering problem are derived. Next, a transformation of

the observation equation is introduced to reduce the original

problem to the previously solved one with an invertible

observation matrix [14]. It is then proved, using the technique

of representing the superior moments of a Gaussian random

variables as functions of its expectation and variance, that

a closed finite-dimensional system of the optimal filtering

equations with respect to a finite number of filtering variables

can be obtained for a polynomial state equation with poly-

nomial multiplicative noise and linear observations with an

arbitrary observation matrix. In this case, the corresponding

procedure for designing the optimal filtering equations is

established. Finally, the closed system of the optimal filtering

equations with respect to two variables, the optimal estimate

and the error variance, is derived in the explicit form in the

particular cases of linear and bilinear state equations.

In the illustrative example, performance of the designed

optimal filter is verified for a quadratic bi-dimensional state

over linear observations against the optimal filter for a

quadratic state with a state-independent noise and a conven-

tional extended Kalman-Bucy filter. The simulation results

show a definite advantage in favor of the designed optimal

filter. Indeed, it can be observed that the estimation error

produced by the optimal filter rapidly reaches and then

maintains the zero mean value even in a close vicinity of
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the asymptotic time point, where the reference state goes

to infinity for a finite time. On the contrary, the estimation

errors given by the other two applied filters diverge to infinity

near the asymptotic time point.

II. FILTERING PROBLEM FOR POLYNOMIAL STATE OVER

LINEAR OBSERVATIONS

Let (Ω,F,P) be a complete probability space with an

increasing right-continuous family of σ -algebras Ft , t ≥ t0,

and let (W1(t),Ft , t ≥ t0) and (W2(t),Ft , t ≥ t0) be indepen-

dent Wiener processes. The Ft-measurable random process

(x(t),y(t) is described by a nonlinear differential equation

with both polynomial drift and diffusion terms for the system

state

dx(t) = f (x, t)dt +g(x, t)dW1(t), x(t0) = x0, (1)

and a linear differential equation for the observation process

dy(t) = (A0(t)+A(t)x(t))dt +B(t)dW2(t). (2)

Here, x(t) ∈ Rn is the state vector and y(t) ∈ Rm is the linear

observation vector, m ≤ n. The initial condition x0 ∈ Rn is a

Gaussian vector such that x0, W1(t)∈ Rp, and W2(t)∈ Rq are

independent. In contrast to the previously obtained results

(see [12], [13], [14]), the observation matrix A(t) ∈ Rm×n is

not supposed to be invertible or even square. It is assumed

that B(t)BT (t) is a positive definite matrix, therefore, m ≤
q. All coefficients in (1)–(2) are deterministic functions of

appropriate dimensions.

The nonlinear functions f (x, t) and g(x, t) are considered

polynomials of n variables, components of the state vector

x(t) ∈ Rn, with time-dependent coefficients. Since x(t) ∈ Rn

is a vector, this requires a special definition of the polynomial

for n > 1. In accordance with [14], a p-degree polynomial

of a vector x(t) ∈ Rn is regarded as a p-linear form of n

components of x(t)

f (x, t) = a0(t)+a1(t)x+a2(t)xxT + . . .+ap(t)x . . .p times . . .x,
(3)

where a0(t) is a vector of dimension n, a1 is a matrix of

dimension n×n, a2 is a 3D tensor of dimension n×n×n, ap

is an (p + 1)D tensor of dimension n× . . .(p+1) times . . .× n,

and x × . . .p times . . .× x is a pD tensor of dimension n ×
. . .p times . . .× n obtained by p times spatial multiplication

of the vector x(t) by itself. Such a polynomial can also be

expressed in the summation form

fk(x, t) = a0 k(t)+∑
i

a1 ki(t)xi(t)+∑
i j

a2 ki j(t)xi(t)x j(t)+ . . .

+ ∑
i1...ip

ap ki1...ip
(t)xi1(t) . . .xip(t), k, i, j, i1 . . . ip = 1, . . . ,n.

