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Abstract— During an outbreak of an infectious disease the
public health unit has several strategies which can be imposed to
contain the spread of the disease. In order to do so it is necessary
to evaluate the efficiency of different response policies according
to the specific setting of the outbreak. In this work we present a
new approach to model such infectious disease outbreaks using
discrete-event systems. This approach allows us to adapt the
system easily to specific settings or new diseases. Thus, using
our model the health units would be able to determine an
optimal response to a threatening outbreak.

I. INTRODUCTION

In recent years the number of infectious disease outbreaks
has increased significantly. Sudden epidemics like SARS and
the threat of diseases capable of causing future epidemics like
Avian flu have become a growing hazard in our societies.

Due to this increase in threatening outbreaks, much re-
search on the detection of an outbreak in its early stage
has been initiated. It can easily be verified that the delay
in detecting an epidemic has a large impact on the size of
the spread, i.e., the number of affected people. However,
as soon as an outbreak is detected, the health unit has to
decide which measures should be imposed to minimize the
damage caused by the contagious agent. This damage may
be of a personal as well as economical nature. Therefore,
national and international experts are discussing sufficient
actions which can be taken to control an outbreak, i.e., to
contain the disease and stop its spreading. Knowledge about
the efficiency of these outbreak responses is usually the
result of studies relating to examinations of real outbreaks in
history. However, this information might not be very useful to
determine the effect of specific health care strategies related
to an outbreak in today’s world. In general, the specific
setting of the location of an epidemic, i.e., population density,
overall medical care system, cleanliness of accommodations,
and of course the infrastructure might have a great influence
on the course of a specific outbreak.

To evaluate the impact of response policies, different mod-
els have been developed, e.g., [1]. However, these models are
usually very complicated and designed for a specific setting
and a specific disease. Thus, only with effort it is possible to
apply these models to a different setting or another disease.

In this paper, we are interested in modeling an infectious
disease outbreak using a modification of standard discrete-
event systems (DES) and specifically finite-state automata

(FSA). This approach allows us to achieve a model which
is simple, contains all the information necessary to model
the outbreak, and offers possibilities to easily change the
parameters according to the specific setting of the outbreak.
Thus, using DES seems to be a very promising approach to
model an infectious disease outbreak.

Through a simulation of the proposed system we are able
to evaluate the impact of different health policy options.
Therefore, it is possible to determine the different effects of
implemented strategies in a defined but not fixed setting. In
addition to that, we are able to compare different responses
within the same setting to evaluate an optimal outbreak
response.

II. BACKGROUND

As stated previously, we use a modified approach to
standard discrete-event systems. The framework of standard
DES was developed by Ramadge and Wonham [2], where
processes and supervisors are modeled by automata. An au-
tomaton is represented by a five-tuple G = (Σ, Q, δ, q0, Qm)
where Σ is a finite set of symbols, Q is a finite set of states,
δ : Q × Σ → Q is the transition function between states,
q0 ∈ Q is the initial state, and Qm is the subset of states
which are defined as marked (or final) states. For the case
where Q is finite, G can be graphically represented by a
finite-state machine whose nodes are states and whose edges
are transitions defined by δ. On such a transition diagram, the
initial state is indicated by an arrow entering it and marked
states are identified by circles around the node. The set Σ is
the set of all edge labels on the diagram.

A sequence of events is represented by a string of sym-
bols from Σ. The notation Σ∗ stands for all finite strings
of symbols from Σ. The transition function can then be
extended to Σ∗. The closed behavior of G is characterized
by its associated language L(G). It represents the set of all
possible event sequences which the system may generate.
Furthermore, the marked behavior of G, Lm(G), represents
completed tasks of the system.

In order to impose supervision on the system it is nec-
essary to partition Σ into the disjoint sets Σc, the set
of controllable events, and Σuc, the set of uncontrollable
events. Controllable events are those which can be enabled
or disabled by an external agent, while uncontrollable events
cannot be prevented from occurring. Thus, uncontrollable
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events are considered to be permanently enabled. A supervi-
sor is then an agent that observes the subsequences of strings
generated by G and enables or disables controllable events in
order to prevent the system from generating an undesirable
string.

