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Abstract— This paper is concerned with the problem of H∞

controller design for networked control systems (NCSs) with
time delay, packet dropout and time-varying sampling period.
The considered NCSs may receive more than one control
input during a sampling period. A multi-objective optimization
methodology in terms of linear matrix inequalities (LMIs)
and the discrete Jensen inequality are adopted to deal with
the problem of H∞ controller design for NCSs with time-
varying sampling period. The proposed H∞ controller design
is also applicable for NCSs with constant sampling period. The
simulation results illustrate the effectiveness of the proposed
H∞ controller design.

I. INTRODUCTION

Networked control systems (NCSs) have received increas-

ing attentions in recent years. The flexibility and ease of

maintenance of a system using network to transfer infor-

mation is a very appealing goal. However, computer loads,

network, sporadic faults, etc. may cause time delay, packet

dropout and sampling period jitter, etc., which might be

potential sources to poor performance of NCSs.

Many researchers have studied stability/stabilization for

NCSs in the presence of network-induced delay [1], [2], [3],

and [4], [5], [6] studied the problems of stability/stabilization

for NCSs with packet dropout. [7] and [8] was concerned

with the problem of optimal control for systems with time

delay/packet dropout. For other methods dealing with time

delay specifically, see also [9], [10], etc. There have also been

considerable research efforts on H∞ control for systems with

time-delay [11]-[15].

Just as we can see, the systems considered in [3], [5], [8],

[13] are sampled with constant sampling period. In computer

control applications, the sensor supposedly samples at a fixed

nominal period, but computer loads, network, sporadic faults,

etc. may cause time delay, packet dropout and sampling
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period jitter, etc. Recently, there are also considerable re-

search efforts on time-varying sampling period [16]-[19].

[16], [17] studied the problems of stability analysis/controller

design for systems with time-varying sampling period and

time delay, and [16], [17] assumed that the control input

u was constant between sampling instants. [18] considered

digital feedback control systems with time-varying sampling

period consisting of an interconnection of a continuous-time

nonlinear plant. [19] was concerned with the problem of

H∞ controller design for NCSs with time-varying sampling

period, long time delay and packet dropout, and [19] assumed

that the actuator may receive zero or one control input during

a sampling period.

To the best of our knowledge, for NCSs with time-varying

sampling period, H∞ controller design and packet dropout

have not received enough attention except in [19], and [16],

[17], [19] assumed that the actuator may receive zero or one

control input during a sampling period.

The purpose of this paper is to prove robustness of NCSs

with respect to small variations of the sampling period.

In this paper, we will consider the case that the actuator

receives more than one control input during a sampling

period, time delay and packet dropout are also taken into

consideration, and H∞ controller design for NCSs with time-

varying sampling period is presented, which are different

from the existing results for systems with time-varying

sampling period. If the actuator receives zero or one control

input during a sampling period or constant sampling period is

adopted, the proposed H∞ controller design is also applicable.

The discrete Jensen inequality is adopted for controller

design and no any redundant matrices are introduced, so

the computational complexity of the obtained results may be

reduced compared with the ones having redundant matrices.

This paper is organized as follows. In Section 2, the

model of NCSs which may receive more than one control

input during a sampling period is presented. By formulating

a feasibility problem into a multi-objective optimization

problem subject to LMIs constraints, Section 3 is dedicated

to H∞ controller design for NCSs with time-varying sam-

pling period, time delay and packet dropout. The results of

numerical simulation are presented in Section 4. Conclusions

are stated in Section 5.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a linear time-invariant system described by

ẋ(t) = Ax(t)+B1u(t)+B2ω(t)
z(t) = C1x(t)+D1u(t)

(1)
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where x(t), u(t), z(t), ω(t) are the state vector, control input

vector, controlled output, and disturbance input, respectively,

and ω(t) is piecewise constant. A, B1, B2, C1, D1 are known

constant matrices of appropriate dimensions. Throughout this

paper, matrices, if not explicitly stated, are assumed to have

appropriate dimensions.