The estimation problem is to find the optimal estimate x̂(t)
of the system state x(t), based on the observation process

Y (t) = {y(s), t0 ≤ s ≤ t}, that minimizes the Euclidean 2-

norm J = E[(x(t)− x̂(t))T (x(t)− x̂(t)) |FY
t ] at every time mo-

ment t. Here, E[z(t) | FY
t ] means the conditional expectation

of a stochastic process z(t) = (x(t)− x̂(t))T (x(t)− x̂(t)) with

respect to the σ - algebra FY
t generated by the observation

process Y (t) in the interval [t0, t]. As known [17], this optimal

estimate is given by the conditional expectation x̂(t) = m(t) =
E(x(t) | FY

t ) of the system state x(t) with respect to the

σ - algebra FY
t generated by the observation process Y (t)

in the interval [t0, t]. As usual, the matrix function P(t) =
E[(x(t)− m(t))(x(t)− m(t))T | FY

t ] is the estimation error

variance.

The proposed solution to this optimal filtering problem

is based on the formulas for the Ito differential of the

conditional expectation E(x(t) | FY
t ) and its variance P(t)

(cited after [17]) and given in the following section.

III. OPTIMAL FILTER FOR POLYNOMIAL STATE OVER

LINEAR OBSERVATIONS

The optimal filtering equations could be obtained using the

formula for the Ito differential of the conditional expectation

m(t) = E(x(t) | FY
t ) (see [17])

dm(t) = E( f (x, t) | FY
t )dt+

E(x[ϕ1(x)−E(ϕ1(x) | FY
t )]T | FY

t )×
(

B(t)BT (t)
)−1

(dy(t)−E(ϕ1(x) | FY
t )dt),

where f (x, t) is the polynomial drift term in the state equa-

tion, and ϕ1(x) is the linear drift term in the observation

equation equal to ϕ1(x, t) = A0(t)+A(t)x(t). Upon perform-

ing substitution, the estimate equation takes the form

dm(t)= E( f (x, t) |FY
t )dt +E(x(t)[A(t)(x(t)−m(t))]T |FY

t )×

(B(t)BT (t))−1(dy(t)− (A0(t)+A(t)m(t)) =

E( f (x, t) | FY
t )dt +P(t)AT (t)(B(t)BT (t))−1×

(dy(t)− (A0(t)+A(t)m(t))dt). (4)

The equation (4) should be complemented with the initial

condition m(t0) = E(x(t0) | FY
t0

).
Trying to compose a closed system of the filtering equa-

tions, the equation (4) should be complemented with the

equation for the error variance P(t). For this purpose, the for-

mula for the Ito differential of the variance P(t) = E((x(t)−
m(t))(x(t)−m(t))T | FY

t ) could be used (cited again after

[17]):

dP(t) = (E((x(t)−m(t))( f (x, t))T | FY
t )+

E( f (x, t)(x(t)−m(t))T ) | FY
t )+

E(g(x, t)gT (x, t) |FY
t )−E(x(t)[ϕ1(x)−E(ϕ1(x) |FY

t )]T |FY
t )×

(

B(t)BT (t)
)−1

E([ϕ1(x)−E(ϕ1(x) | FY
t )]xT (t) | FY

t ))dt+

E((x(t)−m(t))(x(t)−m(t))[ϕ1(x)−E(ϕ1(x) | FY
t )]T | FY

t )×
(

B(t)BT (t)
)−1

(dy(t)−E(ϕ1(x) | FY
t )dt),

where g(x, t) is the polynomial diffusion term in the state

equation, and the last term should be understood as a 3D

tensor (under the expectation sign) convoluted with a vector,

which yields a matrix. Upon substituting the expressions

for f (x, t) and ϕ1(x, t), using the variance formula P(t) =
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E((x(t)−m(t))xT (t)) | FY
t ), and taking into account that the

last addendum is equal to zero, the variance equation can be

represented as

dP(t) = (E((x(t)−m(t))( f (x, t))T | FY
t )+

E( f (x, t)(x(t)−m(t))T ) | FY
t )+E(g(x, t)gT (x, t) | FY

t )−

P(t)AT (t)(B(t)BT (t))−1A(t)P(t))dt. (5)

The equation (5) should be complemented with the initial

condition P(t0) = E[(x(t0)−m(t0)(x(t0)−m(t0)
T | FY

t0
].