Formally, a supervisor S consists of an automaton T which
recognizes a language over the event set Σ and a feedback
map ψ, i.e., a map from the event set Σ and states of
T to the set {enable, disable}. By definition the feedback
map ψ enables all uncontrollable events. According to the
events generated by G, the automaton T changes its current
state and determines whether an event is to be enabled or
disabled at the corresponding state of G. The supervised
system is then captured by an automaton S/G. Similar to
the uncontrolled system the closed behavior is denoted by
L(S/G) and the supervised system’s marked behavior is
denoted by Lm(S/G).

A problem that arises when modeling an outbreak of
an infectious disease using DES is the issue of the dy-
namic (time-varying) properties of the system. Since standard
DES theory is not capable of modeling such time-varying
properties of systems, we use an approach called Dynamic
Discrete-Event System (DDES), as proposed in [3]. Dynamic
discrete-event systems are constituted of separate small DES
modules, which are combined together to form a final system.
The dynamic property of the system is captured by the
appearance and disappearance of modules of which the
system is assembled. Since neither the number of modules in
the system nor the size of the different modules is restricted,
the DDES may be as large as necessary.

Since the size of the DDES is not restricted, the issue
of state-space explosion has to be addressed. The number
of states in the overall system increases exponentially with
respect to the number of modules. However, if a system is
considered whose state space frequently changes without a
basic change in the system’s architecture, an approach called
Parameterized Discrete-Event System (PDES) [4] can be
used to avoid the phenomenon of state-space explosion. The
basic idea of PDES is to append finite sets of parameters
to finite-state automata, i.e., the system is modeled as a
finite-state automaton equipped with a data collection. Using
PDES, it is, in some cases, possible to avoid a huge state
space. A parameter from the data collection can, for example,
be used to count the elements in a buffer. This way it is
not necessary to model the buffer as a finite-state automaton
which, depending on the capacity of the buffer, can have a
huge state space.

III. DES MODEL OF AN OUTBREAK RESPONSE

In order to model an epidemic we first want to introduce
the basic possible actions a public health unit may take to
contain a disease.

A. Possible Responses to an Outbreak

One of the most common, and in the course of an outbreak
usually one of the first imposed, public health measures
is isolation of symptomatic individuals. It allows for the

focused delivery of specialized health care to people who
are ill, and it protects healthy people from getting sick.
The isolation strategy is especially likely to be successful
if the infectious disease has a low transmission rate prior to
symptoms, i.e., most infections from person to person take
place after the onset of symptoms. However, if a disease is
characterized by a high transmission rate in the prodromal
period, isolation might not be sufficient in controlling the
outbreak and spread of the disease. Thus, further control
measures have to be implemented. Since the infection of
an individual prior to symptoms is not recognizable, it is not
possible to simply identify infected individuals. It is possible,
though, to identify individuals who might have been exposed
to the cause of the disease and therefore might be suspected
of being infected.

The specific health action of identifying exposed individu-
als is called contract tracing. Contact tracing basically means
that any identified symptomatic person gets his or her con-
tacts traced. Trace individuals are people who have been in
(close) contact with a confirmed case, e.g., family members.
Once identified, there are several options for proceeding with
traced individuals. One of the possible options is targeted
surveillance. Traced individuals who are put under targeted
surveillance are examined regularly but their everyday life
does not change, i.e., they are not quarantined. Then, if a
patient under surveillance becomes symptomatic, he or she
will be isolated without (almost) any delay.

Another option for dealing with traced individuals is the
implementation of quarantine. According to this strategy, a
person who is identified as a close contact of a confirmed
case will be quarantined whether or not the individual is
infected at all. Note that quarantine refers to individuals
who are suspected to be infected, while isolation refers to
individuals who have a specific disease and have become
symptomatic. Therefore, some quarantined patients may be-
come symptomatic while others may stay asymptomatic and
could be released after a certain period of time.