For NCSs with time-varying sampling period, define tk
as the kth sampling instant, tk+1 as the (k + 1)th sampling

instant, hk as the length of the kth sampling period and h as

the ideal sampling period, then hk = tk+1 − tk. Suppose σ is

a scalar and −h ≤ σ ≤ h, l is a positive integer and l > 1,

define ϑ1 = {h, h±σ/l, h±2σ/l, · · · , h±σ}. In this paper,

we suppose the sampling period hk ∈ ϑ1, that is hk switches

in the finite set ϑ1.

In the following, we will present the model of NCSs which

may receive two control inputs during a sampling period, the

case that the actuator receives more than two control inputs

during a sampling period is discussed in Remark 2.

Suppose uk−lk is the available control input at the instant

tk, during the sampling period [tk, tk+1], two control inputs

uk−rk
and uk−ρk

reach the actuator at the instants tk + εk1

and tk + εk2, respectively, where εk1 ∈ [0, hk], εk2 ∈ [0, hk],
and εk1 ≤ εk2. In this paper, we suppose lm ≤ lk ≤ lM , rm ≤
rk ≤ rM , ρm ≤ ρk ≤ ρM , εk1 and εk2 switch in the finite set

ϑ2, where ϑ2 = {β |β ∈ [0, hk]}. Define n as the maximum

of consecutive packet dropout, then lM = rM +n+1, on the

other hand, since the time delay of the control inputs uk−rk

and uk−ρk
may be shorter than a sampling period, then rm =

ρm = 0.

For NCSs with long time delay, packet dropout and time-

varying sampling period, if the actuator receives two control

inputs uk−rk
and uk−ρk

during the sampling period [tk, tk+1],
the discrete time representation of the system (1) is as follows

xk+1 = Φkxk +Γk
lk

uk−lk +Γk
rk

uk−rk
+Γk

ρk
uk−ρk

+ Γ̃kωk

zk = C1xk +D1uk

(2)

where Φk = eAhk , Γk
lk

=
∫ εk1

0 eA(hk−s)dsB1, Γk
rk

=
∫ εk2

εk1
eA(hk−s)dsB1, Γk

ρk
=

∫ hk
εk2

eA(hk−s)dsB1, Γ̃k =
∫ hk

0 eAsdsB2,

uk = −Kxk.

Define Φk, −Γk
lk

K, −Γk
rk

K, −Γk
ρk

K and Γ̃k as Ψ1, Ψ2,

Ψ3, Ψ4 and Ψ5, respectively. At the instant tk, the available

control input at the actuator is −Kxk−lk , then (2) can be

written as follows

xk+1 = Ψ1xk +Ψ2xk−lk +Ψ3xk−rk
+Ψ4xk−ρk

+Ψ5ωk

zk = C1xk −D1Kxk−lk

(3)

then the problem of H∞ controller design for (1) can be

reduced to the corresponding problem for the system (3).

The following discrete Jensen inequality will be used in

the sequel.

Lemma 1 [20]. For any constant positive semi-definite

symmetric matrix M ∈ Rm∗m, two positive integers β1 and

β2 satisfying β2 ≥ β1 ≥ 1, the following inequality holds

−(β2 −β1 +1)∑
β2

i=β1
ψT (i)Mψ(i)

≤−
(

∑
β2

i=β1
ψ(i)

)T

M
(

∑
β2

i=β1
ψ(i)

) (4)

III. H∞ CONTROLLER DESIGN FOR NCSS

Based on the model presented in (3), we are now in a

position to design the feedback gain K, which can make the

system (3) asymptotically stable with the H∞ norm bound γk

(If the sampling period hk is adopted, the corresponding H∞

norm bound is denoted as γk).

Theorem 1. For given positive scalars lM , lm, rM , rm, ρM ,

ρm, if there exist symmetric positive definite matrices N, Q̃i

(i = 1, · · · , 7), R̃ j ( j = 1, · · · , 5), and matrix V , scalars

γk > 0, such that the following LMIs hold for every feasible

value of hk, εk1 and εk2 (hk ∈ ϑ1, εk1 ∈ ϑ2, εk2 ∈ ϑ2)




