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Abstract— This paper studies the problem of H∞ controller
design for networked control systems (NCSs) with time delay
and packet dropout. A linear estimation-based method is
proposed to compensate time delay and packet dropout, a
delay switching-based method is also proposed to model the
variation of time delay, and H∞ controller design is presented
by using the delay switching-based method and the existing
parameter uncertainty-based method. The newly proposed
delay switching-based method is proved to be less conservative
than the existing parameter uncertainty-based method. The
simulation results illustrate the effectiveness of the linear
estimation-based time delay and packet dropout compensation.

I. INTRODUCTION

Networked control systems (NCSs) have received increas-

ing attentions in recent years. Advantages of NCSs include

low cost, high reliability, less wiring and easy maintenance,

etc. However, the insertion of the communication network

will lead to time delay, data packet dropout and disordering

inevitably, which make the analysis and design of NCSs

complex.

Many researchers have studied stability/stabilization, con-

troller design and performance of NCSs in the presence of

network-induced delay [1]-[5]. For other methods dealing

with delay specifically, see also [6]-[10]. In [11] and [12], the

parameter uncertainty-based method was proposed to deal

with time-varying delay. There have also been considerable

research efforts on H∞ control for NCSs [13]-[16].

Since time delay and packet dropout may lead to instability

and poor performance of NCSs, it is important to overcome

the negative influences of time delay and packet dropout,

especially for wireless NCSs. However, how to compensate

the negative influences of time delay and packet dropout has

not been considered in the papers listed above.
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Recently, there are some preliminary results on the com-

pensation of time delay and packet dropout. [17] presented

several recent results on estimation, analysis, and controller

synthesis for NCSs. In [18], an estimator was used to

reconstruct an approximation to the undelayed plant state.

By using a buffer in the actuator node and a state estimator

in the controller node, [19] presented LMI-based sufficient

condition for the stability of NCSs, but the problem of

controller design was not discussed in [18] and [19]. By

using prediction-based method, [20] and [21] studied the

problem of time delay compensation for NCSs. [22] was

concerned with the design of NCSs with random network

delay in the feedback channel and gave stability criteria of

closed-loop networked predictive control systems.

Just as we can see, the compensation methods presented

above are usually based on estimation or prediction. If the

prediction-based method is used, an augmented state vector

is usually defined (see [20], [22]), and the introduction of the

augmented state vector will introduce some conservativeness

since the common positive definite matrix P with special

structure is needed (see [20]).

This paper proposes a linear estimation-based method to

compensate time delay and packet dropout. When compared

with design methods without compensation, the proposed

compensation method may provide better H∞ performance.

A delay switching-based method is presented to design H∞

controllers for the system with time delay and packet dropout

compensation, and H∞ controller design using the newly

proposed delay switching-based method is proved to be

less conservative than the one using the existing parameter

uncertainty-based method. Compared with the prediction-

based method, since the common positive definite matrix

P with special structure is not needed in this paper, the

conservativeness of the obtained results may be reduced.

This paper is organized as follows. The linear estimation-

based time delay and packet dropout compensation and the

delay switching-based method are presented in Section 2.

Section 3 is dedicated to H∞ controller design by using the

delay switching-based method. Section 4 presents the H∞

controller design by using the parameter uncertainty-based

method. The results of numerical simulation are presented

in Section 5. Conclusions are stated in Section 6.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a linear time-invariant plant described by

ẋ(t) = Ax(t)+B1u(t)+B2ω(t)
z(t) = C1x(t)+D1u(t)

(1)
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where x(t), u(t), z(t), ω(t) are the state vector, control input

vector, controlled output, and disturbance input, respectively,

and ω(t) is piecewise constant. A, B1, B2, C1, D1 are known

constant matrices of appropriate dimensions. Throughout this

paper, matrices, if not explicitly stated, are assumed to have

appropriate dimensions.