Furthermore, there are two options regarding the treatment
of quarantined individuals. Medication could be adminis-
trated to everyone, i.e., everyone who is quarantined will be
treated. This is a prophylactic measure also called chemopro-
phylaxis. Although this strategy is highly efficient in prevent-
ing the disease from spreading, chemoprophylaxis is limited
by two factors. First of all, the probability of medications
causing side effects has to be considered. Chemoprophylaxis
should be imposed only if the benefits of treatment outweigh
the risks involved. The second factor limiting the use of this
strategy is associated with the possibility of prohibitive costs.
When the costs of treatment are high or the transmission
rate of the disease is low, chemoprophylaxis might not be
cost-effective. In such cases, the second policy on treatment
of quarantined patients should be considered. Using this
strategy, the treatment process is delayed until the actual
onset of symptoms in individuals. Thus, it is ensured that
only infected patients will be treated and healthy patients
will be prevented from adverse drug reactions.
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Fig. 1. Finite-State Automaton of an Exposed Individual

B. Characteristic Properties of Diseases

As mentioned before, the efficiency of all health care
strategies is always dependent on the specific disease. Thus,
it is necessary to find parameters to characterize and differ-
entiate diseases.

One of the most important factors of an infectious disease
is the infection rate, ξI . Although this rate is a characteristic
feature of the pathogen, it is not fixed but depends on certain
circumstances. For example, the infection rate of a disease
causing an outbreak in a home for the elderly might be
different from the infection rate of the same disease in a
student residence. In addition, the vaccination status of the
population has an influence on ξI .

Another important factor of a disease is the proportion of
transmission prior to symptoms. The higher the proportion
of asymptomatic transmissions, the harder it is to control
the outbreak. The human immunodeficiency virus (HIV), for
example, is more than 90 per cent of the time transmitted by
individuals who are not aware of the fact that they carry the
virus. Since its first appearance 25 years ago, there is still no
strategy to control the spread of HIV once it is contracted.

Of importance for the strategy to control an outbreak is
also the mortality rate and the rate of permanent damage
due to an infection. Similar to the infection rate, these rates
are usually highly dependent on the specific setting of the
outbreak.

C. Model of an Exposed Individual

We consider a fictitious (or nonspecific) disease and ex-
plore how DES can be used to model a response to an
outbreak. The idea of our model is to create small modules
representing single individuals and combine them to form a

final system of an outbreak response. To model an individual,
it is necessary to consider the different “paths” a person can
take, i.e., the different events that can occur in the module
of a person. In addition, one has to decide which events are
necessary in order to capture all possibilities that may occur
in an outbreak.

The individuals modeled have all been exposed to the
contagious pathogen at some point. After the exposure they
might either get infected or they might resist an infection.
The complete module of an exposed individual is shown in
Fig. 1. In this graph an exposed individual is initially in state
0. At that state either the event infected or the event resisted
can occur. Thus, the individual can either enter state 1 or
state 16, respectively. According to the state a person is in
different events can occur and their occurrence then changes
the state of the individual. While most of the event names
are self-explanatory others are not as obvious. For example,
the event ctrace refers to contract tracing, surv refers to
targeted surveillance, disa refers to a person suffering from
permanent physical harm, and seffects refers to side effects
due to medication. The lower part of the module represents
an infected individual while the upper part of the module
represents an exposed but uninfected person.

Assuming that no public health measures are imposed
yet, the medical condition of an infected person will most
probably result in symptoms of some sort, depending on the
disease. Since each disease has different intrinsic symptoms
that can appear, it is a priori necessary to define these
symptoms, e.g., the typical symptom of smallpox would be
the development of a rash. Nonetheless, in some abnormal
cases it is possible that an infected person will never show
symptoms or that the symptoms are very subtle and misin-
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terpreted.
If an individual becomes symptomatic, he or she will prob-

ably go to a doctor and will receive some sort of treatment.
What kind of treatment is prescribed is not important at this
point, although it does have an influence on the probabilities
of the future path of the patient. More specifically, depending
on the infectious disease and on the prescribed medication
of the patient, the individual will, with certain probabilities,
either recover, die, or suffer from some permanent handicap
due to the infection. Note that the specific probabilities
capture the risks of the disease as well as possible risks due
to adverse drug reactions. An example of a disease capable
of causing permanent handicaps is poliomyelitis. Usually, an
infection of poliomyelitis results in only temporary paralysis
and recovery is complete within six to eight months but, in
some cases, paralysis will be permanent.

An asymptomatic infected individual will also recover, die
or suffer from permanent consequences of the disease but,
since he or she never got medication, the probabilities of the
aftermath of the disease might be different.