Λ̃11 0 R̃3 R̃1 0 R̃4 0 R̃5 0

∗ Λ̃22 R̃2 R̃2 0 0 0 0 0

∗ ∗ Λ̃33 0 0 0 0 0 0

∗ ∗ ∗ Λ̃44 0 0 0 0 0

∗ ∗ ∗ ∗ −Q̃4 0 0 0 0

∗ ∗ ∗ ∗ ∗ Λ̃66 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Q̃6 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ̃88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γkI
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

NΦT
k J̃1 J̃1 J̃1 J̃1 J̃1 NCT

1

J̃2 J̃2 J̃2 J̃2 J̃2 J̃2 −V DT
1

0 0 0 0 0 0 0
0 0 0 0 0 0 0

J̃3 J̃3 J̃3 J̃3 J̃3 J̃3 0
0 0 0 0 0 0 0

J̃4 J̃4 J̃4 J̃4 J̃4 J̃4 0
0 0 0 0 0 0 0

Γ̃T
k Γ̃T

k Γ̃T
k Γ̃T

k Γ̃T
k Γ̃T

k 0
−N 0 0 0 0 0 0

∗ L̃1 0 0 0 0 0

∗ ∗ L̃2 0 0 0 0

∗ ∗ ∗ L̃3 0 0 0

∗ ∗ ∗ ∗ L̃4 0 0

∗ ∗ ∗ ∗ ∗ L̃5 0
∗ ∗ ∗ ∗ ∗ ∗ −γkI




< 0 (5)

where

Λ̃11 = −N +(lM − lm +1)Q̃1 + Q̃2 + Q̃3 +(rM − rm +1)Q̃4

+ Q̃5 +(ρM −ρm +1)Q̃6 + Q̃7 − R̃1 − R̃3 − R̃4 − R̃5

Λ̃22 = −Q̃1 −2R̃2

Λ̃33 = −Q̃3 − R̃2 − R̃3

Λ̃44 = −Q̃2 − R̃1 − R̃2
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Λ̃66 = −Q̃5 − R̃4, Λ̃88 = −Q̃7 − R̃5

J̃1 = NΦT
k −N, J̃2 = −V Γk

lk

T

J̃3 = −V Γk
rk

T
, J̃4 = −V Γk

ρk

T

L̃1 = l−2
M (R̃1 −2N), L̃2 = (lM − lm)−2(R̃2 −2N)

L̃3 = l−2
m (R̃3 −2N), L̃4 = r−2

M (R̃4 −2N)

L̃5 = ρ−2
M (R̃5 −2N)

then with the control law

uk = −Kxk, K = V T N−1

the system described by (3) is asymptotically stable with H∞

norm bound γk.

Proof: Let us consider the following Lyapunov function

Vk =V1k +V2k +V3k +V4k +V5k +V6k +V7k +V8k +V9k

+V10k +V11k +V12k +V13k +V14k +V15k +V16k

(6)

where

V1k = xT
k Pxk

V2k =
k−1

∑
i=k−lk

xT
i Q1xi

V3k =
−lm

∑
i=−lM+1

k−1

∑
j=k+i

xT
j Q1x j

V4k =
k−1

∑
i=k−lM

xT
i Q2xi

V5k =
k−1

∑
i=k−lm

xT
i Q3xi

V6k = lM

−1

∑
i=−lM

k−1

∑
j=k+i

ηT
j R1η j

V7k = (lM − lm)
−lm−1

∑
i=−lM

k−1

∑
j=k+i

ηT
j R2η j

V8k = lm

−1

∑
i=−lm

k−1

∑
j=k+i

ηT
j R3η j (7)

V9k =
k−1

∑
i=k−rk

xT
i Q4xi

V10k =
−rm

∑
i=−rM+1

k−1

∑
j=k+i

xT
j Q4x j

V11k =
k−1

∑
i=k−rM

xT
i Q5xi

V12k = rM

−1

∑
i=−rM

k−1

∑
j=k+i

ηT
j R4η j

V13k =
k−1

∑
i=k−ρk

xT
i Q6xi

V14k =
−ρm

∑
i=−ρM+1

k−1

∑
j=k+i

xT
j Q6x j

V15k =
k−1

∑
i=k−ρM

xT
i Q7xi

V16k = ρM

−1

∑
i=−ρM

k−1

∑
j=k+i

ηT
j R5η j

P, Q1, · · · , Q7, R1, · · · , R5 are symmetric positive definite

matrices and η j = x j+1 − x j.

