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Abstract— We consider the three dimensional problem of
directing a nonholonomic vehicle to seek the source of a scalar
signal without the use of position information. If we assume
the signal strength decays with distance from the source then
we achieve convergence to the source by making use of the
extremum seeking method. In the kinematic vehicle model we
employ, the forward velocity is constrained to a constant and
the control inputs are the yaw and pitch velocities. We present
a control scheme which tunes these angular velocities and
prove the local exponential convergence of this scheme. We
also provide simulations which illustrate the behavior of the
vehicle under different scenarios, such as static and moving
sources, signal fields with spherical and elliptical level sets and
parameter regimes not covered by theory.

I. INTRODUCTION

The study of autonomous vehicle navigation in environ-
ments where GPS is unavailable or inertial navigation is
too costly is an area of rapidly growing interest. Previously
we applied extremum seeking, a non-model based gradient
estimation method, to 2D vehicles modeled as unicycles
towards the aim of seeking the source of a scalar signal
without the use of position information. We considered both
a unicycle with a constant forward velocity and a controlled
angular velocity [1] and a unicycle with a constant angular
velocity and a tuned forward velocity [2]. In each case we
proved local convergence to the source. In this paper we
extend these results to an underactuated 3D vehicle.

As before, we consider a vehicle that is capable of sensing
a scalar signal emanating from a target source, yet is denied
position information. The signal could be many things,
including the concentration of a chemical or biological agent,
or an electromagnetic, acoustic, thermal or radar signal. The
control law for the vehicle relies solely on the signal reading,
whose strength decays away from the source, to guide the
vehicle towards the source. We employ extremum seeking
in the control law, which allows the controller to jointly
estimate the gradient and drive the vehicle in the correct
direction. However, unlike previous scenarios, in this paper
we consider an underactuated vehicle operating in three
dimensions instead of two. The extension to three dimensions
is interesting because of the choice of vehicle model to
consider and because of the type of vehicle movement which
might be possible to actuate. We have chosen to address a
vehicle with a constant forward velocity and controllable yaw
and pitch velocities. We present a local stability proof for the
scheme applied to a static source and simulation results.
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While other groups have considered source seeking prob-
lems, [3] and [4], this work is different in that the vehicle
has no knowledge of its position or the position of the
source, there is no communication between it and other
entities, and it has nonholonomic dynamics. Some groups
have also considered vehicle movement in three dimensional
space, including [5], [6], while others have also used the
extremum seeking method in their work outside of the field
of autonomous vehicles, including [7], [8], [9], [10], [11],
[12], [13], [14], [15] and [16].

We start the paper with a description of the extremum
seeking method in Section II and the vehicle model in III.
We continue in Section IV with a statement of the stability
achieved and prove the local exponential convergence of the
vehicle to an “orbit-like” attractor around the source. Section
V illustrates the behavior of the vehicle driven by our control
law through simulations. We conclude in Section VI.

II. OVERVIEW OF EXTREMUM SEEKING

Extremum seeking is a non-model based gradient estima-
tion method. It employs a periodic forcing of the plant, in
this case an autonomous vehicle, to do this. As applied to
source seeking, the method works under the assumption that
the target creates some signal field that the vehicle can sense.
Though the shape of the field is unknown, the strength of
the signal decays with distance away from the source and
the maximum occurs at the target itself. Only the reading
of the signal field is used as input to the extremum seeking
controller – position information is not used.

We assume the signal field is distributed according to some
unknown nonlinear map J = f(rs(xs, ys, zs)) which has an
isolated local maximum f∗ = f(r∗) where r∗ is the three
dimensional location vector of the local maximum. If both
the shape of f and position rc of the vehicle were known, and
if the vehicle were fully actuated in all three directions, then
we could design a control law to force the vehicle’s trajectory
to evolve according to the gradient dynamical system ṙc =
−∇f . In that case the trajectory of rc would asymptotically
converge to the set of stationary points of f where ∇f(r∗) =
0. As we know neither the shape of f or the position rc of the
vehicle, we employ extremum seeking as a non-model-based
estimation method.

As the vehicle is constrained, the method succeeds in
simultaneously solving a nonholonomic steering problem and
an adaptive optimization problem. Each tuned velocity of
an autonomous vehicle (forward or angular) is of the basic
extremum seeking form

aiωi cos(ωit) + ci
s

s + h
[J ] sin(ωit) (1)
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Fig. 1. Vehicle model. The vehicle sensor rs is a distance R1 from the
vehicle center rc. The azimuthal angle α defines the pitch, whose velocity
is governed by Ω1. The polar angle θ defines the yaw, whose velocity is
governed by Ω2. The forward velocity, or surge velocity, is defined by v.

where s
s+h [J ] is a washout filter applied to the sensor reading

J and ai, ci are gains affecting the control performace. As
indicated, the application of extremum seeking involves both
a periodic probing to search the environment, aiωi cos(ωit)
and a bias term ci

s
s+h [J ] sin(ωit) to demodulate the periodic

signal and turn the vehicle in the correct direction. This
allows the vehicle to converge to the source independently of
position information or communication with other entities.

