
 
 

 

  

Abstract- In this paper, the control problem in retinal 
imaging adaptive optics systems is generalized to that of shape 
control for a flexible membrane representing a deformable 
membrane mirror.  Due to the dynamic nature of the 
aberrations in the eye, the shape control problem addressed is 
the tracking of an unknown and time-varying shape for a 
distributed membrane (i.e. desired shape of the mirror). The 
proposed controller design approach relies on constructing a Q 
-parameterized set of stabilizing controllers for the system 
under consideration and the online tuning of the Q-parameter 
so that the controller converges to the controller needed to 
achieve regulation. Partial decoupling of the multi-input multi-
output closed loop system dynamics is introduced to allow the 
tuning to be performed based on decentralized adaptation 
algorithms. 

I.  INTRODUCTION 
n recent years, adaptive optics (AO) systems have been 
proposed as a means of providing early detection of eye 
diseases via retinal imaging.  Originally developed to 

correct for optical atmospheric distortions in ground-based 
telescopes, AO systems are being used to obtain clear 
images of the cellular structures in the retina tissue in the 
back of the eye [1][2]. In a normal eye, the presence of 
aberrations, which are optical defects in the optical path of 
light inside the eye, leads to distorted and blurred images of 
the retina tissue. AO systems continuously measure 
aberrations introduced by the medium through which the 
light waves travel, and correct for those distortions 
automatically. The basic set-up of a typical retinal imaging 
AO system is shown in Figure 1. The main components of 
the system include a wavefront sensor (WS) for measuring 
the aberrations, a wavefront corrector (usually a deformable 
membrane mirror (DMM)), and a controller. A laser light 
source directs a plane wave1 onto the retina of the eye. The 
wave passes through the eye and exits as an aberrated 
wavefront.  The laser light reflects off the DMM and is 
detected by the WS.        

Compensation is achieved through a closed-loop feedback 
controller, which receives signals from the WS in the form 
of wavefront measurements and outputs control commands 
to the DMM in the form of actuator signals.  The actuators 
apply a spatially distributed force to the DMM which causes 
it to deform to the desired shape required to compensate for 
the aberrations present in the wavefront.  The DMM 
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1 A plane wave is a flat or unaberrated wavefront. 

compensates for the aberrations in the laser light, resulting 
in a planar wavefront. Sharp images of the retina can then be 
taken using a camera.   
    The main control system design problem in an AO system 
is that of shape control for a distributed membrane.  The 
objective of shape control in an AO system is to obtain, for 
the membrane mirror under consideration, a shape that is as 
close as possible to the desired shape needed to cancel the 
wavefront aberrations present in the incoming wavefront.  In 
order to increase the image quality that can be achieved by 
an AO system, the DMM must be able to track and 
compensate for unknown and time-varying changes in the 
aberrations of the human eye in real-time. The controller 
design is further complicated by the fact that a typical DMM 
is a coupled system. In such a system, each individual 
actuator input influences all of the outputs, the latter being 
the displacements of points on the mirror surface above the 
actuators.  

Within the literature, a number of control design 
techniques have been proposed for the control of AO 
systems. The control strategies suggested in the literature 
include proportional-integral-derivative (PID), optimal and 
adaptive controllers. Traditionally, decentralized PID type 
controllers have been used in AO systems [3][4]. These 
controllers use the measured wavefront error above each 
actuator to control the displacement of the mirror above the 
actuators, with the objective of driving the wavefront error 
to zero. Typically, a SISO PID controller is first developed 
for a single actuator and then duplicated for each actuator in 
the system. Optimal centralized LQG, H∞ , and 2H  
controllers [5][6] have been used to  minimize the error 
between the actual shape and the desired shape of the mirror 
by choosing control inputs that minimize a specified 
performance criterion. A number of adaptive control 
algorithms based on different gradient decent type of 
algorithms have been developed for AO systems [7][8]. 
Most of these controllers use a centralized control 
architecture, which uses information from all the measured 
signals, making them computationally expensive and 
difficult to implement in real time systems.  