From Lemma 1, we can see that

−lM

k−1

∑
i=k−lM

ηT
i R1ηi ≤−

( k−1

∑
i=k−lM

ηi

)T

R1

( k−1

∑
i=k−lM

ηi

)

= −(xk − xk−lM )T R1(xk − xk−lM ) (8)

− (lM − lm)
k−lm−1

∑
i=k−lM

ηT
i R2ηi

≤−(xk−lm − xk−lk)
T R2(xk−lm − xk−lk)

− (xk−lk − xk−lM )T R2(xk−lk − xk−lM ) (9)

−lm

k−1

∑
i=k−lm

ηT
i R3ηi ≤−

( k−1

∑
i=k−lm

ηi

)T

R3

( k−1

∑
i=k−lm

ηi

)

= −(xk − xk−lm)T R3(xk − xk−lm) (10)

−rM

k−1

∑
i=k−rM

ηT
i R4ηi ≤−

( k−1

∑
i=k−rM

ηi

)T

R4

( k−1

∑
i=k−rM

ηi

)

= −(xk − xk−rM
)T R4(xk − xk−rM

) (11)

−ρM

k−1

∑
i=k−ρM

ηT
i R5ηi ≤−

( k−1

∑
i=k−ρM

ηi

)T

R5

( k−1

∑
i=k−ρM

ηi

)

= −(xk − xk−ρM
)T R5(xk − xk−ρM

) (12)

Define △Vk = Vk+1 −Vk, then

△V1k = xT
k+1Pxk+1 − xT

k Pxk (13)

△V2k ≤ xT
k Q1xk +

k−lm

∑
i=k−lM+1

xT
i Q1xi − xT

k−lk
Q1xk−lk (14)

△V3k =
−lm

∑
i=−lM+1

(xT
k Q1xk − xT

k+iQ1xk+i)

= (lM − lm)xT
k Q1xk −

k−lm

∑
i=k−lM+1

xT
i Q1xi (15)

△V4k = xT
k Q2xk − xT

k−lM
Q2xk−lM (16)

△V5k = xT
k Q3xk − xT

k−lm
Q3xk−lm (17)

△V6k = lM

−1

∑
i=−lM

[ηT
k R1ηk −ηT

k+iR1ηk+i]

= l2
M(xk+1 − xk)

T R1(xk+1 − xk)− lM

k−1

∑
i=k−lM

ηT
i R1ηi

(18)
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△V7k = (lM − lm)
−lm−1

∑
i=−lM

[ηT
k R2ηk −ηT

k+iR2ηk+i]

= (lM − lm)2(xk+1 − xk)
T R2(xk+1 − xk)

− (lM − lm)
k−lm−1

∑
i=k−lM

ηT
i R2ηi (19)

△V8k = lm

−1

∑
i=−lm

[ηT
k R3ηk −ηT

k+iR3ηk+i]

= l2
m(xk+1 − xk)

T R3(xk+1 − xk)− lm

k−1

∑
i=k−lm

ηT
i R3ηi

(20)

Similarly, we have

△V9k ≤ xT
k Q4xk +

k−rm

∑
i=k−rM+1

xT
i Q4xi − xT

k−rk
Q4xk−rk

(21)

△V10k = (rM − rm)xT
k Q4xk −

k−rm

∑
i=k−rM+1

xT
i Q4xi (22)

△V11k = xT
k Q5xk − xT

k−rM
Q5xk−rM

(23)

△V12k = r2
M(xk+1 − xk)

T R4(xk+1 − xk)− rM

k−1

∑
i=k−rM

ηT
i R4ηi

(24)

△V13k ≤ xT
k Q6xk +

k−ρm

∑
i=k−ρM+1

xT
i Q6xi − xT

k−ρk
Q6xk−ρk

(25)

△V14k = (ρM −ρm)xT
k Q6xk −

k−ρm

∑
i=k−ρM+1

xT
i Q6xi (26)

△V15k = xT
k Q7xk − xT

k−ρM
Q7xk−ρM

(27)

