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Abstract— This paper is concerned with the problem of
H∞ controller design for networked control systems (NCSs)
with time delay and packet dropout. The idle communication
channels are made full use to compensate the negative influences
of time delay and packet dropout. By defining new Lyapunov
function, linear matrix inequality (LMI)-based H∞ controller
design is presented, and the merit of the proposed design
methods lies in their less conservativeness, which is achieved by
avoiding the utilization of bounding inequalities for cross prod-
ucts of vectors. The simulation results illustrate the effectiveness
of the proposed multiple communication channels-based time
delay and packet dropout compensation.

I. INTRODUCTION

Networked control systems (NCSs) have received increas-

ing attentions in recent years. However, the insertion of the

communication network will lead to time delay and data

packet dropout inevitably, which might be potential sources

to instability and poor performance of NCSs.

Many researchers have studied stability/stabilization of

networked control systems in the presence of network-

induced delay [1]-[3]. Based on remote control and local

control strategy, a class of hybrid multi-rate control models

with uncertainties and multiple time-varying delays was

formulated in [4], and their robust stability properties were

also investigated. For other results dealing with time delay

specifically, see also [5]-[10].

Besides the network-induced time delay, data packet

dropout is also an important issue for NCSs. [11]-[12] stud-

ied the problem of stabilization of NCSs with packet dropout,

and time varying optimal control with packet dropout was

studied in [13]. There have also been considerable research

efforts on H∞ control for systems with time-delay [14]-[18].

As we can see, the problem of time delay and packet

dropout compensation is seldom discussed in the papers
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listed above. Recently, there are some preliminary results

on compensating for time delay and packet dropout. In [19],

an estimator was used to reconstruct an approximation to the

undelayed plant state. By using a buffer in the actuator node

and a state estimator in the controller node, [20] presented

LMI-based sufficient condition for the stability of NCSs, but

the problem of controller design was not discussed in [19]

and [20]. By using prediction-based method, [21] and [22]

studied the problem of time delay compensation for NCSs.

[23] was concerned with the design of NCSs with random

network delay in the feedback channel and gave stability

criteria of closed-loop networked predictive control systems.

Just as we can see, the compensation methods presented

above are usually based on estimation or prediction. If the

prediction-based method is used, an augmented state vector

is usually defined (see [22], [23]), and the introduction of the

augmented state vector will introduce some conservativeness

since the common positive definite matrix P with special

structure is needed (see [22]).

On the other hand, one of the most important characters

of NCSs is the sharing of the communication channels, if the

sampled data from the sensor are transmitted through differ-

ent communication channels which are idle, the actuator may

still receive control inputs even the network communication

in some channels is lost for long time, and the sharing of

the idle communication channels will not increase the cost of

hardware. In this paper, we will propose a new compensation

method which is realized by making sufficient use of the idle

communication channels. The discretized controlled plant is

considered in this paper, and every communication channel

may experience time delay and packet dropout.

This paper is organized as follows. The model of NCSs

with multiple communication channels is presented in Sec-

tion 2. By using LMI-based method, Section 3 presents the

H∞ controller design for NCSs with multiple communication

channels, time delay and packet dropout. The results of

numerical simulation are presented in Section 4. Conclusions

are stated in Section 5.

II. PRELIMINARIES AND PROBLEM STATEMENT

The typical structure of NCSs with multiple communica-

tion channels is shown in Fig. 1, where Ki (i = 1, · · · , p)
are controllers corresponding to plant i. The motivation of

this paper is to compensate the negative influences of time

delay and packet dropout by making full use of the idle

communication channels and controllers.

Remark 1. Just as shown in Fig. 1, if the network communi-

cation in the channel 1 is lost for long time, the communica-
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Fig. 1. NCSs with multiple communication channels

tion channels 2, 3, · · · , p (if they are idle) may also be used to

transmit control inputs for the plant 1, which will reduce the

negative influences of time delay and packet dropout on the

plant 1. On the other hand, if the communication channels

2, 3, · · · , p are all busy, then only the channel 1 is used

to transmit control inputs for the plant 1, so the NCSs with

single communication channel can be viewed as a special

case of NCSs with multiple communication channels.