Once the public health unit detects an outbreak, the
strategy of isolation might be considered and imposed. This
would change the path of the symptomatic patient. Instead
of just getting treatment after symptoms develop, he or she
will be isolated first and then get medication. After isolated
individuals are treated, they enter the same state as those
not isolated and may either recover, die or suffer from
permanent consequences. At first sight it might not be clear
why, independent from the strategy, a patient who has not
been isolated would have the same chance to recover as a
patient who has been isolated. The reason for that, though, is
simple: isolation does not interfere with the recovery process.
Moreover, isolation is not imposed on the infected individual
to ensure his or her health but to prevent transmission of the
pathogen to other people.

Given that simple isolation of infected cases is not suf-
ficient to prevent a vast spread of the disease, the next
strategy would be contact tracing combined with targeted
surveillance. The path of an infected individual would change
in this case. Before the person develops symptoms, he or she
will be contact traced and put under surveillance. As soon
as the patient becomes symptomatic, isolation and treatment
start. After that, the person is in the same state as the people
that have just been isolated and will face the consequences of
the infection. Of course, individuals under targeted surveil-
lance may also stay asymptomatic although they are actually
infected. These patients will face the aftermath with the same
probabilities as asymptomatic cases who were not traced.

Last but not least, the combination of contact tracing and
quarantine is considered. It differs only slightly from the
surveillance strategy. Instead of being put under surveillance,
the infected individual is quarantined as soon as he or she is
identified. If treatment is delayed until the symptoms show,
the patient’s path will be very similar to the path of people
under surveillance. In this case, an infected person might be
asymptomatic again and will not be treated.

If quarantine is imposed in combination with chemopro-

phylaxis, all persons will be treated. The development of
symptoms is not required to start the treatment process and,
therefore, even possible infected but asymptomatic cases will
have the same chances to recover.

The different paths for exposed but uninfected individuals
are similar to the ones of infected persons. Since the infection
itself is not observable, it is unknown whether an exposed
person is infected or not. This is an issue especially when
contact tracing is imposed because, given an infection rate
of ξI = 0.2, about 80 per cent of the traced individuals
will be uninfected. Due to the fact that the actions of
surveillance and quarantine are imposed on every traced
individual, the upper part of the module of an exposed person
is an almost identical copy of the lower part. Only the
last few nodes are different because, in general, uninfected
persons will not suffer any harm directly related to the
disease. However, if medication is administered either to
symptomatic but uninfected cases or to individuals under
quarantine, these (uninfected) persons might suffer from
adverse drug reactions.

In addition to these few differences in the composition of
the two parts of the module, there are some more differences
within the system that are not visible in the structure of the
model. These differences refer to the probabilistic values on
the occurrences of events. For example, if one considers
one infected and one uninfected person being in state 2
and state 17, respectively, the individuals will either show
symptoms or not. The infected person will most likely show
symptoms and move to state 3 while the uninfected person
will not be very likely to develop symptoms. Thus, this
person will most probably move to state 22. Therefore,
although both individuals could go either way, the probability
of the occurrence of the events is different.

Formally, the module of an exposed individual can be de-
scribed by the finite-state automaton G = (Σ, Q, δ, q0, Qm)
where Σ is the set of events as described above and the set of
states, Q, and the transition function, δ, can be determined
from Fig. 1. The initial state is q0 = 0, and Qm is the
set of marked states (Qm = {8, 9, 10, 22, 23}). The set of
uncontrollable events can be determined by examining Fig. 1,
where all uncontrollable events are indicated by dashed lines.

D. Parameters of the Model

As mentioned before, the infection rate ξI determines the
probability of the event infected occurring. In addition to
that, there are a few more parameters within the model. It
is necessary to associate a probability to each occurrence
of the events ctrace and isolate, e.g., it might not be
possible to trace every contact of an infected individual.
These probabilities are denoted by ξc and ξiso, respectively.
Furthermore, the probability of becoming symptomatic has
to be defined on order to capture abnormal cases of asymp-
tomatic infected, and symptomatic uninfected individuals.
Thus, infected individuals will develop symptoms with a
probability of ξi

s, while uninfected persons will develop
symptoms with a probability of ξu

s . The mortality rate and
the rate of infected people suffering from permanent physical
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harm are denoted by ξt
d, ξt

p, ξn
d , and ξn

p , where the superscript
t refers to individuals who have been treated, n refers to
infected persons who have not been treated, d refers to
mortality and p refers to permanent physical harm. Last
but not least, the probability of adverse drug reactions for
uninfected individuals is denoted by ξa and refers to the
event seffects.