△V16k = ρ2
M(xk+1 − xk)

T R5(xk+1 − xk)−ρM

k−1

∑
i=k−ρM

ηT
i R5ηi

(28)

Combining (8)-(28) together, we have

∆Vk ≤ ξk
T (Λ+Ω)ξk (29)

where Λ is omitted here for briefness, and

ξ T
k =

[
xT

k xT
k−lk

xT
k−lm

xT
k−lM

xT
k−rk

xT
k−rM

xT
k−ρk

xT
k−ρM

ωT
k

]

Π1 =
[
Ψ1 Ψ2 0 0 Ψ3 0 Ψ4 0 Ψ5

]

Π2 =
[
Ψ1 − I Ψ2 0 0 Ψ3 0 Ψ4 0 Ψ5

]

Ω = ΠT
1 PΠ1 + l2

MΠT
2 R1Π2 +(lM − lm)2ΠT

2 R2Π2

+ l2
mΠT

2 R3Π2 + r2
MΠT

2 R4Π2 +ρ2
MΠT

2 R5Π2

From (3), we can see that zk = C1xk − D1Kxk−lk ,

and zk can be written as zk = Θ1ξk, where

Θ1 =
[
C1 −D1K 0 0 0 0 0 0 0

]
, similarly,

ωk = Θ2ξk, where Θ2 =
[
0 0 0 0 0 0 0 0 I

]
,

for any nonzero ξk, we have

γ−1
k zT

k zk − γkωT
k ωk = ξ T

k Ξξk

where Ξ = γ−1
k ΘT

1 Θ1 − γkΘT
2 Θ2, so

γ−1
k zT

k zk − γkωT
k ωk +∆Vk ≤ ξ T

k ϒξk

where ϒ = Λ+Ω+Ξ.

Using the Schur complement, it is easy to prove that if

(5) is satisfied, we have ϒ < 0, then for any nonzero ξk, we

have γ−1
k zT

k zk − γkωT
k ωk +∆Vk < 0.

Since γ−1
k zT

k zk − γkωT
k ωk +∆Vk < 0, then

γ−1
k zT

k zk − γkωT
k ωk < −∆Vk

Summing up zT
k zk, ωT

k ωk and ∆Vk in the above inequality

for k = 0 to k = n, using the zero initial condition, we have

n

∑
k=0

||zk||
2 < γ2

k

n

∑
k=0

||ωk||
2 − γkVn+1

the above inequality holds for all n, let n → ∞, we have

||z||22 < γ2
k ||ω||22

If the disturbance input ωk = 0, (5) can ensure the asymp-

totic stability of the system described by (3), and if ωk 6= 0,

we have ||z||22 < γ2
k ||ω||22, so if (5) is satisfied, the system

described by (3) with K = V T N−1 is asymptotically stable

with H∞ norm bound γk, this completes the proof.

Remark 1. Just as shown in Theorem 1, it is difficult to

optimize all the γk simultaneously, the linear weighted sum

γsum of γk may be introduced to optimize γk. Suppose

α1γ1 +α2γ2 + · · ·+α2l+1γ2l+1 < γsum

where γ j ( j = 1, 2, · · · , 2l + 1) are the feasible values of

H∞ norm bound γk, α j are the weighting coefficients and

α j > 0, the optimal γk can be obtained by optimizing γsum.

Generally speaking, for specific weighting coefficients αp

(where p = 1, 2, · · · , 2l + 1 and p 6= j), the larger the

weighting coefficient α j ( j = 1, 2, · · · , 2l+1), the better the

H∞ norm bound γ j, one may choose appropriate weighting

coefficients to get the desired H∞ norm bounds.

Remark 2. The H∞ controller design proposed in Theorem 1

can be extended easily to the case that the actuator receives

more than two control inputs during a sampling period, it is

omitted here.

Remark 3. Since constant sampling period is a special case

of time-varying sampling period, the H∞ controller design

method proposed in Theorem 1 is also applicable for NCSs

with constant sampling period.