In [15], a system of the filtering equations obtained for

incompletely measured polynomial system states (1), without

multiplicative noise, over linear observations. Using the same

technique, the optimal filtering equations (4),(5) are finally

derived. The details are omitted here due to space shortage.

The equations (4) and (5) for the optimal estimate m(t)
and the error variance P(t) form a non-closed system of

the filtering equations for the nonlinear state (1) over linear

observations (2). The non-closeness means that the system

(4),(5) includes terms depending on x, such as E( f (x, t) |FY
t ),

E((x(t) − m(t)) f T (x, t)) | FY
t ), and E(g(x, t)gT (x, t) | FY

t ),
which are not expressed yet as functions of the system

variables, m(t) and P(t).
In the next subsections, a closed form of the filtering

equations will be obtained from (4) and (5) for linear and

bilinear functions f (x, t) and g(x, t) in the equation (1).

It should be noted, however, that application of the same

procedure would result in designing a closed system of the

filtering equations for any polynomial functions f (x, t) and

g(x, t) in (1).

A. Optimal Filter for Linear State with Linear Multiplicative

Noise

In a particular case, if the functions f (x, t) = a0(t) +
a1(t)x(t) and g(x, t) = b0(t) + b1(t)x(t) are linear, where

b1 is a 3D tensor of dimension n × n × n, the represen-

tations for E( f (x, t) | FY
t ), E((x(t)− m(t))( f (x, t))T | FY

t ),
and E(g(x, t)gT (x, t) | FY

t ) as functions of m(t) and P(t) are

derived as follows

E( f (x, t) | FY
t ) = a0(t)+a1(t)m(t), (12)

E( f (x, t)(x(t)−m(t))T ) | FY
t )+ (13)

E((x(t)−m(t))( f (x, t))T | FY
t ) = a1(t)P(t)+P(t)aT

1 (t).

E(g(x, t)gT (x, t) | FY
t ) = b0(t)b

T
0 (t)+b0(t)(b1(t)m(t))T +

(14)

(b1(t)m(t))bT
0 (t)+b1(t)P(t)bT

1 (t)+b1(t)m(t)mT (t)bT
1 (t),

where bT
1 (t) denotes the tensor obtained from b1(t) by

transposing its two rightmost indices.

Substituting the expression (12) in (4) and the expressions

(13),(14) in (5), the filtering equations for the optimal

estimate m(t) and the error variance P(t) are obtained

dm(t) = (a0(t)+a1(t)m(t))dt+ (15)

P(t)AT (t)(B(t)BT (t))−1[dy(t)− (A0(t)+A(t)m(t))dt],

m(t0) = E(x(t0) | FY
t )),

dP(t) = (a1(t)P(t)+P(t)aT
1 (t)+b0(t)b

T
0 (t)+ (16)

b0(t)(b1(t)m(t))T +(b1(t)m(t))bT
0 (t)+b1(t)P(t)bT

1 (t)+

b1(t)m(t)mT (t)bT
1 (t))dt−

P(t)AT (t)(B(t)BT (t))−1A(t)P(t)dt.

P(t0) = E((x(t0)−m(t0))(x(t0)−m(t0))
T | FY

t )).

Note that the observation matrix A(t) should not even be

necessarily invertible to obtain the filtering equations (15)–

(16). Indeed, the only used polynomial equality, E(x(t)xT (t) |
FY

t ) = P(t) + m(t)mT (t), is valid for any random variable

with finite second moments, not only Gaussian.

B. Optimal Filter for Bilinear State with Bilinear Multiplica-

tive Noise

Let the functions

f (x, t) = a0(t)+a1(t)x+a2(t)xxT (17)

and

g(x, t) = b0(t)+b1(t)x+b2(t)xxT (18)

be second degree polynomials, where x is an n-dimensional

vector, a0(t) is an n-dimensional vector, a1(t) and b0(t) are

n×n - matrices, a2(t) and b1(t) are 3D tensors of dimension

n×n×n, and b2(t) is a 4D tensor of dimension n×n×n×n.