As the disease spreads, an increasing number of people
will get exposed to the disease by infected individuals. In
other words, there will be new people getting into the system
and persons who have recovered from the infection will
leave the system. This dynamic character is captured by
the appearance of modules of infected individuals and the
disappearance of modules of individuals entering a marked
state. The appearance of new modules is triggered by certain
events in the modules within the system, and thus models
how the disease is passed from one person to another. For
example, if the event sympto occurs, a certain number of
people will get exposed and enter the system as new modules.
The specific number of people getting exposed is drawn from
a Poisson distribution of mean λ [1]. The events triggering
the entry of new modules into the system are infected, quara,
not iso, sympto, and no sympto. For the last two events, the
value of λ is also dependent on when sympto or no sympto
occurs. If, for example, an individual becomes symptomatic
prior to isolation, he or she might expose a different number
of contacts than a person who develops symptoms while
quarantined.

E. Complete System

In order to capture the overall system, a custom version
of parameterized discrete-event systems is introduced. In
this approach, parameters are used to describe the different
modules. More specifically, each module is represented by
one parameter in the overall system. The value of the
parameter is equal to the current state of the corresponding
module. Therefore, the system’s state can be represented by
a vector of parameters, denoted by M . The length of this
vector will be equal to the number of modules currently in
the system.

In addition to the vector of parameterized modules, the
overall system requires a prototype module to be able to
determine the next possible set of parameters. If a module
enters a final state, it will disappear from the vector M . Sim-
ilarly, a new parameter will be attached with the appearance
of every new module, i.e., every new exposed individual. Due
to the identical structure of all the modules, this is sufficient
to obtain the complete model. Thus, the final model of the
uncontrolled system is defined as R := {G,M}, where G
represents a prototype of the FSA structure of a module and
M represents the vector of parameters.

Supervision of the uncontrolled system amounts to dis-
abling some of the controllable events throughout the evo-
lution of R. Any strategy that the health unit imposes can
be thought of a supervisor. For instance, one such strategy
could involve always isolating a symptomatic person (which,
in effect means disabling not iso at state 3 of Fig. 1). In the

next section, we examine the effects of various supervisors,
i.e., various health unit strategies.

IV. SIMULATION & RESULTS
A simulation was performed to show the functionality

of the proposed system. The algorithm we developed was
implemented in Matlab 7.4.0. The software has access to
the set of parameters specifying the disease, the initial state
of the scenario, a vector of parameters representing the
current states of the modules, the basic structure of the
finite-state automaton model of an exposed individual, and
the supervisor models of the different health care strategies.
The software has also information about the probabilistic
distributions associated with specific events and is equipped
with a random number generator. The computer used was
running the Microsoft Windows XP operating system on a
AMD Athlon 64 3200+ 1.99 GHz processor. The machine
was equipped with 960 MB of RAM.

The setup of the simulation is as follows. It is assumed
that the outbreak has been detected in its early stage. The
disease causing the outbreak is a highly transmissible disease
similar to a form of influenza. The initial state of the system
consists of a small number of symptomatic individuals and
a number of exposed individuals. The algorithm then moves
stepwise across the elements of the vector M and determines
the events which lead out of the specific state of each
module. At each “time step” one event will occur in every
module. When the algorithm reaches the last element of the
vector, it will move back to the top and start over again.
This loop is repeated either until M is an empty vector or
until the outbreak is considered to be uncontrollable with
respect to the chosen health care strategy. An outbreak is
considered uncontrollable if there are more than 10,000
infected individuals in the system at the end of a loop.

When the simulation has to choose between events with
associated probabilities, the software will generate a random
number from a uniform distribution in the interval 0 to 1. By
means of this random number the algorithm decides which
event will occur. For example, the event infected will occur
if the generated random number is smaller than the infection
rate ξI . In this way, the larger the ξI (which means the higher
the infection rate), the more likely that a random number will
be smaller than it (and hence the more likely that the event
infected will occur).