In a typical retinal imaging AO system, the difficulty lies 
in attempting to track an unknown time-varying reference 
signal (i.e., desired shape of the mirror) for a coupled 
membrane.   Since the desired shape of the mirror is 
unknown, it is proposed in this paper to tune the controller 
online to compensate for the lack of information on the 
dynamics of the time-varying aberrations in the eye.  This is 
done iteratively, by taking advantage of the Q-
parameterization of stabilizing controllers, so that the tuned  
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Fig. 1. Schematic diagram of a typical retinal imaging AO system. 

 
controller converges to the ideal controller. The proposed 
controller design approach relies on two main steps.  The 
first step involves the construction of a parameterized set of  
stabilizing controllers. The main feature of the constructed 
set of stabilizing controllers is that appropriate decoupling is 
introduced in the dynamics of the resulting closed loop 
system. The proposed decoupling only concerns the part of 
the closed loop system dynamics that are involved in the 
expression of the performance variable as a function of the 
parameter estimation error. The second step in the controller 
design approach is to use adaptation algorithms to tune the 
Q-parameter in the expression for the parameterized 
stabilizing controller. The Q parameter adaptation allows the 
controller to converge to the controller needed to achieve 
regulation for the case of unknown and time-varying 
aberrations. The decoupling approach introduced in the 
construction of the parameterized set of stabilizing 
controllers allows the use of a decentralized adaptation 
approach, hence practically simplifying the controller 
implementation process and allowing adaptive regulation to 
be achieved. 
   
  The rest of the paper is organized as follows.  The next 
section presents the model of the DMM used in this work. 
This is followed by the development of an offline controller 
designed using the Q-parameterization of stabilizing 
controllers. Next, adaptive regulation for the wavefront 
corrector is presented. The performance of the adaptive 
system is then illustrated using simulations results followed 
by the conclusion in the final section. 

  In the rest of the paper, :
A B
C D

⎡ ⎤
Σ ⎢ ⎥

⎢ ⎥⎣ ⎦
 is used to refer to a 

state space realization of a system Σ , RH∞  is used to 
denote the set of proper real-rational stable transfer matrices, 

( ).diag  refers to a diagonal transfer matrix. Proofs of some 
results are not included due to space limitation. 

II. MODELING OF THE WAVEFRONT CORRECTOR 
In this section, a model of a distributed parameter system 
representing the DMM will be presented.    

1) Membrane  Model 
Consider a circular membrane extending over a domain D 

defined by 0 r a< < .  The boundary of the domain is the 
circle S given by the equation r a= .  The membrane is 
modeled as a two-dimensional system which, in the 
equilibrium position, lies in a plane. The inputs used to 
adjust the shape of the membrane are represented by n  
concentrated forces 1( ), , ( )nF t F t…  generated by n  actuators 
acting on the membrane at locations ( ) ( )1 1, , , ,n nr rθ θ…  
expressed in polar coordinates. The outputs of interest are 
the displacements of points on the membrane surface at the 
locations ( ) ( )1 1, , , ,n nr rθ θ… . The response of the membrane 
can be expressed in the polar coordinates r  and θ  as 
follows [9],  

0 0
1 1 1

1 1

( , , ) ( , ) ( ) ( , ) ( )

( , ) ( ),

n n mnc mnc
n m n

mns mns
m n

w r t W r t W r t

W r t

θ θ η θ η

θ η

∞ ∞ ∞

= = =

∞ ∞

= =

= +

+

∑ ∑∑

∑∑

� � �� ��
� � �

�� ��
� �

               (1) 

where 0 ( , )nW r θ� , ( , )mncW r θ�� , and ( , )mnsW r θ��  are the mode 
shapes of the uniform membrane clamped at r a=  and 

0 ( )n tη � , ( )mnc tη �� , ( )mns tη ��  are time dependent generalized 
coordinates associated with each normal mode.  In general, a 
discrete time model of the membrane can be given in state-
space form as follows:  

                        
( ) ( ) ( )

( ) ( ) ( )
2

2 22

1 ,
D ,

x k Ax k B u k
y k C x k u k
+ = +

= +
                    (2) 

 where xnx ∈R is the state vector, nu ∈R  is the vector of 
control inputs given by [ ]1( ) ( ) ( ) T

nu k F k F k= … , ny ∈R  is 
the vector of membrane displacements and 22D 0n n×= .   