In this paper, we will consider the problem of H∞ con-

troller design for NCSs which may receive control inputs

from two communication channels, and the proposed H∞

controller design is also applicable for NCSs which may

receive control inputs from more than two communication

channels.

Fig. 2. Timing diagram of signals transmitting

Suppose the control inputs from the controllers 1 and

2 are transmitted through the communication channels 1

and 2, respectively, and the controller 1 is introduced to

compensate the negative influences of time delay and packet

dropout. Fig. 2 illustrates the timing diagram of signals

transmitting of NCSs which may receive control inputs from

two communication channels.

The assumption on time delay is as follows.

Assumption 1. The time delay τ1k and τ2k (τ1k and τ2k are

the sensor-to-actuator time delay of the channels 1 and 2,

respectively) are assumed to be time-varying and can be

denoted as τ1k = nh + ε1k and τ2k = mh + ε2k, where n, m

are positive integers, h is the sampling period, ε1k ∈ [0, h],
ε2k ∈ [0, h], n ≤ m, and ε1k ≤ ε2k.

Consider a linear time-invariant system described by

ẋ(t) = Ax(t)+B1u(t)+B2ω(t)
z(t) = Cx(t)+Du(t)

(1)

where x(t), u(t), z(t), ω(t) are the state vector, control input

vector, controlled output, and disturbance input, respectively,

and ω(t) is piecewise constant. A, B1, B2, C, D are known

constant matrices of appropriate dimensions. Throughout this

paper, matrices, if not explicitly stated, are assumed to have

appropriate dimensions.

At the sampling instant tk, suppose the latest available

control inputs based on the controller 1 and the controller

2 are uk−lk and uk−rk
, respectively, and lm ≤ lk ≤ lM , rm ≤

rk ≤ rM , lm ≤ rm, lM ≤ rM .

In this paper, we consider the case that the packet dropout

is stochastic and the numbers of consecutive packet dropout

in the communication channel 1 and communication channel

2 are upper-bounded by lM −n−1 and rM −m−1, respec-

tively. For NCSs with long time delay and packet dropout, if

the actuator receives two control inputs uk−n and uk−m during

the sampling period [tk, tk+1], the discrete time representation

of the system (1) is as follows

xk+1 = Φxk +Γ0nuk−n +Γ1nuk−lk +Γ0muk−m

+Γ1muk−rk
+Γ2ωk

zk = Cxk +D[pr ∗uk−lk +(1− pr)∗uk−rk
]

(2)

where Φ = eAh, Γ0n =
∫ h−ε1k

0 eAsdsB1, Γ1n =
∫ h

h−ε1k
eAsdsB1,

Γ0m =
∫ h−ε2k

0 eAsdsB1, Γ1m =
∫ h

h−ε2k
eAsdsB1, Γ2 =

∫ h
0 eAsdsB2,

uk−n = −K1xk−n, uk−lk = −K1xk−lk , uk−m = −K2xk−m,

uk−rk
= −K2xk−rk

. If the latest available control input at the

instant tk is uk−lk , then pr = 1, and if the latest available one

is uk−rk
, pr = 0.

Define −Γ0nK1, −Γ0mK2, −Γ1nK1, −Γ1mK2 and Γ2 as Φ1,

Φ2, Φ3, Φ4 and Φ5, respectively, (2) can be written as follows

xk+1 = Φxk +Φ1xk−n +Φ2xk−m +Φ3xk−lk

+Φ4xk−rk
+Φ5ωk

zk = Cxk −D[pr ∗K1 ∗ xk−lk +(1− pr)∗K2 ∗ xk−rk
]

(3)

then the problem of H∞ controller design for (1) can be

reduced to the corresponding problem for the system (3).

III. H∞ CONTROLLER DESIGN FOR NCSS

A. NCSs with Multiple Communication Channels

Based on the model presented in (3), we are now in a

position to design the feedback gains K1 and K2, which can

make the system (3) asymptotically stable with the H∞ norm

bound γ .