If constant sampling period h is adopted, suppose εk1 ∈
[0, h], εk2 ∈ [0, h], εk1 ≤ εk2, εk1 and εk2 switch in the finite

set ϑ3, where ϑ3 = {β |β ∈ [0, h]}. If the actuator receives

two control inputs during a sampling period, the discrete time

representation of (1) is as follows

xk+1 = Φxk +Γlk uk−lk +Γrk
uk−rk

+Γρk
uk−ρk

+ Γ̃ωk

zk = C1xk −D1Kxk−lk

(30)

where Φ = eAh, Γlk =
∫ εk1

0 eA(h−s)dsB1, Γrk
=∫ εk2

εk1
eA(h−s)dsB1, Γρk

=
∫ h

εk2
eA(h−s)dsB1, Γ̃ =

∫ h
0 eAsdsB2,

uk = −Kxk.

Similar to Theorem 1, the following corollary presents

the H∞ controller design for NCSs with constant sampling

period.
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Corollary 1. For given positive scalars lM , lm, rM , rm, ρM ,

ρm, if there exist symmetric positive definite matrices N, Q̃i

(i = 1, · · · , 7), R̃ j ( j = 1, · · · , 5), and matrix V , scalar

γ > 0, such that the following LMIs hold for every feasible

value of εk1 and εk2 (εk1 ∈ ϑ3, εk2 ∈ ϑ3)



Λ̃11 0 R̃3 R̃1 0 R̃4 0 R̃5 0

∗ Λ̃22 R̃2 R̃2 0 0 0 0 0

∗ ∗ Λ̃33 0 0 0 0 0 0

∗ ∗ ∗ Λ̃44 0 0 0 0 0

∗ ∗ ∗ ∗ −Q̃4 0 0 0 0

∗ ∗ ∗ ∗ ∗ Λ̃66 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Q̃6 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ̃88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γI
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

NΦT J1 J1 J1 J1 J1 NCT
1

J2 J2 J2 J2 J2 J2 −V DT
1

0 0 0 0 0 0 0
0 0 0 0 0 0 0

J3 J3 J3 J3 J3 J3 0
0 0 0 0 0 0 0

J4 J4 J4 J4 J4 J4 0
0 0 0 0 0 0 0

Γ̃T Γ̃T Γ̃T Γ̃T Γ̃T Γ̃T 0
−N 0 0 0 0 0 0
∗ L1 0 0 0 0 0
∗ ∗ L2 0 0 0 0
∗ ∗ ∗ L3 0 0 0
∗ ∗ ∗ ∗ L4 0 0
∗ ∗ ∗ ∗ ∗ L5 0
∗ ∗ ∗ ∗ ∗ ∗ −γI




< 0 (31)

where

Λ̃11 = −N +(lM − lm +1)Q̃1 + Q̃2 + Q̃3 +(rM − rm +1)Q̃4

+ Q̃5 +(ρM −ρm +1)Q̃6 + Q̃7 − R̃1 − R̃3 − R̃4 − R̃5

Λ̃22 = −Q̃1 −2R̃2, Λ̃33 = −Q̃3 − R̃2 − R̃3

Λ̃44 = −Q̃2 − R̃1 − R̃2, Λ̃66 = −Q̃5 − R̃4

Λ̃88 = −Q̃7 − R̃5, J1 = NΦT −N

J2 = −V Γlk
T , J3 = −V Γrk

T

J4 = −V Γρk

T , L1 = l−2
M (R̃1 −2N)

L2 = (lM − lm)−2(R̃2 −2N), L3 = l−2
m (R̃3 −2N)

L4 = r−2
M (R̃4 −2N), L5 = ρ−2

M (R̃5 −2N)

then with the control law

uk = −Kxk, K = V T N−1

the system described by (30) is asymptotically stable with

H∞ norm bound γ .

Proof: The proof is similar to the proof of Theorem 1, here

it is omitted.

In the following, we will illustrate the effectiveness of the

proposed design method by an example.