To compensate time delay and packet dropout, a linear

estimator may be added into the system to estimate the

delayed and dropped control input packets.

Fig. 1. NCSs with stochastic delay and packet dropout

The main idea of the linear estimation-based time delay

and packet dropout compensation is as follows. Suppose h is

the length of sampling period, k jh (where j = 1, 2, · · · ) and

(k j + m)h (where m = 1, 2, · · · ) are the sampling instants,

τk j+i (where i = 0, 1, · · · ) is the time delay of the control

input uk j+i, and τk j
≤ h, τk j+m > h or uk j+m is dropped

(denoted by the dashed lines in Fig. 1). Since uk j+m cannot

reach the actuator at the instant (k j +m+1)h, the estimator

will estimate uk j+m at the instant (k j + m + 1)h, and the

estimated value ûk j+m of uk j+m will be used as the control

input, uk j+m will not be used even if it reaches the actuator

eventually.

Remark 1. As shown in Fig. 1, uk j+1 does not reach the

actuator at the instant (k j + 2)h for being dropped, the

estimator will estimate uk j+1 at the instant (k j + 2)h based

on uk j
, while uk j+2 does not reach the actuator at the instant

k j+1h for long time delay, the estimator will also estimate

uk j+2 at the instant k j+1h based on uk j
and ûk j+1 (ûk j+m

denotes the estimated value of uk j+m).

Suppose the state x0, xk1
, xk2

, · · · , xk j
, · · · and the corre-

sponding control inputs based on these states are transferred

to the actuator successfully, L−1 is the maximum of consec-

utive packet dropout. Considering that the control inputs will

tend to zero when the system reaches a steady state, then the

estimated values of the delayed and dropped control inputs

are as follows

ûk j+1 = uk j
− 1

L
uk j

= (1− 1
L
)uk j

ûk j+2 = ûk j+1 +(ûk j+1 −uk j
) = (1− 2

L
)uk j

ûk j+3 = ûk j+2 +(ûk j+2 − ûk j+1) = (1− 3
L
)uk j

...

ûk j+1−1 = ûk j+1−2 +(ûk j+1−2 − ûk j+1−3)

= (1−
k j+1−k j−1

L
)uk j

(2)

where L is a predefined positive scalar and k j+1 − k j =
1, · · · , L.

Based on the compensation method presented in (2), we

will give the discrete time model of the system (1) in the

following.

In this paper, we suppose τk j
∈ {0, h/l, 2h/l, · · · , (l −

1)h/l, h}, where l is a positive scalar, then

u(t) =

{
ûk j−1, t ∈ [k jh, k jh+αh/l)

uk j
, t ∈ [k jh+αh/l, (k j +1)h]

(3)

where α = 0, 1, · · · , l.

Just as shown in Fig. 1, uk j
will be used during the

interval [(k j + 1)h, (k j + 2)h), while ûk j+1 will be used

during the interval [(k j + 2)h, (k j + 3)h), etc. Suppose the

disturbance inputs ωk j
=ωk j+1=· · ·=ωk j+1−1 for every k j, then

the evolution of plant states can be described as follows

xk j+1 = Φxk j
+Γ

k j

0 uk j
+Γ

k j

1 ûk j−1 + Γ̃ωk j

= (Φ−Γ
k j

0 K)xk j
− (1−

k j−k j−1−1

L
)Γ

k j

1 Kxk j−1
+ Γ̃ωk j

xk j+2 = Φxk j+1 +Γuk j
+ Γ̃ωk j

= (Φ2 −ΦΓ
k j

0 K −ΓK)xk j
+(ΦΓ̃+ Γ̃)ωk j

−(1−
k j−k j−1−1

L
)ΦΓ

k j

1 Kxk j−1

xk j+3 = Φxk j+2 +Γûk j+1 + Γ̃ωk j

= [Φ3 −Φ2Γ
k j

0 K −ΦΓK − (1− 1
L
)ΓK]xk j

−(1−
k j−k j−1−1

L
)Φ2Γ

k j

1 Kxk j−1
+(Φ2Γ̃+ΦΓ̃+ Γ̃)ωk j

...

