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Abstract— In this paper, we consider distributed lead-
less coordination in networks of second-order agents with
time-delay and switching topology. We first perform a
model transformation and turn the original system into
an equivalent system. Then based on this equivalent
system, we derive sufficient conditions in terms of linear
matrix inequalities (LMIs) that guarantee all agents
asymptotically reach consensus. Finally, simulation re-
sults are provided to show the effectiveness of the
obtained theoretical results.

I. INTRODUCTION

In recent years, distributed coordination of multiple

agents has attracted considerable attention in many

fields such as biology, physics, robotics and control

engineering. Many results have been obtained [1]-

[14]. In [1], Vicsek et al. proposed a simple model

for phase transition of a group of self-driven particles

and numerically demonstrated complex dynamics of

the model. In [2], the alignment of a network of

agents with switching topology that is periodically

connected is analyzed. Moreau used a set-valued Lya-

punov approach to study consensus problems with uni-

directional time-dependent communication links [3].

Moreover, Olfati-Saber et al. systematically solved the

average-consensus problem with directed interconnec-

tion graphs or time-delays [4]. Lin et al. extended the

results of [4] to the case of time-delay and switching

topology [5]. Also, the authors of [6]-[8] introduced

a set of control laws that enable the second-order

agents to generate stable flocking motion, while Ren

et al. proposed a second-order protocol and provided

sufficient conditions in the case of fixed topology [10].
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However, very little work has considered the effects

of time-delay for second-order multi-agent systems.

Recently, the leader-follower consensus problem with

time-delay has been studied in [11], and frequency

domain analysis has been used for delayed multi-agent

systems [13].

In this paper, we focus on distributed leadless coor-

dination in directed networks of second-order agents

with time-delay and switching topology. In doing the

analysis, we first perform a model transformation and

turn the original system into an equivalent system.

Then, based on this equivalent system, we introduce

a common Lyapunov function and use a dimension

reduction approach to give sufficient conditions in

terms of LMIs under which all agents asymptotically

reach consensus.

The paper is organized as follows. In Section II,

with help of basic results in graph theory, we define

the consensus problem and then a linear protocol is

given in networks of agents with double integrator

dynamics. The stability analysis is shown for delayed

multi-agent systems with switching topology in section

III. Section IV gives numerical simulations, and finally,

some conclusions are drawn in section V.

II. GRAPH THEORY AND CONSENSUS PROTOCOL

A. Graph theory

At first, we introduce some preliminary knowledge

of graph theory for the following analysis (referring

to [15]). Let G(V, ε,A) be a directed graph of order

n, where V = {s1, · · · , sn} is the set of nodes, ε ⊆
V ×V is the set of edges and A = [aij ] is a weighted

adjacency matrix. The node indexes belong to a finite

index set I = {1, 2, · · · , n}. An edge of G is denoted

by eij = (si, sj). The adjacency elements associated

with the edges are positive, i.e., eij ∈ ε ⇔ aij >

0. Moreover, it is assumed that aii = 0 for all i ∈
I. Correspondingly, the Laplacian associated with the

directed graph is defined as L = [lij ], where lii =
∑

j aij and lij = −aij , i 6= j. The set of neighbors

of node si is denoted by Ni = {sj ∈ V : (si, sj) ∈
ε}. A directed path is a sequence of ordered edges of

the form (si1 , si2), (si2 , si3), · · · , where sij
∈ V and
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(sij
, sij+1

) ∈ ε. If a directed graph has the property

that aij = aji for any i, j ∈ I, the directed graph is

called undirected graph. If there is a directed path from

every node to every other node, the graph is said to be

strongly connected (connected for undirected graph).

Definition 1: (Balanced Graphs) [4] The node of a

directed graph G(V, ε,A) is balanced if and only if

its in-degree and out-degree are equal, i.e., do(si) =
di(si), where do(si) =

∑

j aij , di(si) =
∑

j aji. A

graph G(V, ε,A) is called balanced if and only if all

of its nodes are balanced. If the graph is balanced, then

1T
nL = 0.

Definition 2: (Balanced Matrix) A square matrix

M ∈ R
n×n is said to be a balanced matrix if and only

if 1T
nM = 0 and M1n = 0.

Evidently, the Laplacian of any balanced graph is a

balanced matrix.

Lemma 1: [4] If a directed graph G is strongly

connected, then its Laplacian L has the following

properties:

(1) Zero is one eigenvalue of L, and 1n is the corre-

sponding eigenvector, i.e., L1n = 0.