III. VEHICLE MODEL

To extend the vehicle model from a two dimensional
unicycle to a three dimentional vehicle, we chose a kinematic
model, depicted in Fig. 1, whose actuators can be used to
impart surge, yaw and pitch velocities. The equations of
motion for this vehicle are

ṙc = v

 cos(α) cos(θ)
cos(α) sin(θ)
sin(α)

 (2)

α̇ = Ω1 (3)
θ̇ = Ω2 (4)

where v is the surge velocity, rc is the center of the vehicle,
and α and θ are the pitch and yaw angles of the vehicle
respectively. The sensor is located at

rs = rc + R

 cos(α) cos(θ)
cos(α) sin(θ)
sin(α)

 . (5)

To control the vehicle, we set the surge velocity to a constant
and use extremum seeking to tune the angular velocities

v = Vc (6)
Ω1 = a cos(ωt) + cαξ sin(ωt) + dαξ2 sin(ωt) (7)
Ω2 = −a sin(ωt) + cθξ cos(ωt)− dθξ

2 cos(ωt) (8)

ξ =
s

s + h
[J ], (9)

where ω is the probing frequency, the parameters
cα, cθ, dα, dθ affect the convergence rate, the parameter a
affects the accuracy of the gradient estimation, and s

s+h [J ]

is a washout filter applied to the sensor reading J . In the
next section we present a stability result for this scheme.

IV. STABILITY

The dynamics of the closed loop are intricate. The com-
plexity comes from the trigonometric nonlinearities in the
vehicle model, the polynomial nonlinearity in the signal map,
and from the time varying forcing applied by extremum
seeking. The complexity of the system increases compared to
the two dimensional case as two extra states must be added
to account for the dynamics in the extra dimension.

We assume the nonlinear map defining the distribution of
the signal field is quadratic and takes the form J = f(rs) =
f∗ − qr|rs − r∗|2 where r∗ is the unknown maximizer,
f∗ = f(r∗) is the unknown maximum and qr is an unknown
positive constant. We define an output error variable e =

h
s+h [J ]−f∗ where h

s+h [J ] is a high-pass filter applied to the
sensor reading J , which allows us to express ξ, the signal
from the washout filter, as ξ = s

s+h [J ] = J − h
s+h [J ] =

J − f∗ − e. As a consequence ξ and ė take the following
form

ξ = −
(
qr|rs − r∗|2 + e

)
(10)

ė = hξ (11)

Theorem 1: Consider the system defined by (2)–(8)
and (10), (11) where cθ, cα, dθ, dα, h,R, Vc, qr > 0,
the parameter a is chosen such that 4Vc J0(

√
2a) >

hR

(
4J0(

√
2a)− (

√
2J1(2a)+J1(2

√
2a))

J1(
√

2a)

)
and where J0(a)

and J1(a) are Bessel functions of the first kind. For suffi-
ciently large ω, if the initial conditions rc(0), θ(0), α(0), e(0)
are such that the follow quantities are sufficiently small∣∣|rc(0)− r∗| − ρ

∣∣ , ∣∣α(0)
∣∣ , (12)∣∣∣e(0) + qrR

2 + VcJ0(
√

2a)√
2cθRJ1(

√
2a)

∣∣∣ (13)

and either
∣∣∣θ(0)− arctan yc−y∗

xc−x∗ + π
2

∣∣∣
or

∣∣∣θ(0)− arctan yc−y∗

xc−x∗ −
π
2

∣∣∣ (14)

where

ρ =

√
VcJ0(

√
2a)√

2cθqrRJ1(
√

2a)
, (15)

then the trajectory of the vehicle center, rc(t), locally expo-
nentially converges to, and remains in, the spherical annulus

|α| ≤ O(1/ω) (16)
ρ−O(1/ω) ≤ |rc − r∗| ≤ ρ + O(1/ω) (17)

and the sensor reading J(t) converges exponentially to a
periodic function within O(1/ω) of

f∗ − qrR2 − VcJ0(
√

2a)√
2cθRJ1(

√
2a)