Theorem 1. For given positive scalars n, m, lM , lm, rM , rm,

if there exist symmetric positive definite matrices P̃, Q̃i (i =
1, · · · , 6), R̃ j and matrices M̃ j, Ñ j, X̃ j, Ỹj, Z̃ j ( j = 1, · · · , 4),

N, V1, V2, scalar γ > 0, such that the following LMIs hold

for every feasible value of pr (pr = 0 or pr = 1)




Λ̃11 Λ̃12 Λ̃13 Λ̃14 Λ̃15 Λ̃16

∗ Λ̃22 Λ̃23 Λ̃24 Λ̃25 Λ̃26

∗ ∗ Λ̃33 Λ̃34 Λ̃35 Λ̃36

∗ ∗ ∗ Λ̃44 Λ̃45 Λ̃46

∗ ∗ ∗ ∗ Λ̃55 Λ̃56

∗ ∗ ∗ ∗ ∗ Λ̃66

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
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Λ̃17 Λ̃18 −θ1Γ2 NCT

Λ̃27 Λ̃28 −θ2Γ2 0

Λ̃37 Λ̃38 −θ3Γ2 ϒ1

Λ̃47 Λ̃48 −θ4Γ2 0

Λ̃57 Λ̃58 −θ5Γ2 0

Λ̃67 Λ̃68 −θ6Γ2 ϒ2

Λ̃77 Λ̃78 −θ7Γ2 0

∗ Λ̃88 −θ8Γ2 0
∗ ∗ −γI 0
∗ ∗ ∗ −γI




< 0 (4)



−X̃ j −Ỹj −M̃ j

∗ −Z̃ j −Ñ j

∗ ∗ −R̃ j


 < 0, j = 1, 2, 3, 4 (5)