(2) The rest n − 1 eigenvalues all have positive real-

parts.

B. Consensus and Protocol

Suppose that the multi-agent system under consid-

eration consists of n agents. Each agent is regarded as

a node in a directed graph, G. Each edge (sj , si) ∈
ε(G(t)) corresponds to an available information chan-

nel from agent si to agent sj at time t. Moreover,

each agent updates its current state based upon the

information received from its neighbors. Suppose the

ith agent (i ∈ I) has the dynamics as follows:

ẋi = vi

miv̇i = ui,
(1)

where xi is the position state, vi is the speed state, mi

is the mass and ui is the control input. Without loss

of generality, we assume m1 = m2 = · · · = mn = 1.

We say protocol ui asymptotically solves the con-

sensus problem, i.e., the agreement of the position

states, if and only if the states of agents satisfy

lim
t→+∞

(xi − xj) = 0, lim
t→+∞

vi = 0, (2)

for all i, j ∈ I.

In this paper, we are interested in discussing the

consensus problem for networks of agents with switch-

ing topology and time-delay, where the information

passes through each edge with time-delay τ . To solve

this problem, we use the following linear consensus

protocol,

ui(t) = −2k1vi+
∑

sj∈Ni

aij(xj(t−τ)−xi(t−τ)), (3)

where 2k1 > 0 denotes velocity damping gain.

Let

ξ = [x1, v̄1, · · · , xn, v̄n]T , v̄i =
vi

k1
+ xi,

A =

[

−k1 k1

k1 −k1

]

, B =

[

0 0
1
k1

0

]

.

Using protocol (3) the network dynamics is

ξ̇ = (In ⊗ A)ξ − (Lσ ⊗ B)ξ(t − τ), (4)

where Lσ is the Laplacian of the graph Gσ , ′⊗′

denotes the Kronecker product and σ denotes the

switching signal that determines the topology.

III. THE MAIN RESULTS

In this section, we will provide the stability anal-

ysis for directed multi-agent networks with switching

topology and time-delay using LMIs.

Let us give some lemmas first for the following

analysis.

Lemma 2: Consider the following matrix

Ψn =









n − 1 −1 · · · −1
−1 n − 1 · · · −1

...
...

. . .
...

−1 −1 · · · n − 1









∈ R
n×n.

The following statements hold.

(1) The eigenvalues of Ψn are n with multiplicity

n−1 and 0 with multiplicity 1. The vectors 1T
n and 1n

are the left and the right eigenvectors of Ψn associated

with the zero eigenvalue respectively.

(2) There exists an orthogonal matrix Un ∈ R
n×n

such that

UT
n ΨnUn =

[

nIn−1 0(n−1)×1

01×(n−1) 0

]

and the last column of Un is 1n√
n

. Let Ξ ∈ R
n×n be a

balanced matrix, then

UT
n ΞUn =

[

∗ 0(n−1)×1

01×(n−1) 0

]

.

Actually, Ψn can be viewed as the Laplacian of a

complete undirected graph. By Lemma 1, we know

1n is the eigenvector of Ψn associated with the zero

eigenvalue. So it is easy to see that the entries of the

last row and the last column of the matrix UT
n ΞUn are

all zeros.
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Lemma 3: Let E ∈ R
n×n be a symmetric positive

semi-definite balanced matrix and rank(E) = n − 1.

For any y ∈ R
n with

∑

i yi = 0, yT Ey > 0 if and

only if y 6= 0.

Proof: Since
∑

i yi = 0 and the last row of UT
n is

1T
n√
n

, then ȳ = UT
n y = [ ∗ · · · ∗ 0 ]

T
. Since E is a

positive semi-definite balanced matrix and rank(E) =
n − 1, then

UT
n EUn =

[

Ē 0(n−1)×1

01×(n−1) 0

]

, Ē > 0.

It follows that

yT Ey = yT UnUT
n EUnUT

n y

= ȳT

[

Ē 0(n−1)×1

01×(n−1) 0

]

ȳ.

This implies that yT Ey > 0 if and only if y 6= 0.

Lemma 2 and Lemma 3 provide a dimension reduc-

tion approach for balanced matrices. In what follows,

we will use this property to construct a common

Lyapunov function and give sufficient conditions in

terms of LMIs.