. (18)
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Proof: We start the proof by defining the shifted
variables

r̂c = rc − r∗ (19)
α̂ = α− a sin(ωt) (20)

θ̂ = θ − a cos(ωt) (21)
τ = ωt (22)

and noting their dynamics

dr̂c

dτ
=

Vc

ω

 cos(α̂ + a sin(τ)) cos(θ̂ + a cos(τ))
cos(α̂ + a sin(τ)) sin(θ̂ + a cos(τ))
sin(α̂ + a sin(τ))

(23)

dα̂

dτ
=

1
ω

(
cαξ sin(τ) + dαξ2 sin(τ)

)
(24)

dθ̂

dτ
=

1
ω

(
cθξ cos(τ)− dθξ

2 cos(τ)
)

. (25)

We now redefine rc by its polar coordinates

r̃c = |r̂c| =
√

x̂2
c + ŷ2

c + ẑ2
c (26)

r̂c = r̃c

 cos(α∗) cos(θ∗)
cos(α∗) sin(θ∗)
sin(α∗)

 (27)

tan(θ∗) =
ŷc

x̂c
(28)

tan(α∗) =
ẑc√

ŷ2
c + x̂2

c

. (29)

Using these new definitions, the expression for ξ is

ξ = −qr(r̃2
c + R2 + 2r̃cRξc)− e (30)

ξc = cos(α̂ + a sin(τ)) cos(α∗) cos(θ̂ − θ∗ + a cos(τ))
+ sin(α̂ + a sin(τ)) sin(α∗) (31)

and the resulting dynamics are

dr̃c

dτ
=

dx̂c

dτ x̂c + dŷc

dτ ŷc + dẑc

dτ ẑc

r̃c
(32)

=
Vc

ω
ξc (33)

dα∗

dτ
=

dẑc

dτ

√
ŷ2

c + x̂2
c − ẑc

d
√

ŷ2
c+x̂2

c

dτ

r̃2
c

(34)

=
Vc

ω

(
sin(α̂ + a sin(τ)) cos(α∗)

r̃c

−cos(α̂ + a sin(τ)) sin(α∗)
r̃c

× cos(θ̂ − θ∗ + a cos(τ))

)
(35)

dθ∗

dτ
=

dŷc

dτ x̂c − ŷc
dx̂c

dτ

ŷ2
c + x̂2

c

(36)

=
Vc

ω

cos(α̂ + a sin(τ)) sin(θ̂ − θ∗ + a cos(τ))
r̃c cos(α∗)

.(37)

The system order can be reduced from six to five by
combining θ̂ and θ∗ into the error variable

θ̃ = θ̂ − θ∗ (38)

resulting in the error system

dr̃c

dτ
=

Vc

ω
ξc (39)

dα∗

dτ
=

Vc

ω

(
sin(α̂ + a sin(τ)) cos(α∗)

r̃c

−cos(α̂ + a sin(τ)) sin(α∗) cos(θ̃ + a cos(τ))
r̃c

)
(40)

dα̂

dτ
=

1
ω

(
cαξ sin(τ) + dαξ2 sin(τ)

)
(41)

dθ̃

dτ
=

1
ω

(
cθξ cos(τ)− dθξ

2 cos(τ)
)

−Vc

ω

cos(α̂ + a sin(τ)) sin(θ̃ + a cos(τ))
r̃c cos(α∗)

(42)

de

dτ
=

h

ω
ξ (43)

ξ = −qr(r̃2
c + R2 + 2r̃cRξc)− e (44)

ξc = cos(α̂ + a sin(τ)) cos(α∗) cos(θ̃ + a cos(τ))
+ sin(α̂ + a sin(τ)) sin(α∗) (45)

As the system equations are periodic in 2π, the average error
system is

dr̃ave
c

dτ
=

Vc

ω
ξave
c (46)

dα∗ave

dτ
=

Vc

ω

(
J0(a) sin(α̂ave) cos(α∗ave)

r̃ave
c

−J0(
√

2a) cos(α̂ave) sin(α∗ave) cos(θ̃ave)
r̃ave
c

)
(47)

dα̂ave

dτ
= −2qrRr̃ave

c ξ
sin
ave
c

ω

(
cα

−2dα(qr(r̃ave2

c + R2) + eave)
)

+
4dαq2

rR2r̃ave2

c ξ2
sin
ave

c

ω
(48)

dθ̃ave

dτ
= −2qrRr̃ave

c ξ
cos
ave
c

ω

(
cθ

+2dθ(qr(r̃ave2

c + R2) + eave)
)