In this case, the representations for E( f (x, t) | FY
t ), E((x(t)−

m(t))( f (x, t))T | FY
t ), and E(g(x, t)gT (x, t) | FY

t ) as functions

of m(t) and P(t) are derived as follows (see [12], [13])

E( f (x, t) | FY
t ) = a0(t)+a1(t)m(t)+

a2(t)m(t)mT (t)+a2(t)P(t), (19)

E( f (x, t)(x(t)−m(t))T ) | FY
t )+

E((x(t)−m(t))( f (x, t))T | FY
t ) = a1(t)P(t)+P(t)aT

1 (t)+

2a2(t)m(t)P(t)+2(a2(t)m(t)P(t))T . (20)

E(g(x, t)gT (x, t) | FY
t ) = b0(t)b

T
0 (t)+b0(t)(b1(t)m(t))T +

(b1(t)m(t))bT
0 (t)+b1(t)P(t)bT

1 (t)+b1(t)m(t)mT (t)bT
1 (t)+

b0(t)(P(t)+m(t)mT (t))bT
2 (t)+

b2(t)(P(t)+m(t)mT (t))bT
0 (t)+ (21)

b1(t)(3m(t)P(t)+m(t)(m(t)mT (t)))bT
2 (t)+

b2(t)(3P(t)mT (t)+(m(t)mT (t))mT (t))bT
1 (t)+

3b2(t)P
2(t)bT

2 (t)+3b2(t)(P(t)m(t)mT (t)+

m(t)mT (t)P(t))bT
2 (t)+b2(t)(m(t)mT (t))2bT

2 (t).

where bT
2 (t) denotes the tensor obtained from b2(t) by trans-

posing its two rightmost indices. Substituting the expression

(19) in (4) and the expressions (20),(21) in (5), the filtering

equations for the optimal estimate m(t) and the error variance

P(t) are obtained

dm(t) = (a0(t)+a1(t)m(t)+a2(t)m(t)mT (t)+a2(t)P(t))dt+
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P(t)AT (t)(B(t)BT (t))−1[dy(t)− (A0(t)+A(t)m(t))dt],

m(t0) = E(x(t0) | FY
t )), (22)

dP(t) = (a1(t)P(t)+P(t)aT
1 (t)+2a2(t)m(t)P(t)+

2(a2(t)m(t)P(t))T +b0(t)b
T
0 (t)+b0(t)(b1(t)m(t))T +

(b1(t)m(t))bT
0 (t)+b1(t)P(t)bT

1 (t)+

b1(t)m(t)mT (t)bT
1 (t)+b0(t)(P(t)+m(t)mT (t))bT

2 (t)+

b2(t)(P(t)+m(t)mT (t))bT
0 (t)+

b1(t)(3m(t)P(t)+m(t)(m(t)mT (t)))bT
2 (t)+

b2(t)(3P(t)mT (t)+(m(t)mT (t))mT (t))bT
1 (t)+

3b2(t)P
2(t)bT

2 (t)+3b2(t)(P(t)m(t)mT (t)+

m(t)mT (t)P(t))bT
2 (t)+b2(t)(m(t)mT (t))2bT

2 (t))dt−

P(t)AT (t)(B(t)BT (t))−1A(t)P(t)dt.

P(t0) = E((x(t0)−m(t0))(x(t0)−m(t0))
T | FY

t )). (23)

By means of the preceding derivation, the following result

is proved.

Theorem 1. The optimal finite-dimensional filter for the

bilinear state with bilinear multiplicative noise (1), where

the bilinear polynomials f (x, t) and g(x, t) are defined by

(17),(18), over the linear observations (2), is given by the

equation (22) for the optimal estimate m(t) = E(x(t) | FY
t )

and the equation (23) for the estimation error variance P(t) =
E[(x(t)−m(t))(x(t)−m(t))T | FY

t ].
Thus, based on the general non-closed system of the filter-

ing equations (4),(5), it is proved that the closed system of the

filtering equations can be obtained for any polynomial state

(1) over linear observations (2). Furthermore, the specific

form (22),(23) of the closed system of the filtering equations

corresponding to a bilinear state is derived.

IV. EXAMPLE

This section presents an example of designing the optimal

filter for a quadratic bi-dimensional state with a quadratic

multiplicative noise over linear observations and comparing

it to the optimal filter for a quadratic state with a state-

independent noise and a conventional extended Kalman-Bucy

filter.