Lemma 4: (Schur Complement) [17] For a given

symmetric matrix S with the form S = [Sij ], S11 ∈
R

r×r, S12 ∈ R
r×(n−r), S21 ∈ R

(n−r)×r, S22 ∈
R

(n−r)×(n−r), then, S < 0 if and only if S11 <

0, S22 − S21S
−1
11 S12 < 0 or S22 < 0, S11 −

S12S
−1
22 S21 < 0.

Theorem 1: Consider a directed network of agents

with time-delay τ and switching topology Gσ that is

kept strongly connected and balanced. Given protocol

(3), (2) holds if there exist symmetric positive matrices

P̄ ∈ R
(2n−1)×(2n−1), Q̄ ∈ R

(2n−1)×(2n−1), R ∈
R

2n×2n satisfying

H =





H11 H12 H13

HT
12 H22 0(n−1)×n

HT
13 0n×(n−1) −τR



 < 0 (5)

where

H11 = P̄ Φ̄σ + Φ̄T
σ P̄ + Q̄ + τΞ2Ū

T RŪΞT
2 ,

H12 = −τΞ2Ū
T RŪΞ1,

H22 = −Q̄ + τΞT
1 ŪT RŪΞ1,

H13 = τP̄Ξ1Ū
T ,

Ξ1 = ŪT (Lσ ⊗ B)Ū , Ξ2 = ŪT (In ⊗ A)Ū

Φ̄σ = ŪT (In ⊗ A − Lσ ⊗ B)Ū

and Ū is the first 2n− 1 columns of U2n with U2n as

defined in Lemma 2.

Proof: Since

1
T
2n[(In ⊗ A)ξ(t) − (Lσ ⊗ B)ξ(t − τ)] = 0T

2n

and

[(In ⊗ A)ξ(t) − (Lσ ⊗ B)ξ(t − τ)]T 12n = 02n,

we have
∑

i(ẋi + ˙̄vi) = 0. Hence,
∑

i(xi + v̄i) is an

invariant quantity.

Let β = 1
2n

∑

i[xi(0) + v̄i(0)]. Then ξ(t) can be

decomposed into ξ(t) = β12n + δ(t), where δ(t) ∈
R

2n satisfies
∑

i δi(t) = 0, and the vector δ(t) is

orthogonal to 12n. Thus (3) can be transformed into

the following equation:

δ̇(t) = (In ⊗ A)δ(t) − (Lσ ⊗ B)δ(t − τ). (6)

Define a Lyapunov function for system (6) as fol-

lows

V = δT (t)Pδ(t) +

∫ t

t−τ

δT (s)Qδ(s)ds

+

∫ 0

−τ

∫ t

t+θ

δ̇T (s)Rδ̇(s)dsdθ,

where R ∈ R
2n×2n is a positive definite matrix,

P, Q ∈ R
2n×2n are symmetric balanced positive semi-

definite matrices and rank(P ) = rank(Q) = 2n − 1.

By Lemma 3, δT (t)Pδ(t) > 0 holds if and only if

δ(t) 6= 0, which means V > 0 if δ(t) 6= 0.

Differentiating V along the trajectory of (6) leads

to

V̇ = 2δT (t)P [(In ⊗ A)δ(t) − (Lσ ⊗ B)δ(t − τ)]

+ δT (t)Qδ(t) − δT (t − τ)Qδ(t − τ)

+ τ δ̇T (t)Rδ̇(t) −

∫ t

t−τ

δ̇T (θ)Rδ̇(θ)dθ.

Since δ(t − τ) = δ(t) −
∫ t

t−τ
δ̇(s)ds, and for any

symmetric positive definite matrix R̄ ∈ R
2n×2n and

any x, y ∈ R
2n,

2xT y ≤ xT R̄−1x + yT R̄y (7)

we have

−2δT (t)P (Lσ ⊗ B)δ(t − τ)

= −2δT (t)P (Lσ ⊗ B)δ(t)

+

∫ t

t−τ

2((Lσ ⊗ B)T PT δ(t))T δ̇(s)ds

≤ −2δT (t)P (Lσ ⊗ B)δ(t) +

∫ t

t−τ

δ̇T (s)Rδ̇(s)ds

+ τδT (t)P (Lσ ⊗ B)R−1(Lσ ⊗ B)T Pδ(t)
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This yields

V̇ ≤ 2δT (t)PΦσδ(t) + δT (t)Qδ(t)

+ τδT (t)P (Lσ ⊗ B)R−1(Lσ ⊗ B)T Pδ(t)

− δT (t − τ)Qδ(t − τ)

+ τ [(In ⊗ A)δ(t) − (Lσ ⊗ B)δ(t − τ)]T R

[(In ⊗ A)δ(t) − (Lσ ⊗ B)δ(t − τ)]

where Φσ = In ⊗ A − Lσ ⊗ B.