where

Λ̃11 =−P̃+ Q̃1 +nR̃1 +(lM − lm +1)Q̃2 + lMR̃2 + Q̃3

+Q̃4 +mR̃3 +(rM − rm +1)Q̃5 + rMR̃4 + Q̃6

+M̃1 + M̃T
1 +nX̃1 + M̃2 + M̃T

2 + lMX̃2 + M̃3 + M̃T
3

+mX̃3 + M̃4 + M̃T
4 + rMX̃4 −θ1ΦNT −θ1NΦT

Λ̃12 =−M̃1 + ÑT
1 +nỸ1 +θ1Γ0nV1 −θ2NΦT

Λ̃13 =θ1Γ1nV1 −θ3NΦT

Λ̃14 =−M̃2 + ÑT
2 + lMỸ2 −θ4NΦT

Λ̃15 =−M̃3 + ÑT
3 +mỸ3 +θ1Γ0mV2 −θ5NΦT

Λ̃16 =θ1Γ1mV2 −θ6NΦT

Λ̃17 =−M̃4 + ÑT
4 + rMỸ4 −θ7NΦT

Λ̃18 =−nR̃1 − lMR̃2 −mR̃3 − rMR̃4 +θ1NT −θ8NΦT

Λ̃22 =−Q̃1 − Ñ1 − ÑT
1 +nZ̃1 +θ2Γ0nV1 +θ2V T

1 ΓT
0n

Λ̃23 =θ2Γ1nV1 +θ3V T
1 ΓT

0n

Λ̃24 =θ4V T
1 ΓT

0n

Λ̃25 =θ2Γ0mV2 +θ5V T
1 ΓT

0n

Λ̃26 =θ2Γ1mV2 +θ6V T
1 ΓT

0n

Λ̃27 =θ7V T
1 ΓT

0n

Λ̃28 =θ2NT +θ8V T
1 ΓT

0n

Λ̃33 =−Q̃2 +θ3Γ1nV1 +θ3V T
1 ΓT

1n

Λ̃34 =θ4V T
1 ΓT

1n

Λ̃35 =θ3Γ0mV2 +θ5V T
1 ΓT

1n

Λ̃36 =θ3Γ1mV2 +θ6V T
1 ΓT

1n

Λ̃37 =θ7V T
1 ΓT

1n

Λ̃38 =θ3NT +θ8V T
1 ΓT

1n

Λ̃44 =−Q̃3 − Ñ2 − ÑT
2 + lMZ̃2

Λ̃45 =θ4Γ0mV2

Λ̃46 =θ4Γ1mV2

Λ̃47 =0

Λ̃48 =θ4NT

Λ̃55 =−Q̃4 − Ñ3 − ÑT
3 +mZ̃3 +θ5Γ0mV2 +θ5V T

2 ΓT
0m

Λ̃56 =θ5Γ1mV2 +θ6V T
2 ΓT

0m

Λ̃57 =θ7V T
2 ΓT

0m

Λ̃58 =θ5NT +θ8V T
2 ΓT

0m

Λ̃66 =−Q̃5 +θ6Γ1mV2 +θ6V T
2 ΓT

1m

Λ̃67 =θ7V T
2 ΓT

1m

Λ̃68 =θ6NT +θ8V T
2 ΓT

1m

Λ̃77 =−Q̃6 − Ñ4 − ÑT
4 + rMZ̃4

Λ̃78 =θ7NT

Λ̃88 = P̃+nR̃1 + lMR̃2 +mR̃3 + rMR̃4 +θ8N +θ8NT

ϒ1 = −pr ∗V T
1 DT

ϒ2 = −(1− pr)V T
2 DT

then with the controller gains

K1 = V1N−T
, K2 = V2N−T

the system described by (3) is asymptotically stable with H∞

norm bound γ .

Proof: Let us consider the following Lyapunov function

Vk =V1k +V2k +V3k +V4k +V5k +V6k +V7k

+V8k +V9k +V10k +V11k +V12k +V13k
(6)

where

V1k = xT
k Pxk

V2k =
k−1

∑
i=k−n

xT
i Q1xi

V3k =
−1

∑
i=−n

k−1

∑
j=k+i

ηT
j R1η j

V4k =
k−1

∑
i=k−lk

xT
i Q2xi

V5k =
−lm

∑
i=−lM+1

k−1

∑
j=k+i

xT
j Q2x j

V6k =
−1

∑
i=−lM

k−1

∑
j=k+i

ηT
j R2η j

V7k =
k−1

∑
i=k−lM

xT
i Q3xi

V8k =
k−1

∑
i=k−m

xT
i Q4xi

V9k =
−1

∑
i=−m

k−1

∑
j=k+i

ηT
j R3η j

V10k =
k−1

∑
i=k−rk

xT
i Q5xi

V11k =
−rm

∑
i=−rM+1

k−1

∑
j=k+i

xT
j Q5x j

V12k =
−1

∑
i=−rM

k−1

∑
j=k+i

ηT
j R4η j

V13k =
k−1

∑
i=k−rM

xT
i Q6xi

and P, Q1, · · · , Q6, R1, · · · , R4 are symmetric positive

definite matrices, η j = x j+1 − x j.

Define △Vk = Vk+1 −Vk, then

△V1k = xT
k+1Pxk+1 − xT

k Pxk (7)

△V2k = xT
k Q1xk − xT

k−nQ1xk−n (8)
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△V3k =
−1

∑
i=−n

(ηT
k R1ηk −ηT

k+iR1ηk+i)

= n(xk+1 − xk)
T R1(xk+1 − xk)−

k−1

∑
i=k−n

ηT
i R1ηi (9)

△V4k ≤ xT
k Q2xk +

k−lm

∑
i=k−lM+1

xT
i Q2xi − xT

k−lk
Q2xk−lk (10)

△V5k =
−lm

∑
i=−lM+1

(xT
k Q2xk − xT

k+iQ2xk+i)

= (lM − lm)xT
k Q2xk −

k−lm

∑
i=k−lM+1

xT
i Q2xi (11)

△V6k =
−1

∑
i=−lM

(ηT
k R2ηk −ηT

k+iR2ηk+i)

= lM(xk+1 − xk)
T R2(xk+1 − xk)−

k−1

∑
i=k−lM

ηT
i R2ηi (12)

△V7k = xT
k Q3xk − xT

k−lM
Q3xk−lM (13)

Similarly, we have

△V8k = xT
k Q4xk − xT

k−mQ4xk−m (14)

△V9k = m(xk+1 − xk)
T R3(xk+1 − xk)−

k−1

∑
i=k−m

ηT
i R3ηi (15)

△V10k ≤ xT
k Q5xk +

k−rm

∑
i=k−rM+1

xT
i Q5xi − xT

k−rk
Q5xk−rk

(16)