xk j+1
= Ã jxk j

+ B̃ jxk j−1
+ D̃ jωk j

(4)

where Φ = eAh, Γ
k j

0 =
∫ h−τk j

0 eAsdsB1, Γ
k j

1 =
∫ h

h−τk j
eAsdsB1,

Γ̃ =
∫ h

0 eAsdsB2, Γ =
∫ h

0 eAsdsB1, τk j
is the time delay of the

control input uk j
, and

Ã j = Φk j+1−k j −Φk j+1−k j−1Γ
k j

0 K −Φk j+1−k j−2ΓK

−(1− 1
L
)Φk j+1−k j−3ΓK − (1− 2

L
)Φk j+1−k j−4ΓK

−·· ·−σ1ΓK

B̃ j = −σ2Φk j+1−k j−1Γ
k j

1 K

D̃ j =Φk j+1−k j−1Γ̃+Φk j+1−k j−2Γ̃+ · · ·+ Γ̃

σ1 = (1−
k j+1−k j−2

L
)

σ2 = (1−
k j−k j−1−1

L
)

(5)

Define xk j+1
, xk j

, xk j−1
, ωk j

, uk j
, and zk j

as ξ j+1, ξ j, ξ j−1,

ω j, u j, and z j, respectively. Then

ξ j+1 = Ã jξ j + B̃ jξ j−1 + D̃ jω j

z j = C1ξ j +D1ûk j−1
(6)

Just as shown above, the time delay τk j
switches in the

finite set ϑ = {0, h/l, 2h/l, · · · , (l − 1)h/l, h}, so Γ
k j

0 and

Γ
k j

1 of (5) also switch in finite sets, then the problem of H∞

controller design for (1) can be reduced to the corresponding

problem for the system (6), which will be studied in Section

3.

Remark 2. If the disturbance inputs ωk j
6= ωk j+1 6= · · · 6=

ωk j+1−1, we can also get the discrete time model of the

system (1) by using the method presented in (4), here it

is omitted.

The following lemmas will be used in the sequel.

Lemma 1 [7]. Suppose a ∈ Rn, b ∈ Rm, G ∈ Rn∗m, then for
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any X ∈ Rn∗n, Y ∈ Rn∗m, Z ∈ Rm∗m satisfying
[

X Y

Y T Z

]
≥ 0

the following inequality holds

−2aT Gb ≤

[
a

b

]T [
X Y −G

Y T −GT Z

][
a

b

]

Lemma 2 [8]. Suppose D, E, and F are real matrices of

appropriate dimensions with ||F || ≤ 1, for any scalar ε > 0,

the following inequality holds

DFE +ET FT DT ≤ εDDT + ε−1ET E

III. H∞ CONTROLLER DESIGN BASED ON DELAY

SWITCHING

We are now in a position to design the state feedback con-

troller gain K, which can make the system (6) asymptotically

stable with the H∞ norm bound γ .

Theorem 1. For given positive scalars θ1, θ2, and θ3, if

there exist symmetric positive definite matrices P̃, Z̃, R̃, and

matrices X̃11, X̃22, X̃33, V , N, X̃12, X̃13, X̃23, Ỹ1, Ỹ2, Ỹ3, scalar

γ > 0, such that the following inequalities hold for every

feasible value of k j+1 − k j (k j+1 − k j = 1, · · · , L), Γ
k j

0 , and

Γ
k j

1




Λ̃11 Λ̃12 Λ̃13 −θ1D̃ j 0

∗ Λ̃22 Λ̃23 −θ2D̃ j NCT
1

∗ ∗ Λ̃33 −θ3D̃ j −σ2V T DT
1

∗ ∗ ∗ −γI 0

∗ ∗ ∗ ∗ −γI




< 0 (7)