2) Reference Shape Model 
The reference shape for the DMM can be viewed as a 

spatially distributed set of signals that are dependent on 
spatial variables as well as time.  The DMM desired shape is 
represented by a vector where each entry represents the 
desired displacement at one of the n  spatially distributed 
points with coordinates ( ) ( )1 1, , , ,n nr rθ θ…  on the surface of 
the membrane. Each of the n  points is located at the same 
position as one of the actuators.  A key assumption in this 
paper is that each of the desired displacements  representing 
the unknown desired shape of the membrane is given by 

 0
1 0

( ) sin( ) ( )
i

n n

r i ij j ij ij
j j

w k A A k w kω ϕ
= =

= + + =∑ ∑ , 1, ,i n= … ,(3)                       

with unknown amplitudes ijA , frequencies jω , and phases 

ijϕ ,1 i n≤ ≤ , 1 j n≤ ≤ .  The resulting plant, Σ , can then be 
described using the following state space representation: 

               

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 11 12

2 21 22

1
: +D D

+D D

x k Ax k B w k B u k
e k C x k w k u k
y k C x k w k u k

⎧ + = + +
⎪

Σ = +⎨
⎪ = +⎩

       (4)                       
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where 1 0B = , 11D n nI ×= − , 12 22D =D 0n n×= . In a typical AO 
system, the measurement ( )y k  provided by the wavefront 

sensor is the same as the performance variable ( )e k . In 
such a case, 11 21 n nD D I ×= = − . For the system described 
above, it is desired to design a controller that yields internal 
stability and regulation against the signal rw  with unknown 
amplitudes, frequencies and phases.   

III. OFFLINE CONTROLLER DESIGN 
In this section the development and analysis of a 
multivariable controller is discussed for the case where the 
desired shape of the mirror given by (3) is assumed known.  
The controller is designed using the Q-parameterization of 
stabilizing controllers. This ensures the design of a 
controller that yields internal stability of the closed-loop 
system while tracking the reference signals.   
1) Parameterization of a Set of Stabilizing Controllers 

The basic configuration of a Q-parameterized  feedback 
system is shown in figure 2, where Σ  is the plant, J   a 
fixed block, and Q   is the controller free parameter [10]. 
The control problem in this setup is to design the controller  
such that the closed-loop system is internally stable and the 
output e  of the plant Σ  is driven to zero asymptotically.   
     The two blocks Σ  and J  can be lumped together into a 

single block to form the transfer matrix 11 12

21 0
T T

T
T

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 such 

that, 

           11 12

21 0
T Te w
Tr s

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
; 

2 2
12

1
:

0

A B K B
T

C

+⎡ ⎤
⎢ ⎥
⎣ ⎦

      (5) 

where K  is such that 2A B K+  is a stability matrix. Let 
( )E z  denote the Ζ  transform of the performance variable 

e . The closed-loop system transfer function is given by 
[ ]11 12 21( ) ( ) ( ) ( ) ( ) ( )E z T z T z Q z T z W z= + .         (6) 

With ( )W z  and ( )E z  being n -dimensional vectors, where 
n  is the number of actuators acting on the membrane, the 
transfer matrices 11( )T z , 12 ( )T z , and 21( )T z  are each of 
dimension n n× .   
2) Decoupling of the 12 ( ) ( )T z Q z  Transfer Matrix 

To simplify the development and analysis of the adaptive 
regulation system to be presented later in the paper, it is 
proposed to design the systems 12 ( )T z  and ( )Q z  in such a 
way that the resulting system given by 12 ( ) ( )T z Q z  is a 
diagonal transfer matrix. The main idea is to select the state 
feedback gain K   that appears in the state space realization  
of 12T  and the parameter  Q such that decoupling takes 

place in 12 ( ) ( )T z Q z .   Consider the subsystem 22Σ  given by 
the following state space representation: 

                 

 

 

 

 

 

 
Fig 2. Closed-Loop system with a parameterized controller. 