△V11k = (rM − rm)xT
k Q5xk −

k−rm

∑
i=k−rM+1

xT
i Q5xi (17)

△V12k = rM(xk+1 − xk)
T R4(xk+1 − xk)−

k−1

∑
i=k−rM

ηT
i R4ηi

(18)

△V13k = xT
k Q6xk − xT

k−rM
Q6xk−rM

(19)

To notice that

Θ1 =2
[
xT

k xT
k−n

][
M1

N1

]
(xk − xk−n −

k−1

∑
i=k−n

ηi) = 0 (20)

Θ2 =n
[
xT

k xT
k−n

][
X1 Y1

∗ Z1

][
xk

xk−n

]

−
k−1

∑
i=k−n

[
xT

k xT
k−n

][
X1 Y1

∗ Z1

][
xk

xk−n

]
= 0 (21)

Θ3 =2
[
xT

k xT
k−lM

][
M2

N2

]
(xk − xk−lM −

k−1

∑
i=k−lM

ηi) = 0 (22)

Θ4 =lM
[
xT

k xT
k−lM

][
X2 Y2

∗ Z2

][
xk

xk−lM

]

−
k−1

∑
i=k−lM

[
xT

k xT
k−lM

][
X2 Y2

∗ Z2

][
xk

xk−lM

]
= 0 (23)

Θ5 =2
[
xT

k xT
k−m

][
M3

N3

]
(xk − xk−m −

k−1

∑
i=k−m

ηi) = 0 (24)

Θ6 =m
[
xT

k xT
k−m

][
X3 Y3

∗ Z3

][
xk

xk−m

]

−
k−1

∑
i=k−m

[
xT

k xT
k−m

][
X3 Y3

∗ Z3

][
xk

xk−m

]
= 0 (25)

Θ7 =2
[
xT

k xT
k−rM

][
M4

N4

]
(xk − xk−rM

−
k−1

∑
i=k−rM

ηi) = 0 (26)

Θ8 =rM

[
xT

k xT
k−rM

][
X4 Y4

∗ Z4

][
xk

xk−rM

]

−
k−1

∑
i=k−rM

[
xT

k xT
k−rM

][
X4 Y4

∗ Z4

][
xk

xk−rM

]
= 0 (27)

On the other hand, from the system (3), we have

Θ9 =2[θ1xT
k S +θ2xT

k−nS +θ3xT
k−lk

S +θ4xT
k−lM

S +θ5xT
k−mS

+θ6xT
k−rk

S +θ7xT
k−rM

S +θ8xT
k+1S].[xk+1 −Φxk

−Φ1xk−n −Φ2xk−m −Φ3xk−lk −Φ4xk−rk
−Φ5ωk] = 0

(28)

Combining (7)-(28) together, we have

∆Vk +Θ1 + · · ·+Θ9 ≤ ξk
T Λξk +

k−1

∑
i=k−n

ξ T
k1Λ1ξk1

+
k−1

∑
i=k−lM

ξ T
k2Λ2ξk2 +

k−1

∑
i=k−m

ξ T
k3Λ3ξk3 +

k−1

∑
i=k−rM

ξ T
k4Λ4ξk4

(29)

where

ξ T
k =

[
xT

k xT
k−n xT

k−lk
xT

k−lM
xT

k−m

xT
k−rk

xT
k−rM

xT
k+1 ωT

k

]

ξk1 =




xk

xk−n

ηi


 , ξk2 =




xk

xk−lM

ηi




ξk3 =




xk

xk−m

ηi


 , ξk4 =




xk

xk−rM

ηi




Λ j =



−X j −Yj −M j

∗ −Z j −N j

∗ ∗ −R j


 , j = 1, 2, 3, 4 (30)

and Λ is omitted here for briefness. By some matrix manipu-

lations, we can prove easily that ||z||22 < γ2||ω||22 (the details

are omitted here).

If the disturbance input ωk = 0, (4) and (5) can ensure

the asymptotic stability of the system described by (3), and

if ωk 6= 0, we have ||z||22 < γ2||ω||22, so if (4) and (5) are

satisfied, the system described by (3) with K1 =V1N−T , K2 =
V2N−T is asymptotically stable with H∞ norm bound γ , this

completes the proof.