When an event which initiates the exposure of new indi-
viduals occurs, the software will generate a random number
from the Poisson distribution which is related to the event.
The vector M is then expanded according to the number of
newly exposed individuals. A module is removed from the
vector M as soon as it enters a marked state.

In our simulation the parameters of the disease were set
to:
ξI = 0.05, ξc = 0.99, ξi

s = 0.999, ξu
s = 0.0001,

ξt
d = 0.001, ξt

p = 0.001, ξn
d = 0.001, ξn

p = 0.001,
ξiso = 0.99, ξa = 0.01.

Initially, there were 15 symptomatic cases and 200 ex-
posed individuals. Dozens of simulations were run and after
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Fig. 2. Number of infected individuals under the quarantine strategy with
immediate treatment (dark red) combined with a synthetically generated
log-normal distribution (light blue)

every run, the data obtained was stored. Among this data
is the number of infected individuals and the number of
imposed treatments.

Due to the large variations in the number of affected
people in each simulation, each scenario was simulated
10,000 times. This enables us to analyze the data obtained.
First of all, the simulations made clear that neither the
isolation nor the targeted surveillance strategy is sufficient
to control the outbreak of this specific disease. However, by
imposing either one of the quarantine policies, it is possible
to contain and finally stop the epidemic.

Furthermore, the analysis of the obtained data showed
that the number of people affected by an outbreak obeys
a log-normal distribution. Thus, using the obtained data
it is possible to determine the corresponding distribution
parameters which are necessary to calculate values for the
expected number of affected individuals and the variance.

For this specific setting combined with the quarantine
strategy with delayed treatment, the values calculated using
Matlab are: E = 67.69 and V ar = 1.878 · 103, where E
is the expected number of infected individuals and V ar is
the variance. For the same setting with immediate treatment,
E = 56.70 and V ar = 651.80.

Thus, it is possible to determine the expected number of
infected individuals for a specific setting. Furthermore, the
variance provides a measure of the statistical dispersion, i.e.,
how the possible numbers are spread around the expected
number. Since the variances are high the number of infected
individuals is subject to large variations. Fig. 2 shows the
distribution of the number of infected people under the
quarantine strategy with immediate treatment combined with
a synthetically generated log-normal distribution.

In addition to the analysis of the effectiveness of strategies,
it is possible to apply a cost-benefit analysis. Such an analysis
might be very useful, since the number of occurrences
of events, connected to some costs, could differ. If we
consider the aforementioned example, using the strategy with
delayed treatment, a total number of 1,049 individuals were
quarantined compared to only 830 when immediate treatment
was administrated. However, in the first scenario, only 68
patients were treated, while in the second scenario about
845 patients received treatment. Consequently, if we presume

that there is a cost to treatment and a cost (e.g., loss of
livelihood) to quarantine, then the determination of a suitable
response policy is more complex when costs must be taken
into account.

Yet another analysis which could be performed using the
simulation is the study of the impact of variations of different
parameters. If, for example, the rate of contact tracing is
reduced to 80 per cent (80 per cent of the close contacts
of a confirmed case are traced), in our case the expected
number of infected individuals increases to 161.61 with
delayed treatment and to 110.12 with immediate treatment,
respectively. Similarly, other parameter combinations can be
considered and their impact can be evaluated by simulating
the system with the “new” setting.

V. DISCUSSION

We have shown that discrete-event systems are promising
in modeling infectious disease outbreaks. Using a simulation
it is easy to change the parameters of the specific setting and
to evaluate the impact of different outbreak policies.

The results obtained by the simulation appear to be
reasonable but further testing is necessary. A discrete-event
systems model of an outbreak response requires slightly
different parameters than a continuous-time model. Since this
work is only a first attempt using DES, it was not possible
to obtain accurate values for these parameters. Therefore,
approximations of parameters previously used in continuous-
time models have been taken to model the disease. Due to
these approximations, the simulation does not guarantee that
the calculated numbers of infected individuals coincides with
the numbers of a real outbreak.

Once accurate parameters have been obtained for specific
diseases, it will be possible to simulate “real” outbreaks. The
results might then help the public health units to determine
optimal response policies. In addition, DES control theory
could be explored as a tool for generating the response
policies.
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