 
( ) ( )

( ) ( )
2

22
1

1 ( )     
:

.            
x k Ax k B u k

y k C x k
+ = +⎧⎪Σ ⎨ =⎪⎩

            (7) 

Define a state feedback law of the form: 
            ( ) ( ) ( )u k Kx k F kδ= +                          (8)                      

where ( )kδ  is an external signal. Substituting (8) into (7) 
yields a system with the following state space 
representation: 

        
( ) ( ) ( ) ( )

( )
2 2

22
1

1 ,     
:

,                          
cl x k A B K x k B F k

y C x k
δ+ = + +⎧⎪Σ ⎨ =⎪⎩

    (9)                      

and a corresponding transfer function 

( )( ) 1
1 2 2C zI A B K B F

−
− + . It is desired to find gains K  and  

F  such that the system (9) is decoupled, i.e. the transfer 
function ( )( ) 1

1 2 2C zI A B K B F
−

− +  is a diagonal transfer 
matrix. Let  

  

1

2
1

T

T

T
n

c
c

C

c

⎡ ⎤
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⎢ ⎥=
⎢ ⎥
⎢ ⎥
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#
,                                    (10) 

and define the integers iσ , 1, 2, ,i n= … , by  

     ( )1
2

1
2

min | 0 , 1, 2, , 1
1;  if 0 , 1, 2, , .       

T j T
i

i T j T
i

j c A B j n
n c A B j n

σ
−

−

⎧ ≠ = −⎪= ⎨
− = =⎪⎩

…
…

   (11)                       

Based on the integers iσ , 1, 2, ,i n= … , defined above, 
introduce the following two matrices:  

     

1

2

1
1 2

1
* 2 2

1
2

n

T

T

T
n

c A B
c A B

B

c A B

σ

σ

σ

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
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#
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1

2

1
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T
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#
               (12)                      

Then we have the following result. 
Theorem 2 [11]: There exists gains K  and F  that 
diagonally decouple the system (9) if and only if the matrix 

*B  in (12) is non-singular. If this is the case, then by 
choosing     
         ( ) ( )1 1* * *,       ,F B K B C

− −
= = −                             (13)                      
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the resulting feedback system in (9) has a diagonal transfer 
function matrix given by 

     ( )( ) ( )1 2
1

1 2 2 , , , nC zI A B K B F diag z z z σσ σ− −− −− + = … .   □ 

Lemma 1: Consider the system 12T  in (5) and assume the 
conditions of Theorem 2 are satisfied. Let K  and F  be as 
in (13) and assume that ( )2A B K+  is a stability matrix. Let 

( )Q z RH∞∈  be a transfer matrix of the form:  

( ) ( ) ( )( )1 2( ) , , , nQ z F diag Q z Q z Q z= × … .                   

It follows that the system ( ) ( )
12T z Q z  is decoupled and we 

have that  

( ) ( ) ( ) ( ) ( )
1 212 1 2

1 1 1, , ,
n nT z Q z diag Q z Q z Q z

z z zσ σ σ− − −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

… .                              