Remark 2. Just as shown in the proof of Theorem 1, (20)-

(28) are introduced to avoid the utilization of bounding in-

equalities for cross products of vectors, which may introduce

less conservativeness. On the other hand, Theorem 1 presents

LMI-based sufficient conditions for H∞ controller design,

which can be effectively solved via Matlab LMI control

toolbox.
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The above given H∞ controller design is also applicable

for NCSs with single communication channel, which will

be studied in the following.

B. NCSs with Single Communication Channel

Compared with the H∞ controller design for NCSs with

multiple communication channels, suppose only the com-

munication channel 2 and the controller 2 are used, and the

control input available at the sampling instant tk is uk−rk
,

then the discrete time representation of the system (1) is as

follows

xk+1 = Φxk +Γ0muk−m +Γ1muk−rk
+Γ2ωk

zk = Cxk +Duk−lk

(31)

where Φ = eAh, Γ0m =
∫ h−ε2k

0 eAsdsB1, Γ1m =
∫ h

h−ε2k
eAsdsB1,

Γ2 =
∫ h

0 eAsdsB2, uk−m = −K2xk−m, uk−rk
= −K2xk−rk

.

Similar to Theorem 1, the following corollary presents the

H∞ controller design for NCSs with single communication

channel.

Corollary 1. For given positive scalars m, rM , rm, if there

exist symmetric positive definite matrices P̃, Q̃i (i = 1, 2, 3),

R̃ j and matrices M̃ j, Ñ j, X̃ j, Ỹj, Z̃ j ( j = 1, 2), N, V , scalar

γ > 0, such that the following LMIs hold




Λ̃11 Λ̃12 Λ̃13 Λ̃14 Λ̃15 −θ1Γ2 NCT

∗ Λ̃22 Λ̃23 Λ̃24 Λ̃25 −θ2Γ2 0

∗ ∗ Λ̃33 Λ̃34 Λ̃35 −θ3Γ2 −V T DT

∗ ∗ ∗ Λ̃44 Λ̃45 −θ4Γ2 0

∗ ∗ ∗ ∗ Λ̃55 −θ5Γ2 0

∗ ∗ ∗ ∗ ∗ −γI 0

∗ ∗ ∗ ∗ ∗ ∗ −γI




< 0

(32)



−X̃ j −Ỹj −M̃ j

∗ −Z̃ j −Ñ j

∗ ∗ −R̃ j


 < 0, j = 1, 2, 3, 4 (33)

where

Λ̃11 =−P̃+ Q̃1 +mR̃1 +(rM − rm +1)Q̃2

+rMR̃2 + Q̃3 + M̃1 + M̃T
1 +mX̃1 + M̃2

+M̃T
2 + rMX̃2 −θ1ΦNT −θ1NΦT

Λ̃12 =−M̃1 + ÑT
1 +mỸ1 +θ1Γ0mV −θ2NΦT

Λ̃13 =θ1Γ1mV −θ3NΦT

Λ̃14 =−M̃2 + ÑT
2 + rMỸ2 −θ4NΦT

Λ̃15 =−mR̃1 − rMR̃2 +θ1NT −θ5NΦT

Λ̃22 =−Q̃1 − Ñ1 − ÑT
1 +mZ̃1 +θ2Γ0mV +θ2V T ΓT

0m

Λ̃23 =θ2Γ1mV +θ3V T ΓT
0m

Λ̃24 =θ4V T ΓT
0m

Λ̃25 =θ2NT +θ5V T ΓT
0m

Λ̃33 =−Q̃2 +θ3Γ1mV +θ3V T ΓT
1m

Λ̃34 =θ4V T ΓT
1m

Λ̃35 =θ3NT +θ5V T ΓT
1m

TABLE I

THE H∞ NORM BOUNDS (DIFFERENT ε2k )

ε2k 0.2h 0.3h 0.4h 0.5h h

γm 0.1019 0.1023 0.1024 0.1024 0.1025

γs 0.2289 6.3034 - - -

TABLE II

THE H∞ NORM BOUNDS (DIFFERENT rM )

rM 5 8 11 13 14

γm 0.1019 0.1043 0.1063 0.1075 0.1081

γs 0.2289 0.4669 1.6496 29.8510 -

Λ̃44 =−Q̃3 − Ñ2 − ÑT
2 + rMZ̃2

Λ̃45 =θ4NT

Λ̃55 = P̃+mR̃1 + rMR̃2 +θ5N +θ5NT

then with the control law

uk = −K2xk, K2 = V N−T

the system described by (31) is asymptotically stable with

H∞ norm bound γ .