Let δ̄(t) = ŪT δ(t), P̄ = ŪT PŪ , Q̄ = ŪT QŪ .

Noting that
∑

i δi(t) = 0 and P, Q,Φσ , In ⊗ A and

Lσ ⊗ B are all balanced matrices and by Lemma 2,

we have

δT (t)U2n = [ δ̄T (t) 0 ] ,

UT
2nPU2n = diag{P̄ , 0},

UT
2nΦσU2n = diag{Φ̄σ, 0},

UT
2nQU2n = diag{Q̄, 0},

UT
2n(Lσ ⊗ B)U2n = diag{Ξ1, 0},

UT
2n(In ⊗ A)U2n = diag{Ξ2, 0}.

Consequently,

V̇

≤ δ̄T (t)(P̄ Φ̄σ + Φ̄T
σ P̄ + Q̄ + τP̄Ξ1Ū

T R−1Ū

× ΞT
1 P̄ + τΞ2Ū

T RŪΞT
2 )δ̄(t) − 2τ δ̄T (t)(Ξ2

× ŪT RŪΞ1)δ̄(t − τ) + δ̄T (t − τ)(−Q̄

+ τΞT
1 ŪT RŪΞ1)δ̄(t − τ)

(8)
Rewriting the Lyapunov function V , we have

V = δ̄T (t)P̄ δ̄(t) +

∫ t

t−τ

δ̄T (s)Q̄δ̄(s)ds

+

∫ 0

−τ

∫ t

t+θ

˙̄δT (s)ŪT RŪ ˙̄δ(s)dsdθ,

Observing that P̄ > 0, Q̄ > 0 and ŪT RŪ > 0, it is

easy to see that there exist positive scalars β1 and β2

such that

β1‖δ̄(t)‖
2 ≤ V (t) ≤ β2 sup

θ∈[−2τ,0]

‖δ̄(t + θ)‖2.

Then, a sufficient condition for V̇ < 0 is that

H̄ =

[

H̄11 H12

HT
12 H22

]

< 0

where

H̄11 = P̄ Φ̄σ + Φ̄T
σ P̄ + Q̄ + τP̄Ξ1Ū

T R−1ŪΞT
1 P̄

+ τΞ2Ū
T RŪΞT

2 ,

H12 = −τΞ2Ū
T RŪΞ1,

H22 = −Q̄ + τΞT
1 ŪT RŪΞ1.

Further, by Lemma 4, H̄ < 0 holds if and only if

H < 0. This completes the proof.

Remark 1: Let λmax denote the largest eigenvalue

of Lσ (t ∈ [0,+∞)). By Lemma 1, λmax > 0 under

the assumption of Theorem 1. Further, after simple

calculations, it is not hard to see that if k1 > 0 and

4k2
1 > λmax, Φ̄σ + Φ̄T

σ < 0. Take P̄ = γ1I2n−1, Q̄ =
γ2I2n−1 and γ1λmin > γ2 where γ1 > 0, γ2 > 0 and

λmin denotes the smallest eigenvalue of −Φ̄σ − Φ̄T
σ .

Then H̄ < 0 holds for sufficiently small τ . This means

H < 0 is always feasible for sufficiently small τ and

4k2
1 > λmax.

Remark 2: Since Lσ is time-varying, the matrix

inequality (5) should be satisfied for all the possible

graphs.

Corollary 1: Consider a directed network of agents

with switching topology Gσ that is kept strongly

connected and balanced. Given protocol (3) with time-

delay τ = 0, (2) holds if there exists a symmetric

positive definite matrix P̄ ∈ R
(2n−1)×(2n−1) satisfying

P̄ Φ̄σ + Φ̄T
σ P̄ < 0. (9)

Theorem 2: Consider a directed network of agents

with time-varying delay and switching topology Gσ

that is kept strongly connected and balanced. Given

protocol (3) with time-varying delay τ(t) < d and the

derivative τ̇(t) < d1 < 1, (2) holds if there exist sym-

metric positive definite matrices P̄ ∈ R
(2n−1)×(2n−1),

Q̄ ∈ R
(2n−1)×(2n−1), R ∈ R

2n×2n satisfying

Ĥ =





Ĥ11 Ĥ12 Ĥ13

ĤT
12 Ĥ22 0(n−1)×n

ĤT
13 0n×(n−1) −d(1 − d1)R



 < 0 (10)

where

Ĥ11 = P̄ Φ̄σ + Φ̄T
σ P̄ + Q̄ + dΞ2Ū

T RŪΞT
2 ,

Ĥ12 = −dΞ2Ū
T RŪΞ1,

Ĥ22 = −Q̄(1 − d1) + dΞ1Ū
T RŪΞ1,

Ĥ13 = dP̄Ξ1Ū
T .