−4dθq
2
rR2r̃ave2

c ξ2
cos
ave

c

ω

−J0(
√

2a)
Vc

ω

cos(α̂ave) sin(θ̃ave)
r̃ave
c cos(α∗ave)

(49)

deave

dτ
= −h

ω

((
qr(r̃ave2

c + R2) + e
)

+ 2qrRr̃ave
c ξave

c

)
(50)
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where

ξave
c = J0(

√
2a) cos(α∗

ave
) cos(α̂ave) cos(θ̃ave)

+J0(a) sin(α∗
ave

) sin(α̂ave) (51)

ξ
sin
ave
c = −J1(

√
2a)√
2

cos(α∗
ave

) sin(α̂ave) cos(θ̃ave)

+J1(a) sin(α∗
ave

) cos(α̂ave) (52)

ξ
cos
ave
c = −J1(

√
2a)√
2

cos(α∗
ave

) cos(α̂ave) sin(θ̃ave) (53)

ξ2
sin
ave

c = −cos2(α∗
ave

)
4

(
J1(2a) sin(2α̂ave)

+
J1(2

√
2a)√

2
sin(2α̂ave) cos(2θ̃ave)

)
+J1(2a)

sin2(α∗
ave

)
2

sin(2α̂ave)

+2
J1(
√

5a)√
5

sin(2α∗
ave

)
2

cos(2α̂ave) cos(θ̃ave)(54)

ξ2
cos
ave

c = −cos2(α∗
ave

)
4

(
J1(2a) sin(2θ̃ave)

+
J1(2

√
2a)√

2
cos(2α̂ave) sin(2θ̃ave)

)
−J1(

√
5a)√
5

sin(2α∗
ave

)
2

sin(2α̂ave) sin(θ̃ave). (55)

The average system (46)–(50) has two equilibria defined by

[
r̃aveeq1

c , α∗
aveeq1

, α̂aveeq1
, θ̃aveeq1

, eaveeq1
]

=

[
ρ, 0, 0,

π

2
,−qr

(
ρ2 + R2

) ]
(56)[

r̃aveeq2

c , α∗
aveeq2

, α̂aveeq2
, θ̃aveeq2

, eaveeq2
]

=

[
ρ, 0, 0,−π

2
,−qr

(
ρ2 + R2

) ]
. (57)

These equilibria have the corresponding Jacobians

Aeq1 =


0 0 0 −m14 0
0 −m22 −m23 0 0
0 m32 0 0 0

m41 0 0 −m44 m45

−m51 0 0 m54 −h

 (58)

Aeq2 =


0 0 0 m14 0
0 −m22 m23 0 0
0 −m32 0 0 0

−m41 0 0 −m44 −m45

−m51 0 0 −m54 −h

 (59)

where

m14 = Vc J0(
√

2a) (60)

m22 =
dα qr RVc J0(

√
2a)

cθ J1(
√

2a)

×
(√

2J1(2a)− J1(2
√

2a)
)

(61)

m23 = 2cα qr RρJ1(a) (62)

m32 = Vc J0(a)

√√
2

ρ
(63)

m41 = m41a + m41b (64)

m41a = 4 cθ qr R
J1(
√

2a)√
2

(65)

m41b = 4
dθ qr Vc J0(

√
2a)

cθ
(66)

m44 =
dθ qr RVc J0(

√
2a)

cθ J1(
√

2a)

×
(√

2J1(2a) + J1(2
√

2a)
)

(67)

m45 = 4 dθ qr Rρ
J1(
√

2a)√
2

(68)

m51 = 2hqr ρ (69)
m54 = 2hqr RρJ0(

√
2a) (70)

The characteristic polynomial for both equilibria is

0 =
(
s2 + m22s + m32m23

)
×
(
s3 +

(
h + m44

)
s2

+
(
hm44 + m41m14 −m54m45

)
s + hm14m41a

)
.(71)

The second order polynomial has roots with negative real
parts as both m22 and m32m23 are positive. The third order
polynomial has roots with negative real parts as, according
to the assumptions in Theorem 1, all the coefficients are
positive and the product of the s2 and s1 coefficients is
greater than the s0 coefficient. Therefore, the Jacobians (58),
(59) are Hurwitz given the assumptions in Theorem 1. As
such, both equilibria (56), (57) are exponentially stable.
By applying Theorem 10.4 from [17] to this result, we
conclude that the error system (46)–(50) has two distinct,
exponentially stable periodic solutions within O(1/ω) of
the equilibria (56), (57). This indicates the angle α remains
within O(1/ω) and the distance between the vehicle center rc

and the source r∗ converges to within O(1/ω) of the value

ρ =
√

VcJ0(
√

2a)√
2cθqrRJ1(

√
2a)