□ 

The proof of Lemma 1 follows immediately from the results 
of Theorem 2. 
3) Interpolation Condition for Regulation 

Assume in the following that the conditions of Lemma 1 
are satisfied and that ( )Q z  is chosen as:  

                 
1( ) 0

( )
0 ( )n

Q z
Q z F
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 Then equation (6) can be rewritten as, 
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,  (15)                              

where ( )oD z  is a polynomial of the same order as ( )D z  
and with roots inside the unit circle, which yields a proper 
stable transfer function in (15).  Let kp , 1, , 2k n= … , 
denote the complex conjugate poles of ( )

ir
W z , 1, ,i n= … , 

and let 1
pnp = ,where 2 1pn n= + .  All the poles of ( )

ir
W z  

are simple and located on the unit circle.   

Lemma 2:  Consider the closed loop system transfer 
function ( )T z  in (15). Assume the conditions of Lemma 1 
are satisfied, the gains K  and F  are chosen as in (13), 

( )Q z RH∞∈  is chosen as in (14), and ( )2A B K+  is a 
stability matrix. Define the following interpolation 
conditions 

( ) 0
kz p

T z
=

= , 1, , pk n= … .                    (16)                                                  

Then regulation is achieved if and only if the interpolation 
conditions (16) are satisfied.                                               □ 

    It is impractical to search over the whole space for a 
function  Q  that satisfies the interpolation conditions (16).  
Instead, a special form of Q  will be defined, based on a 
Ritz-type parameterization [12] that restricts the domain of 
the search.  Each of the iQ  parameters in (14) is then 
expressed as  

1
( ) ( )

qn

i ij ij
j

Q z zθ ψ
=

= ∑ , 1, ,i n= … ,                  (17)                       

where 1( ) j
ij z zψ −= ; 1, ,i n= … , 1 qj n= … . As qn → ∞ , (17) 

can be used to represent any transfer function in RH∞ .  For 
each iQ , define the following parameter vector: 

1,...,
q

T

i i inθ θ θ⎡ ⎤= ⎣ ⎦ , 1, ,i n= … .                 (18)                      

Lemma 3:  The interpolation conditions are equivalent to 
the following constraint on the parameter vectors iθ , 

1, ,i n= … : 
0

i iiA Bθ θθ + = ,                                (19) 

where 
i

Aθ  and 
i

Bθ  are real matrices and 
i

Aθ  is ( )2 1 qn n+ ×  

and 
i

Bθ  is ( )2 1 1n + × .                                                          □                      
Thus, solving equation (19) yields an offline-designed 
controller that achieves regulation based on the known 
desired shape for the DMM.  

IV. ADAPTIVE REGULATION OF THE WAVEFRONT 
CORRECTOR 

     In this section, recursive algorithms are used in adaptive 
regulation to track reference signals of the form (3) with 
unknown and time-varying properties. In the adaptation 
process, θ  is tuned online with no prior knowledge of the 
desired shape of the DMM. 
     In the following, it is assumed that the conditions of 
lemma 1 are satisfied. Consequently, there exists gains K  
and F  such that with Q  chosen as in (14), the system 12T Q  
is diagonally decoupled.  During adaptation, the subsystem 
represented by Q  is time-varying.  Therefore, systems will 
be considered operators on signals.  Let 1q−  denote the one 
time step delay operator.  The performance variable is given 
by: 

 1 1 1 1
11 12 21( ) ( ) ( ) ( ) ( ) ( ) ( )r re k T q w k T q Q q T q w k− − − −= + .    (20)                      

Let ( ) ( ) ( )( )1 2( ) , , ,o o o o
nQ z F diag Q z Q z Q z= × …  be a 

desired Q  that yields regulation, where 

1
( ) ( )

qn
o o
i ij ij

j
Q z zθ ψ

=

= ∑ , 1, ,i n= … . To simplify the analysis of 

the above system, modified error signals are defined as 
follows 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

,  1, , ,

q q
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o o

i ij ij ij ij i i
j j

T o
i i i

e k k q q q r k e k

k k e k i n

σθ ψ θ ψ

φ θ

−− −

= =

⎡ ⎤
= − +⎢ ⎥
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= + =
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where  , 
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( ) ( )