The proof of Theorem 2 is very similar to that of

Theorem 1 and hence omitted.

Remark 3: In this paper, we only consider the sin-

gle time-delay case. Actually, all the results can be

extended to the multiple time-delay case following the

lines of the proof of Theorem 1.

IV. SIMULATION RESULTS

In this section, numerical simulations will be given

to illustrate the theoretical results obtained in the

previous sections. These simulations are performed

with four agents. Fig. 1 denotes four different graphs.

Moreover, the weight of each edge is 1 and the

protocol parameter k1 is taken as k1 = 1.
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Fig.1 Four different graphs

Fig.2 shows the switching sequences of the network

topology, and it starts at Ga, and switches to the next

state every 0.01 second. By using Theorem 1, it is

solved that for time-delay τ = 0.43, a feasible solution

is

P̄ =







22.62 1.63 −8.08 5.89 −1.70 −7.23 5.58
1.63 10.76 −1.27 3.20 −1.47 0.88 −6.86
−8.08 −1.27 25.52 −3.85 −12.52 0.29 2.01
5.89 3.20 −3.85 11.75 −1.41 1.45 −2.11
−1.70 −1.47 −12.52 −1.41 21.05 1.46 −2.64
−7.23 0.88 0.29 1.45 1.46 34.83 4.65
5.58 −6.86 2.00 −2.11 −2.64 4.65 32.57







Q̄ =







13.55 −0.13 −6.45 6.21 −4.80 1.15 4.32
−0.13 7.39 1.34 3.61 −2.39 4.07 −8.66
−6.45 1.34 12.45 0.95 −6.65 −4.76 −2.80
6.21 3.61 0.95 6.50 −6.66 0.26 −2.42
−4.80 −2.39 −6.66 −6.67 14.01 2.53 −2.49
1.15 4.07 −4.76 0.26 2.53 19.26 −0.97
4.32 −8.66 −2.80 −2.42 −2.49 −0.97 16.90







R =







28.07 0.83 −4.27 0.21 −3.24 0.50 −4.27 0.21
0.83 5.70 0.19 5.05 0.50 5.37 0.19 5.05
−4.27 0.19 28.06 0.81 −4.29 0.19 −3.14 0.48
0.21 5.05 0.81 5.71 0.21 5.05 0.48 5.37
−3.24 0.50 −4.29 0.21 28.11 0.83 −4.29 0.21
0.50 5.37 0.19 5.05 0.83 5.70 0.19 5.05
−4.28 0.19 −3.14 0.48 −4.29 0.19 28.06 0.81
0.21 5.05 0.48 5.38 0.21 5.05 0.81 5.71






.

Gd
 Ga


Gc
 Gb


t=0


Fig.2 Switching sequences of the network topology

Fig.3 depicts the state trajectories for this switching

network with τ = 0.43.

0 5 10 15 20 25 30 35 40
−8

−6

−4

−2

0

2

4

6

8

Fig.3(a) Position trajectories of the network

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

15

Fig.3(b) Velocity trajectories of the network

Clearly, one can observe that all agents converge to

a common value and their speeds reduce to zero; that

is, all agents achieve consensus.

V. CONCLUSIONS

In this paper, distributed coordination has been

considered for networks of second-order agents with

time-delay and switching topology. We first perform a

model transformation and turn the original system into

an equivalent system; then, based on this equivalent

system, we introduce a common Lyapunov function

and use a dimension reduction approach to give

sufficient conditions in terms of LMIs under which

all agents asymptotically reach consensus. Simulation

results are provided to show the effectiveness of the

obtained theoretical results.

It is worth noting that the communication topology

considered is assumed to be strongly connected, and

future research could be directed towards considering

jointly-connected topology case, which is more gen-

eral. In addition, the dynamics of each agent con-

sidered in this paper is for continuous-time, and all

the methods introduced in this paper could also be

used for discrete-time case, which deserves further

investigation.
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