, defining the attractor in Theorem

1. As the attractive solution of e is a periodic function
within O(1/ω) of −qrR

2− VcJ0(
√

2a)√
2cθRJ1(

√
2a)

, the sensor reading
J(t) converges to a periodic function within O(1/ω) of
f∗ − qrR

2 − VcJ0(
√

2a)√
2cθRJ1(

√
2a)

.
Remark 1: The attractor seen in this 3D scenario is very

similar to the attractor seen in the 2D unicycle with a constant
forward velocity and tuned angular velocity. In both cases
the vehicle moves around an “orbit” confined to a plane —
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Fig. 2. Vehicle locating a static source which creates a signal field with
spherical level sets. Vc = .1, r = .1, a = .5, ω = 40, cθ = cα =
100, dθ = dα = 300

though in the 3D case the plane in question has an O(1/ω)
thickness.

V. ILLUSTRATION OF VEHICLE BEHAVIOR

The behavior shown by the vehicle is very interesting in
terms of how it changes with the chosen parameters. We
start this section by illustrating the behavior predicted by
Theorem 1. We then examine what happens when we change
the parameters in ways not covered by the theory.

The following figures illustrate the behavior predicted
defined in (16)–(17). Fig. 2 shows the vehicle starting from
different positions and orientations converging to an “orbit”
around a static source which produces a signal field with
spherical level sets. Fig. 3 illustrates the different attractors
seen when the parameters are varied within the assumptions
of Theorem 1. Fig. 4 shows the vehicle converging to
attractors around a static source which produces a signal field
with ellipsoidal level sets. Though the theory presented here
does not include ellipsoidal level sets, the convergence to the
attractor in these cases is similar to the convergence seen in
the 2D cases where the target signal field is made up of
elliptical level set. The control law (7)–(8) also allows the
vehicle to seek a moving source as seen in Fig. 5 where the
source follows a saddle pattern and produces spherical level
sets which move with the source.

The proof of Theorem 1 relies on both dα and dθ being
positive, however, convergent behavior is still seen when
both are negative and when dα is made negative. The fourth
combination, when dθ is negative and dα is positive results in
unstable behavior. Fig. 6 illustrates the convergent behavior
when both dα and dθ are negative. In this case the attractor
seen when both parameters are positive rotates and is twisted
slightly. The attractor in this case is still similar to an “orbit”.
This differs from the third case, illustrated in Fig. 7 where
the attractor is no longer of an “orbit” type. In this case the
vehicle moves around the surface of a sphere maintaining
O(1/ω) within a specific distance from the source. The
unstable fourth case is shown in Fig. 8.
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Fig. 3. Attractors resulting from different parameter configurations. The
inset reveals the close-up behavior of the vehicle center. Vc = .1, r =
.1, a = .5, ω = 40 outer attractor: cθ = cα = 100, dθ = dα = 300
middle attractor: cθ = 200, cα = 100, dθ = 600, dα = 300 inner
attractor: cθ = 300, cα = 100, dθ = 600, dα = 300
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Fig. 4. Vehicle locating a target from a signal field with ellipsoidal level
sets. The attractor seen has elements similar to the attractors seen in the 2D
case. Vc = .1, r = .1, a = .5, ω = 40, cθ = cα = 100, dθ = 300, dα =
200
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Fig. 5. The vehicle follows the moving source which creates a signal field
with spherical level sets which move with the target. Vc = .07, r = .1, a =
.5, ω = 10, cθ = cα = 100, dθ = dα = 300
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Fig. 6. Vehicle locates a source. Signal field has spherical level sets. The
final attractor is rotated compared to other cases, but is still of an “orbit-
like” form. Vc = .1, r = .1, a = .5, ω = 40, cθ = cα = 100, dθ =
300, = dα = −300
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Fig. 7. Vehicle locates a source. Signal field has spherical level sets. The
attractor is O(1.ω) within the surface of a sphere instead of an “orbit” type.
Vc = .2, r = .1, a = .5, ω = 40, cθ = cα = 100, dθ = 300, dα = −300
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Fig. 8. Vehicle does not locate the source – parameters produce an unstable
result. Signal field has spherical level sets. Vc = .1, r = .1, a = .5, ω =
40, cθ = cα = 100, dθ = −300, dα = 300

VI. CONCLUSIONS

We extended previous source seeking results from a two
dimensional unicycle to a three dimensional underactuated
vehicle and proved local exponential convergence to an
attractor around the source. The vehicle behavior was illus-
trated through several simulations depicting different scenar-
ios.
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