( ) ( )

1
1

1

i

i

q

i i
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in i

q q r k
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q q r k

σ

σ

ψ
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−−

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥⎣ ⎦

# , 1, ,i n= … ,             (22)                          

  ( ) ( ) ( ) ( ) ( )1
1 21, ,

T
n rr k r k r k T q w k−= =⎡ ⎤⎣ ⎦…   

   ( ) ( )( ) ( )( )1 1 q q

T
o o

i i i in ink k kθ θ θ θ θ⎡ ⎤= − −⎣ ⎦
� … , 1, ,i n= … . (23)                                 

It should be noted that the signal ( )r k  represents the 
second output of the J  block, and is therefore accessible.  
In the following, a decentralized recursive least squares 
(RLS) algorithm with dead zone is considered to tune the 
parameters of the systems iQ . It is assumed that an upper 
bound, on , on the number of sinusoids in the expression of  
the reference signals, 

ir
w , 1, ,i n= … , is known.  In the 

design of the adaptation algorithm, the number of sinusoids 
in the reference signals 

ir
w , 1, ,i n= … , can be assumed to 

be arbitrarily large as long as it is greater than on .  To use 
the RLS algorithm with dead zone, it is necessary to define 
an upper bound on ( )o

ie k , 1, ,i n= … . Let 0iα >  and 

0 1iβ< < , 1, ,i n= … , be such that 

 ( )o k
i i ie k α β< , 1, ,i n= … .                     (24)  

The scalars iβ , 1, ,i n= … , can be found by examining the 
poles of 11 12 21( ) ( ) ( ) ( )T z T z Q z T z+ . The quantities 0iα > , 

1, ,i n= … , are assumed known a priori and can be 
determined based on the closed loop dynamics and the 
reference signal properties.                                                              
     For 1, ,i n= … , the adaptation algorithm is given by                                 

( )

( )
( )

( ) ( 1)ˆ ˆ( 1) ( ) ( 1),  
1 ( 1) ( ) ( 1)

( 1) ( ) ( ) ( 1)
    ( ) ( 1) ,  

1 ( ) ( 1) ( )

i i
i i i iT

i i i
T

i i i i i
i i T

i i i i

P k kk k k e k
k P k k

k P k k k P k
P k P k

k k P k k

φθ θ λ
φ φ

λ φ φ
λ φ φ

+
+ = + +

+ + +

− −
= − −

+ −

�

    (25)                           

with ( )0 0iP >  and where  

( )
( )

( ) ( ) ( )
1

1 1

0

i k
i iT

i

e k
if

k k P k k

otherwise

α β
λ φ φ

⎧
>⎪

= + −⎨
⎪
⎩

�

.     (26) 

Based on the convergence results for a similar algorithm 
in[12], we have the following theorem.                              

Theorem 3: Assume the conditions of lemma 1 are satisfied 
such that K  and F  can be chosen as in (13) so that 
( )2A B K+  is a stability matrix and with Q  as in (14), the 
system 12T Q  is decoupled. Moreover, assume iα  and iβ , 

1, ,i n= … , and an upper bound, on , on the number of 
sinusoids  in the reference signals are all known a priori . 
Then the algorithm given by (25) and (26) yields: 

                   lim ( ) 0ik
kθ

→∞
=� ; 1, ,i n= … ,                           (27)                                           

and the performance variables ( )ie k , 1, ,i n= … , 
asymptotically converge to zero.                                          □                       

V. SIMULATIONS 
This section presents simulation results for a circular DMM 
in a retinal imaging AO system.  The DMM has an aperture 
of 1 cm and is represented using the membrane model 
developed above by considering twelve modes, i.e. 

3m n= =� �  in (3).  The surface shape of the mirror is 
adjusted using 35 microactuators, shown in figure 3.  
Wavefront measurements of the surface shape error are 
taken at points on the membrane surface corresponding to 
the locations of the actuators.  