Let the bi-dimensional real state x(t) satisfy the quadratic

system

ẋ1(t) = x2(t)+0.1x2
1(t)ψ1(t), x1(0) = x10, (24)

ẋ2(t) = 0.1x2
2(t), x2(0) = x20,

and the scalar observation process be given by the linear

equation

y(t) = x(t)+ψ2(t). (25)

where ψ1(t) and ψ2(t) are white Gaussian noises, which

are the weak mean square derivatives of standard Wiener

processes (see [17]). The equations (24),(25) present the

conventional form for the equations (1),(2), which is actually

used in practice [18].

The filtering problem is to find the optimal estimate for

the quadratic bi-dimensional state with quadratic noise (24),

using linear observations (25) confused with independent

and identically distributed disturbances modeled as white

Gaussian noises. Let us set the filtering horizon time to

T = 0.92.

The filtering equations (22),(23) take the following partic-

ular form for the system (24),(25)

ṁ1(t) = m2(t)+P11(t)[y(t)−m1(t)], (26)

ṁ2(t) = 0.1m2
2 +0.1P22(t)+P12(t)[y(t)−m1(t)],

with the initial condition

m(0) = E(x(0) | y(0)) = m0,

and

Ṗ11(t) = 2P12(t)−0.97P2
11(t)+0.03P2

12(t)+ (27)

0.06P12(t)m1(t)m2(t)+0.01m4
1 +0.01m2

1m2
2,

Ṗ12(t) = P22(t)+0.2m2(t)P12(t)−P11(t)P12(t),

Ṗ22(t) = 0.4m2(t)P22(t)−P2
12(t),

with the initial condition

P(0) = E((x(0)−m(0))(x(0)−m(0))T | y(0)) = P0.

The estimates obtained upon solving the equations (26)–

(27) are compared first to the estimates satisfying the op-

timal filtering equations for a quadratic state with a state-

independent noise (see [12]), based on the system (24) where

the quadratic multiplicative noise x2(t)ψ1(t) is replaced by

the standard additive noise ψ1(t). The corresponding filtering

equations are given by

ṁI1(t) = mI2(t)+PI11(t)[y(t)−mI1(t)], (28)

ṁI2(t) = 0.1m2
I2 +0.1PI22(t)+PI12(t)[y(t)−mI1(t)],

with the initial condition

mI(0) = E(x(0) | y(0)) = mI0,

and

ṖI11(t) = 2PI12(t)+0.01−P2
I11(t), (29)

ṖI12(t) = PI22(t)+0.2mI2(t)PI12(t)−PI11(t)PI12(t),

ṖI22(t) = 0.4mI2(t)PI22(t)−P2
I12(t),

with the initial condition

PI(0) = E((x(0)−m(0))(x(0)−m(0))T | y(0)) = PI0.

The estimates obtained upon solving the equations (26)–(27)

are also compared to the estimates satisfying the following

extended Kalman-Bucy filtering equations for the quadratic

state (24) over the linear observations (25), which are ob-

tained assuming the standard additive noise term ψ1(t) in

the first component of the state, using the direct copy of the

state dynamics (24) in the estimate equation, and assigning

the filter gain as the solution of the Riccati equation:

ṁK1(t) = mK2(t)+PK11(t)[y(t)−mK1(t)], (30)
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ṁK2(t) = 0.1m2
K2 +0.1PK22(t)+PK12(t)[y(t)−mK1(t)],

with the initial condition

mK(0) = E(x(0) | y(0)) = mK0,

and

ṖK11(t) = 2PK12(t)+0.01−P2
K11(t),

ṖK12(t) = PK22(t)+0.2PK12(t)−PK11(t)PK12(t), (31)

ṖK22(t) = 0.4PK22(t)−P2
K12(t),

with the initial condition

PK(0) = E((x(0)−m(0))(x(0)−m(0))T | y(0)) = PK0.

Numerical simulation results are obtained solving the sys-

tems of filtering equations (26)–(27), (28)–(29), and (30)–

(31). The obtained values of the estimates m1(t), m2(t),
mI1(t), mI2(t), mK1(t) and mK2(t) satisfying the equations

(26), (28), and (30), respectively, are compared to the real

values of the state variables x1(t) and x2(t) in (24).