X̃11 X̃12 X̃13 Ỹ1

∗ X̃22 X̃23 Ỹ2

∗ ∗ X̃33 Ỹ3

∗ ∗ ∗ Z̃


 ≥ 0 (8)

where

Λ̃11 = P̃+ Z̃ +θ1N +θ1NT + X̃11

Λ̃12 = −Z̃ −θ1Ψ1 +θ2N + X̃12 + Ỹ1

Λ̃13 = −θ1Ψ2 +θ3N + X̃13 − Ỹ1

Λ̃22 = −P̃+ Z̃ + R̃−θ2Ψ1 −θ2ΨT
1 + X̃22 + Ỹ2 + Ỹ T

2

Λ̃23 = −θ2Ψ2 −θ3ΨT
1 + X̃23 − Ỹ2 + Ỹ T

3

Λ̃33 = −R̃−θ3Ψ2 −θ3ΨT
2 + X̃33 − Ỹ3 − Ỹ T

3

Ψ1 = Φk j+1−k j NT −Φk j+1−k j−1Γ
k j

0 V −Φk j+1−k j−2ΓV

−(1− 1
L
)Φk j+1−k j−3ΓV − (1− 2

L
)Φk j+1−k j−4ΓV

−·· ·−σ1ΓV

Ψ2 = −σ2Φk j+1−k j−1Γ
k j

1 V
(9)

then with the control law

u j = −Kξ j, K = V N−T

the system described by (6) is asymptotically stable with H∞

norm bound γ .

Proof: Let us consider the following Lyapunov function

Vj = V1 j +V2 j +V3 j

V1 j = ξ T
j Pξ j

V2 j = (ξ j −ξ j−1)
T Z(ξ j −ξ j−1)

V3 j = ξ T
j−1Rξ j−1

where P, Z, R are symmetric positive definite matrices. The

difference of function Vj along the trajectory of (6) is given

by

∆V1 j = ξ T
j+1Pξ j+1 −ξ T

j Pξ j

∆V2 j = (ξ j+1 −ξ j)
T Z(ξ j+1 −ξ j)− (ξ j −ξ j−1)

T Z(ξ j −ξ j−1)
∆V3 j = ξ T

j Rξ j −ξ T
j−1Rξ j−1

∆Vj = ∆V1 j +∆V2 j +∆V3 j

(10)

Define η̃ = [ξ T
j+1, ξ T

j , ξ T
j−1, ωT

j ]T , for any matrices W

and M of appropriate dimensions and positive scalars θ1, θ2,

and θ3, we have

Π1 =2ηTW [ξ j −ξ j−1 − (ξ j −ξ j−1)] = 0

Π2 =2[θ1ξ T
j+1M +θ2ξ T

j M +θ3ξ T
j−1M]

.[ξ j+1 − Ã jξ j − B̃ jξ j−1 − D̃ jω j] = 0

(11)

Define a = η , G = W , b = ξ j −ξ j−1, using the Lemma 1,

for any matrices X , Y , Z satisfying

[
X Y

Y T Z

]
≥ 0, we have

−2ηTW (ξ j −ξ j−1) ≤ηT Xη +2ηT [Y −W ](ξ j −ξ j−1)
+(ξ j −ξ j−1)

T Z(ξ j −ξ j−1)
(12)

that is

Π1 ≤ ηT Xη +2ηTY (ξ j −ξ j−1)+(ξ j −ξ j−1)
T Z(ξ j −ξ j−1)

(13)

By defining

X =




X11 X12 X13

∗ X22 X23

∗ ∗ X33


 , Y =




Y1

Y2

Y3


 (14)

we have

∆Vj +Π1 +Π2 ≤ η̃T Λη̃ (15)

where

Λ =




Λ11 Λ12 Λ13 −θ1MD̃ j

∗ Λ22 Λ23 −θ2MD̃ j

∗ ∗ Λ33 −θ3MD̃ j

∗ ∗ ∗ 0


 (16)