The simulations were carried out by using reference 
signals 

ir
w , 1, ,35i = … , as in (3), where each signal is 

represented as the  sum of 2 sinusoids (i.e. 2n = ) with 
varying amplitudes and phases, and with zero offset. The 
frequencies  of the individual sinusoids range from 15 to 25 
rads/s, the amplitudes of the sinusoids range from 1 to 
14 mμ  and the phases range from 0 to 3.7 radians.  The 
actuators are positioned on the DMM such that the 2C  and 

2B  matrices in (2) are full rank and that 2A B K+  is a 
stability matrix. 

1) Closed Loop System with the Offline Designed 
Controller 
  Assuming the properties of the reference signals are 
known a priori, and that 2qn n= , the offline-designed 
controller is obtained by finding the unique Q  that yields 
regulation. This Q -parameter is then used to drive the 
performance variable to zero.  Simulations results for the 
closed loop system with the offline-designed controller are 
shown in Figure 4. It can be seen that  the DMM is capable 
of tracking the desired shape required to compensate for the 
aberrations in the eye. 

2) Adaptive System using the RLS algorithm with Dead 
Zone  
In this case, the reference signals shown have unknown 
frequencies jω , amplitudes ijA , and phases ijϕ , 

1, ,35; 1, , 2i j= =… … . It is also assumed that n  is 
unknown. An upper bound on the assumed number of 
sinusoids of 10on =  was chosen. In order to use the RLS 
algorithm with dead zone in (25) and (26) it is necessary to 
determine iβ  and iα , 1, ,i n= …  in (24). Conservative 
values of  0.9iβ =  and 1iα =  were used during the 
simulations. Each of the iQ  parameters in (14) is such that 

2 20o
qn n= = . The initial conditions of the algorithm were 

( ) 20 1
ˆ 0 0iθ ×=  and ( ) 5

20 200 10iP I ×= × . The performance of the 
resulting adaptive closed loop system  is shown in figure 5. 
The closed loop system was able to quickly track the 
reference inputs. Hence, as shown in the simulation results, 
regulation takes place even when the number of parameters  
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Fig. 3. Deformable membrane mirror and actuator arrangement underneath 
the mirror. 

in iQ , 1, ,i n= … , is larger than the minimal number of 
parameters needed to achieve regulation, in this case 4 
parameters in each iQ .  

VI. CONCLUSION 
The mirror control problem in AO systems is generalized as 
a shape control problem.  The objective of shape control is 
to obtain, for the membrane under consideration, a shape 
that is as close as possible to the desired shape.  The desired 
shape is the mirror shape that is needed in order to cancel 
the wavefront aberrations present in the incoming 
wavefront. Due to the dynamic nature of the wavefront 
aberrations in the eye and the desired shape of the mirror, 
the main control problem addressed is the tracking of an 
unknown shape for a distributed membrane.  In order to 
effectively compensate for the unknown dynamic 
aberrations in the eye, the controller in an AO system must 
be tuned online in order to realize the controller needed to 
achieve regulation. A two-step controller design approach is 
proposed.  The first step is to construct a parameterized set 
of stabilizing controllers for the system under consideration 
and to derive conditions on the Q-parameter in the controller 
expression to achieve regulation.  Partial decoupling is 
introduced in the closed loop system dynamics to facilitate 
the design of the adaptive regulator. The second step is to 
use online tuning algorithms for the Q-parameter in the 
expression for the parameterized stabilizing controller. The 
Q parameter adaptation allows the controller to converge to 
the controller needed to achieve regulation. The proposed 
decentralized adaptive controller tuning algorithms are 
shown to effectively compensate for the unknown time-
varying aberrations.  This will allow for retinal images to be 
taken with improved resolution, hence facilitating the early 
detection of some eye diseases via retinal imaging.  
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Fig. 4.  The closed loop system with the offline-designed controller. 
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Fig. 5.  Response of the adaptive closed loop system using the RLS 

algorithm with dead zone. 
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