For each of the three filters (26)–(27), (28)–(29), and

(30)–(31), and the reference system (24)–(25) involved in

simulation, the following initial values are assigned: x10 =
10.1, x20 = 10.1, m10 = 1.1, m20 = 1.1, P110 = 10, P120 = 1,

P220 = 10. Gaussian disturbances ψ1(t) in (24) and ψ2(t)
in (25) are realized using the built-in MatLab white noise

function.

The following graphs are obtained: graphs of the error

between the reference states variables x1(t) and x2(t) sat-

isfying the equations (24) and the optimal filter estimates

m1(t) and m2(t) satisfying the equations (26), are shown

in Figure 1; graph of the error between the reference states

variables x1(t) and x2(t) satisfying the equations (24) and the

estimates mI1(t) and mI2(t) satisfying the equations (28), are

shown in Figure 3; graph of the error between the reference

states variables x1(t) and x2(t) satisfying the equations (24)

and the estimates mK1(t) and mK2(t) satisfying the equations

(30), are shown in Figure 5. The graphs of all estimate

errors are shown on the simulation interval from t0 = 0 to

T = 0.92. Graphs of those estimation errors are also shown

closely in the simulation interval from t = 0.80 to T = 0.92

in Figs. 2, 4, and 6, respectively. It can be observed that

the estimation errors given by the optimal filter (26) rapidly

reach and then maintain the zero mean value even in a close

vicinity of the asymptotic time point T = 0.99, where the

reference quadratic state variables (24) diverge to infinity.

On the contrary, the errors given by the other considered

filters reach zero more slowly or do not reach it at all,

have systematic (biased) deviations from zero, and clearly

diverge to infinity near the asymptotic time point. Note that

the optimal filtering error variance P(t) does not converge

to zero as time tends to the asymptotic time point, since the

polynomials dynamics of fourth order is stronger than the

quadratic Riccati terms in the right-hand side of the equation

(27).

Thus, it can be concluded that the obtained optimal filter

(26)-(27) for a quadratic state with a quadratic multiplicative

noise over incomplete linear observations yield definitely

better estimates than the optimal filter for a quadratic state

with a state-independent noise or a conventional extended

Kalman-Bucy filter.
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Fig. 1. Graph of the error between the real state x1(t) satisfying the first
equation in (24) and the optimal filter estimate m1(t) satisfying the first
equation in (26), and graph of the error between the real state x2(t) satisfying
the second equation in (24) and the optimal filter estimate m2(t) satisfying
the second equation in (26), on the entire simulation interval [0,0.92].
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Fig. 2. Graph of the error between the real state x1(t) satisfying the first
equation in (24) and the optimal filter estimate m1(t) satisfying the first
equation in (26), graph of the error between the real state x2(t) satisfying
the second equation in (24) and the optimal filter estimate m2(t) satisfying
the second equation in (26), on the simulation interval [0.80,0.92].
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Fig. 3. Graph of the error between the real state x1(t) satisfying the first
equation in (24) and the estimate mI1(t) satisfying the first equation in (28),
and graph of the error between the real state x2(t) satisfying the second
equation in (24) and the estimate mI2(t) satisfying the second equation in
(28), on the entire simulation interval [0,0.92].
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Fig. 4. Graph of the error between the real state x1(t) satisfying the first
equation in (24) and the estimate mI1(t) satisfying the first equation in (28),
and graph of the error between the real state x2(t) satisfying the second
equation in (24) and the estimate mI2(t) satisfying the second equation in
(28), on the simulation interval [0.80,0.92].
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Fig. 5. Graph of the error between the real state x1(t) satisfying the first
equation in (24) and the estimate mK1(t) satisfying the first equation in (30),
and graph of the error between the real state x2(t) satisfying the second
equation in (24) and the estimate mK2(t) satisfying the second equation in
(30), on the entire simulation interval [0,0.92].
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Fig. 6. Graph of the error between the real state x1(t) satisfying the first
equation in (24) and the estimate mK1(t) satisfying the first equation in (30),
and graph of the error between the real state x2(t) satisfying the second
equation in (24) and the estimate mK2(t) satisfying the second equation in
(30), on the simulation interval [0.80,0.92].
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