Λ11 = P+Z +θ1M +θ1MT +X11

Λ12 = −Z −θ1MÃ j +θ2MT +X12 +Y1

Λ13 = −θ1MB̃ j +θ3MT +X13 −Y1

Λ22 = −P+Z +R−θ2MÃ j −θ2ÃT
j MT +X22 +Y2 +Y T

2

Λ23 = −θ2MB̃ j −θ3ÃT
j MT +X23 −Y2 +Y T

3

Λ33 = −R−θ3MB̃ j −θ3B̃T
j MT +X33 −Y3 −Y T

3
(17)

If the linear estimation-based packet dropout compensa-

tion (2) is used, the available control input at the instant

k jh is ûk j−1 = −σ2Kξ j−1, then the controlled output z j =
C1ξ j −σ2D1Kξ j−1, for any nonzero ξ j, we have

γ−1zT
j z j − γωT

j ω j = η̃T Ξη̃
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where

Ξ =




0 0 0 0

∗ γ−1C1
TC1 −σ2γ−1C1

T D1K 0

∗ ∗ σ2
2 γ−1KT DT

1 D1K 0

∗ ∗ ∗ −γI




so

γ−1zT
j z j − γωT

j ω j +∆Vj +Π1 +Π2 ≤ η̃T Λ̃η̃

where Λ̃ = Λ+Ξ.

In the following, we will prove that γ−1zT
j z j − γωT

j ω j +

∆Vj < 0, that is Λ̃ < 0. Using the Schur complement, Λ̃ < 0

is equivalent to



Λ11 Λ12 Λ13 −θ1MD̃ j 0

∗ Λ22 Λ23 −θ2MD̃ j CT
1

∗ ∗ Λ33 −θ3MD̃ j −σ2(D1K)T

∗ ∗ ∗ −γI 0

∗ ∗ ∗ ∗ −γI




< 0 (18)

Pre- and post-multiply (18) by diag(M−1, M−1, M−1,

I, I) and diag(M−T , M−T , M−T , I, I), define M−1 = N,

KNT = V , M−1PM−T = P̃, M−1ZM−T = Z̃, M−1RM−T =
R̃, M−1Xi jM

−T = X̃i j, M−1YiM
−T = Ỹi, where i = 1, 2, 3

and i ≤ j ≤ 3. Take the representations of Ã j and B̃ j into

consideration, we can see that (18) is equivalent to (7).

On the other hand, pre- and post-multiply

[
X Y

Y T Z

]
≥ 0 by

diag(M−1, M−1, M−1, M−1) and diag(M−T , M−T , M−T ,

M−T ), one can see that

[
X Y

Y T Z

]
≥ 0 is equivalent to (8), that

is if (7) and (8) are satisfied, we have γ−1zT
j z j − γωT

j ω j +
∆Vj < 0.

Since γ−1zT
j z j − γωT

j ω j +∆Vj < 0, then

γ−1zT
j z j − γωT

j ω j < −∆Vj

Summing up the both sides of the above inequality for j = 0

to j = n, using the zero initial condition and the character

that the disturbance input ω j has limited energy, we have

n

∑
j=0

||z j||
2 < γ2

n

∑
j=0

||ω j||
2 − γVn+1

the above inequality holds for all n, let n → ∞, we have

||z||22 < γ2||ω||22

If the disturbance input ω j = 0, (7) and (8) can ensure

the asymptotic stability of system described by (6), and if

ω j 6= 0, we have ||z||22 < γ2||ω||22. So if the LMIs (7) and (8)

are feasible, the system described by (6) with K = V N−T is

asymptotically stable with H∞ norm bound γ , this completes

the proof.

When the delay switching-based method is used to design

H∞ controllers, the LMIs presented in Theorem 1 should be

satisfied for every feasible value of τk j
(τk j

∈ ϑ ), which will

lead to the increase of computational complexity.