TABLE I

THE H∞ NORM BOUNDS (α1 = 1.8, α2 = 0.6)

lM 4 5 6

γ1 4.7436 51.2995 -

γ2 5.2160 68.5423 -

TABLE II

THE H∞ NORM BOUNDS (lM = 4)

Case 1 Case 2 Case 3

γ1 5.1429 4.7400 5.3112

γ2 4.3308 5.2205 4.0759

IV. SIMULATION RESULTS AND DISCUSSION

Example 1. To illustrate the effectiveness of the proposed

H∞ controller design for NCSs with time-varying sampling

period and packet dropout, we present an open loop unstable

system as follows

ẋ(t)=

[
−0.0994 0.6708

0.4595 −0.1881

]
x(t)+

[
0.0372

−0.2908

]
u(t)

+

[
0.2450

−0.8513

]
ω(t)

z(t) =
[
0.3564 0.0788

]
x(t)+0.0942u(t)

(32)

Suppose the sampling period hk may switch among h1 =
0.08s and h2 = 0.1s, rm = 0, ρm = 0, lm = 1, ρM = 1, rM = 2.

Denote the H∞ norm bounds corresponding to sampling

periods 0.08s and 0.1s as γ1 and γ2, respectively, suppose the

weighting coefficients α1 = 1.8, α2 = 0.6, for simplicity of

simulation, suppose εk1 = εk2 and they may switch between

0.8h1 and h2. Solving the LMIs presented in Theorem 1,

we can get the H∞ norm bounds corresponding to different

lM (see Table 1, ‘-’ denotes that the LMIs are infeasible),

from what we can see that the H∞ performance of system

will degrade with the increase of lM , similarly, the H∞

performance of system will degrade with the increase of rM

and ρM , here it is omitted for space limit.
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Fig. 1. State response and controlled output
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Fig. 2. State response and controlled output

Suppose lM = 4, then the H∞ norm bounds corresponding

to different weighting coefficients are shown in Table 2

(Case 1 is corresponding to α1 = 1, α2 = 0.6, Case 2 is

corresponding to α1 = 3, α2 = 1, Case 3 is corresponding

to α1 = 2.2, α2 = 1.6, respectively), from what we can see

that different weighting coefficients α1 and α2 may lead

to different H∞ norm bounds, one may choose appropriate

weighting coefficients to get the desired H∞ performance.

Suppose the initial state of the system is x0 = [1− 1]T

and the control inputs based on plant states x0, x2, x4, · · ·
are transferred to the actuator successfully, while the control

inputs based on plant states x1, x3, x5, · · · are dropped.

Suppose during the time interval [0s, 6.4s), [6.4s, 18s),
the sampling periods are 0.08s and 0.1s, respectively, if

h1 is adopted, εk1 = εk2 = 0.8h1, and if h2 is adopted,

εk1 = εk2 = h2. During the time interval [4.8s, 6.4s), the

disturbance inputs 5sin( j) ( j = 1, 2, · · · , 20) are added

into the system, during [6.4s, 8.4s), another disturbance

inputs 5sin( j) ( j = 1, 2, · · · , 20) are added into the system.

Suppose α1 = 2.2, α2=1.6, by solving the multi-objective

optimization problem in Remark 1, we can get the controller

gain K = [−3.6719 −4.1193], the plant state response and

controlled output are pictured in Fig. 1.

If lM = 4 and constant sampling period h1 is adopted, εk1 =
εk2 = 0.8h1, by solving the LMIs in Corollary 1, we can get

the H∞ norm bound γ = 2.6890, and the controller gain K =
[−4.4842 − 5.0145]. During the time interval [4.8s, 6.4s),
the disturbance inputs 5sin( j) ( j = 1, 2, · · · , 20) are added

into the system, the plant state response and controlled output

are pictured in Fig. 2.

Table 1, Table 2, Fig. 1 and Fig. 2 illustrate the effective-

ness of the proposed H∞ controller design for NCSs with

time-varying sampling period and constant sampling period.

V. CONCLUSIONS

This paper studies the problem of H∞ controller design

for NCSs with time-varying sampling period. The considered

NCSs may receive more than one control input during a sam-

pling period, time delay and packet dropout are also taken

into consideration. The problem of H∞ controller design for

NCSs with time-varying sampling period is converted into

a multi-objective optimization problem in terms of LMIs,

and the discrete Jensen inequality is adopted for controller

design. The proposed H∞ controller design is also applicable

for NCSs with constant sampling period. The simulation

results have illustrated the effectiveness of the proposed H∞

controller design.
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