Remark 3. Theorem 1 and Corollary 1 present the H∞

controller design for NCSs with multiple communication

channels and single communication channel, respectively,

and the multiple communication channels method may pro-

vide better H∞ performance, which will be illustrated by an

example in Section 4.

In the following, we will illustrate the effectiveness of the

proposed design methods by an example.

IV. SIMULATION RESULTS AND DISCUSSION

Example 1. To illustrate the effectiveness of the multi-

ple communication channels-based time delay and packet

dropout compensation, we present an open loop unstable

system as follows

ẋ(t)=

[
−0.3954 −0.1070

−0.0993 −0.0131

]
x(t)+

[
0.2631

0.2951

]
u(t)

+

[
−0.2756

−0.2649

]
ω(t)

z(t) =
[
−0.0670 −0.3057

]
x(t)+0.0091u(t)

(34)

If the proposed multiple communication channels method

is used, suppose the sampling period h = 0.1s, n = 1, lM = 3,

lm = n, m = 2, rM = 5, rm = m, θ1 = · · · = θ7 = 1, θ8 =
100, ε1k = 0.2h. If single communication channel is used,

suppose m = 2, rM = 5, rm = m, θ1 = · · ·= θ4 = 1, θ5 = 100.

Denote γm and γs as the H∞ norm bounds corresponding to

the multiple communication channels method and the single

communication channel method, respectively, by solving the

LMIs in Theorem 1 and Corollary 1, we can get the H∞

norm bounds corresponding to different ε2k (see Table 1, ‘-’

denotes that the LMIs are infeasible).

If ε1k and ε2k are constant and ε1k = ε2k = 0.2h, for NCSs

with multiple communication channels, suppose n = 1, lM =
3, lm = n, m = 2, rm = m, θ1 = · · · = θ7 = 1, θ8 = 100. For

1977
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Fig. 3. State response and controlled output

NCSs with single communication channel, suppose m = 2,

rm = m, θ1 = · · ·= θ4 = 1, θ5 = 100, by solving the LMIs in

Theorem 1 and Corollary 1, we can get the H∞ norm bounds

corresponding to different rM (see Table 2).

From Table 1 and Table 2, one can see that the proposed

multiple communication channels method may provide better

H∞ performance than the single communication channel-

based method.

Suppose the initial state of the system is x0 = [1− 1]T

and the control inputs based on plant states x0, x2, x4, · · ·
are transferred to the actuator successfully, while the control

inputs based on plant states x1, x3, x5, · · · are dropped. If

the proposed multiple communication channels method is

used, suppose n = 1, lM = 3, lm = n, m = 2, rM = 5, rm = m,

θ1 = · · · = θ7 = 1, θ8 = 100, ε1k = 0.2h, ε2k = 0.3h, solving

the LMIs in Theorem 1, we can get the controller gains

K1 = [0.6595 10.6846], K2 = [0.0069 0.1052], during the

time interval [15.9s, 18.9s), the disturbance inputs 10sin( j)
( j = 1, 2, · · · , 30) are added into the system, the plant state

response and controlled output are pictured in Fig. 3.

Fig. 3 illustrates the effectiveness of the proposed H∞

controller design for NCSs with multiple communication

channels.

V. CONCLUSIONS

This paper studies the problem of H∞ controller design

for NCSs with multiple communication channels. The idle

communication channels and controllers are made sufficient

use to compensate the negative influences of time delay

and packet dropout. By defining new Lyapunov function

and avoiding the utilization of bounding inequalities for

cross products of vectors, LMI-based sufficient conditions

for H∞ controller design are presented, and the merit of the

proposed design methods lies in their less conservativeness.

The simulation results have illustrated the effectiveness of

the proposed multiple communication channels-based H∞

controller design.
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