One can also use the existing parameter uncertainty-based

method (see [11], [12]) to design H∞ controllers for the

system described by (6).

IV. H∞ CONTROLLER DESIGN BASED ON

PARAMETER-UNCERTAINTY

Suppose τmin and τmax are the minimum and maximum of

time delay τk j
, and define τ̄ = (τmin + τmax)/2, considering

the definition of Γ
k j

0 and Γ
k j

1 , we have

Γ
k j

0 =
∫ h−τk j

0
eAsdsB1 =

∫ h−τ̄

0
eAsdsB1 +

∫ h−τk j

h−τ̄
eAsdsB1

(19)

define Γ̂1 =
∫ h−τ̄

0 eAsdsB1, D̂1 = I, F =
∫ h−τk j

h−τ̄ eAsds, E1 = B1,

then

Γ
k j

0 = Γ̂1 + D̂1FE1 (20)

Using the same method presented above, we have

Γ
k j

1 =
∫ h

h−τk j

eAsdsB1 = Γ̂2 + D̂2FE2 (21)

where Γ̂2 =
∫ h

h−τ̄ eAsdsB1, D̂2 = I, F =
∫ h−τk j

h−τ̄ eAsds, E2 =
−B1.

For a specific system, h− τk j
≤ h− τmin, so FT F ≤ λ 2I,

where λ is a positive scalar. Denote σmax(A) as the maximum

singular value of matrix A, then (to see [12] for the proof)

λ =
eσmax(A)∗(h−τmin) − eσmax(A)∗(h−τ̄)

σmax(A)
(22)

So the system described by (6) can be written as follows

ξ j+1 = (Ã j1 + Ã j2)ξ j +(B̃ j1 + B̃ j2)ξ j−1 + D̃ jω j

z j = C1ξ j +D1ûk j−1
(23)

where

Ã j1 =Φk j+1−k j −Φk j+1−k j−1Γ̂1K −Φk j+1−k j−2ΓK

−(1− 1
L
)Φk j+1−k j−3ΓK − (1− 2

L
)Φk j+1−k j−4ΓK

−·· ·−σ1ΓK

Ã j2 =−Φk j+1−k j−1D̂1FE1K

B̃ j1 =−σ2Φk j+1−k j−1Γ̂2K

B̃ j2 =−σ2Φk j+1−k j−1D̂2FE2K

We are now in a position to design the feedback gain K,

which can make the system (23) asymptotically stable with

H∞ norm bound γ .

Theorem 2. For given positive scalars θ1, θ2, θ3, and λ ,

if there exist symmetric positive definite matrices P̃, Z̃, R̃,

and matrices V , N, X̃11, X̃22, X̃33, X̃12, X̃13, X̃23, Ỹ1, Ỹ2, Ỹ3,

scalars γ > 0, ε > 0, such that the following inequalities hold

for every feasible value of k j+1 − k j (k j+1 − k j = 1, · · · , L)




Ω11 Ω12 Ω13

∗ Ω22 0

∗ ∗ Ω33


 < 0 (24)




X̃11 X̃12 X̃13 Ỹ1

∗ X̃22 X̃23 Ỹ2

∗ ∗ X̃33 Ỹ3

∗ ∗ ∗ Z̃


 ≥ 0 (25)
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where

Ω11 =




Λ̃11 Λ̃12 Λ̃13 −θ1D̃ j 0

∗ Λ̃22 Λ̃23 −θ2D̃ j NCT
1

∗ ∗ Λ̃33 −θ3D̃ j −σ2V T DT
1

∗ ∗ ∗ −γI 0

∗ ∗ ∗ ∗ −γI




Λ̃11 = P̃+ Z̃ +θ1N +θ1NT + X̃11

Λ̃12 = −Z̃ −θ1Ψ1 +θ2N + X̃12 + Ỹ1

Λ̃13 = −θ1Ψ2 +θ3N + X̃13 − Ỹ1

Λ̃22 = −P̃+ Z̃ + R̃−θ2Ψ1 −θ2ΨT
1 + X̃22 + Ỹ2 + Ỹ T

2

Λ̃23 = −θ2Ψ2 −θ3ΨT
1 + X̃23 − Ỹ2 + Ỹ T

3

Λ̃33 = −R̃−θ3Ψ2 −θ3ΨT
2 + X̃33 − Ỹ3 − Ỹ T

3

Ψ1 = Φk j+1−k j NT −Φk j+1−k j−1Γ̂1V −Φk j+1−k j−2ΓV

− (1− 1
L
)Φk j+1−k j−3ΓV − (1− 2

L
)Φk j+1−k j−4ΓV

−·· ·−σ1ΓV

Ψ2 = −σ2Φk j+1−k j−1Γ̂2V

Ω12 = diag(0, V T ET
1 , V T ET

2 , 0, 0)

Ω13 =




0 θ1εΦk j+1−k j−1D̂1 θ1σ2εΦk j+1−k j−1D̂2 0 0

0 θ2εΦk j+1−k j−1D̂1 θ2σ2εΦk j+1−k j−1D̂2 0 0

0 θ3εΦk j+1−k j−1D̂1 θ3σ2εΦk j+1−k j−1D̂2 0 0

0 0 0 0 0

0 0 0 0 0




Ω22 = diag(−λ−1εI, · · · , −λ−1εI︸ ︷︷ ︸
5

)

Ω33 = diag(−λ−1εI, · · · , −λ−1εI︸ ︷︷ ︸
5

)

(26)

then with the control law

u j = −Kξ j, K = V N−T

the system described by (23) is asymptotically stable with

H∞ norm bound γ .

Proof: Using the same method proposed in Theorem 1, one

can see that if (7) and (8) are satisfied, we have γ−1zT
j z j −

γωT
j ω j +∆Vj < 0, and (7) can be written as

Ω+ D̃F̃Ẽ + ẼT F̃T D̃T < 0 (27)

where Ω is the same as Ω11 given in (26), and

D̃ =




0 θ1Φk j+1−k j−1D̂1 θ1σ2Φk j+1−k j−1D̂2 0 0

0 θ2Φk j+1−k j−1D̂1 θ2σ2Φk j+1−k j−1D̂2 0 0

0 θ3Φk j+1−k j−1D̂1 θ3σ2Φk j+1−k j−1D̂2 0 0

0 0 0 0 0

0 0 0 0 0




Ẽ = diag(0, E1V, E2V, 0, 0)

F̃ = diag(F, F, F, F, F)
(28)

For any scalar ε > 0, using the Lemma 2, we have

D̃F̃Ẽ + ẼT F̃T D̃T < λεD̃D̃T +λε−1ẼT Ẽ (29)

Using the Schur complement, if the following inequality is

feasible, (27) is also feasible.



Ω ẼT D̃

∗ −λ−1εI 0

∗ ∗ −λ−1ε−1I


 < 0 (30)

Pre- and post-multiply (30) by diag(I, I, εI) and

diag(I, I, εI), one can see that (30) is equivalent to (24), that

is if (24) and (25) are satisfied, we have γ−1zT
j z j −γωT

j ω j +
∆Vj < 0. The rest of this proof is similar to the proof of

Theorem 1, here it is omitted.

Theorem 3. If the LMIs of Theorem 2 are feasible, then the

LMIs of Theorem 1 are also feasible.

Proof: The proof is similar to Theorem 3 of [20], here it is

omitted.

Remark 3. As shown in Theorem 3, Theorem 1 is less con-

servative than Theorem 2, and Theorem 2 may provide less

computational complexity than Theorem 1, one may choose

appropriate method according to the actual requirement.

Remark 4. For the system (6), if no compensation method

is adopted and the latest available control inputs are used,

then uk j+1 = uk j
, uk j+2 = uk j

, · · · , uk j+1−1 = uk j
, which is

corresponding to L → ∞ in (2).

V. SIMULATION RESULTS AND DISCUSSION

To illustrate the merits of the proposed methods, we

present an open loop unstable system as follows:

ẋ(t) =

[
0.8822 −0.4090

−0.4863 −0.3902

]
x(t)+

[
0.7523

0.7399

]
u(t)

+

[
−0.3379

−0.3533

]
ω(t)

z(t) =
[
−0.1181 0.4057

]
x(t)−0.5074u(t)

(31)

Suppose the sampling period of sensor is 0.25s, and the

time delay τk j
∈ {0.06s, 0.09s, 0.12s}, the initial state of the

system is x0 = [1− 1]T , θ1 = 10, θ2 = 1, θ3 = 1, and from

(22), we can get λ = 0.0359. For simplicity, suppose the

packets at the instants 0, 4h, 8h, · · · are transferred to the

actuator successfully, that is 3 packets are dropped among

every 4 packets, which means that L = 4.

For systems without time delay and packet dropout com-

pensation, one can also design the H∞ controllers by using

the same methods proposed in Theorem 1 and Theorem 2.

The H∞ norm bounds corresponding to different cases are

shown in Table 1 (γ1 and γ2 represent the H∞ norm bounds

got by Theorem 1 with and without time delay and packet

dropout compensation, γ3 and γ4 represent the H∞ norm

bounds got by Theorem 2 with and without time delay and

packet dropout compensation, respectively).

From Table 1, one can see that γ1 < γ3 and γ2 < γ4, which

show that the H∞ controller design using the proposed delay

switching-based method is less conservative than the one

using the existing parameter uncertainty-based method. On

the other hand, γ1 < γ2 and γ3 < γ4 demonstrate the merits of

the proposed time delay and packet dropout compensation.

The maximum admissible sampling periods (MASPs)

based on different methods are shown in Table 2 (h1 and h2

represents the MASPs got by Theorem 1 with and without

time delay and packet dropout compensation, h3 and h4

represents the MASPs got by Theorem 2 with and without

time delay and packet dropout compensation, respectively).

From Table 2, one can see that h1 > h3 and h2 > h4, which

demonstrate the merits of the proposed delay switching-

based H∞ controller design. On the other hand, h1 > h2 and
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TABLE I

THE H∞ NORM BOUNDS

γ1 γ2 γ3 γ4

0.6028 1.6991 1.2126 20.8469

TABLE II

THE MAXIMUM ADMISSIBLE SAMPLING PERIODS

h1 h2 h3 h4

0.66 0.43 0.44 0.26

h3 > h4 demonstrate the merits of the proposed time delay

and packet dropout compensation.
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x2

z

Fig. 2. Curves of state response and controlled output

Suppose the controller gains got by Theorem 1 with

and without packet dropout compensation are used (if the

compensation method is adopted, K = [4.0151 − 1.1952],
otherwise, K = [2.7169 −0.8087]), and at the instant 10s, the

disturbance inputs 3sin( j) ( j = 1, 2, · · · , 15) are added into

the system, the plant state responses and controlled outputs

(τk j
=0.06s) are pictured in Fig. 2. From Fig. 2(a) and Fig.

2(b), one can see that the proposed compensation method

may provide good H∞ performance.

VI. CONCLUSIONS

This paper is concerned with the problem of designing

H∞ controllers for NCSs by using the linear estimation-

based time delay and packet dropout compensation. The H∞

controller design using the newly proposed delay switching-

based method is proved to be less conservative than the

one using the existing parameter uncertainty-based method.

The simulation results have illustrated the effectiveness of

the proposed delay switching-based method and the linear

estimation-based time delay and packet dropout compensa-

tion.
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