
  

  

Abstract—This paper presents a simple analysis evaluating 
the stability threshold for magnetically levitated flexible 
structures using dissipative collocated controllers. It is shown 
that with such a control structure, the controller that stabilizes 
a rigid levitated mass can also stabilize a flexible structure with 
the same overall mass and electrodynamics. This principle has 
been experimentally demonstrated on flexible single and multi-
magnet levitation systems.    

I. INTRODUCTION 
In the years 2001 to 2002, an experimental Maglev 

transportation system was installed on the Old Dominion 
University (ODU) campus by American Maglev 
Technologies (AMT). This system, which was intended to 
become a permanent student transportation system after one 
year of demonstration, never achieved fully operational 
status. The system was constructed on an aggressive 
schedule, and AMT reported encouraging results based on 
early testing in Florida. However, late in 2002 after 
installation of the system at ODU and some initial on-
campus testing, the project came to a halt due technical 
difficulties in achieving stable levitation, and eventually 
budget overruns. Currently, the ODU Maglev system is used 
as a research vehicle by several of the University’s 
engineering faculty.  

Figure 1 ODU Maglev Vehicle on Guideway 
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The initial tests of the vehicle were conducted in Florida 

on a guideway mounted to the earth on a concrete 
foundation. In contrast, the ODU installation employed an 
elevated guideway using 90 foot long, essentially simply 
supported, girders of prestressed concrete construction. The 
inability to achieve stable levitation was attributed to 
flexibility of the guideway girders, and the widely accepted 
conclusion was that the guideway was simply too flexible to 
permit stable levitation. This paper sets out to dispel that 
notion using Routh stability analysis of a simplified 
magnetically levitated flexible structure.  

II. STABILIZING SIMPLE RIGID MAGLEV SYSTEMS 

A. Rigid Mass System 
In its most fundamental form, attractive mode or EMS 

(Electro-Magnetic System) magnetic levitation can be 
simplified to a single magnet levitating a rigid mass as 
illustrated in Figure 2.  

 
Figure 2 Levitation of a Simple Rigid Mass  
 

In this figure, z represents the air gap between the mass 
and the magnet, and z0 is a reference operating point for 
linearization. Current I is applied to the coils producing 
levitation force Flev. 

B. Fundamental modeling 
The electromagnetic model employed in the following 

analysis corresponds to a U-shaped magnet interacting with 
a U-shaped rail as illustrated in Figure 3. 
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Figure 3 U-Shaped Magnet and Rail 
 

For such a configuration, the electromagnetic force of 
attraction can be expressed as [1]: 
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In this expression, which was simplified due to assuming 
zero lateral offset, the symbols wNd ,,,0μ  represent 
respectively permeability, coil length, number of turns, and 
width of the coil and variables z, and I represent air gap and 
current.  The inductance of the magnet is expressed as: 
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C. Linearization 
For further analysis, the force expression can be 

linearized 0,[2] with respect to reference values for gap z0 
and current I0, using the first derivative components from 
the Taylor series expansion: 
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Thus a linear expression for the electromagnetic force is 
as follows: 

IkzkF iz +−≅  (4) 
where:  

⎟
⎠

⎞
⎜
⎝

⎛
⋅

+=
w

z
z

wdIN
ki π

μ 0
2

0

0
2

0 21
2
1  (5) 

2
0

2
0

2
00

3
0

2
0

2
0

2
21

2
1

z
dIN

w
z

z
wdIN

k z
⋅

−⎟
⎠

⎞
⎜
⎝

⎛
⋅

+=
π

μ
π

μ
 (6) 

Electromagnets are typically driven by current amplifiers 
intended to follow a current command ICmd, with is a current 
feedback gain Ka. Based on this model, the governing 
equation of the electromagnetic circuit is expressed as: 
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In (7), R is the resistance of the magnet coils, and L(z)  is the 
coil inductance defined previously. Note the presence of a 
back EMF term with gain iz kk . For simplicity we assume 

that Constant)( == LzL  near the nominal operating point 
of 0zz = .  

D. Model of a Simple Levitated Rigid Mass 
Consider a simple one-degree-of-freedom rigid model of 

the maglev system as shown in Figure 2. Equations of 
motion for the system can be expressed as: 
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Using the standard state-space [3] form (9), the equations of 
motion for the rigid system are expressed as shown in 
Equations (10) and (11). 
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Note that the characteristic polynomial of A (10) is as 
follows: 
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Based on (10) and (11) the transfer function can be 
calculated: 
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where: 
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When 
M
k z>>α , which is generally the case, then the 

approximation of (13) is quite accurate.  
The system has three real poles. One is positive, which is 

indicative of the inherent instability of EMS maglev 
systems. The pole α is associated with the electrical 
characteristics of the magnet and current feedback. The real 
pair ±p replaces the rigid body poles of the purely structural 
model. The value of p can vary significantly with gap and 
current.  

III. STABILIZING SIMPLE MAGLEV SYSTEMS 
It is a simple matter to show that the stabilization of the 

single rigid mass structure can be accomplished using a PD 
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compensator with positive gap feedback. Let the 
compensator have the form: 

sKKsC Dp += )( o  (15) 
The feedback structure considered is as shown in Figure 

4, where negative feedback is initially assumed. 

Figure 4 Basic Feedback Structure 
 

The PD compensator is an example of a dissipative 
controller [4]. When used in a simple feedback loop for a 
single magnet to control the variation of its own air gap, 
then it is called decentralized [5]. 

Based on the considerations above, the closed-loop 
transfer function for the rigid single mass system under PD 
control is: 
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The CL superscript designates closed-loop. The sufficient 
conditions for the stability of this system are determined 
using the Routh criterion [3], which produces the following 
conditions: 
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These conditions indicate the necessity for strictly 
negative gains KP and KD, in other words positive feedback, 
and moreover, that the gains have a minimum threshold 
magnitude for stability. Further, the satisfaction the first part 
of (17), the condition on KP, leads to 0<DK . 

A. Maglev as a simple flexible system 
As a first step toward evaluation of the impact of structural 
flexibility on control of a maglev system, a single flexible 
mode is introduced. Note that from a dynamics perspective, 
this mode could equivalently represent either guideway or 
vehicle flexibility. The new structural model is shown 
schematically in Figure 5. 

 

 
Figure 5 Simple Flexible Structure Maglev System 
 

 In this system Mmm =+ 21 still represents the overall 
weight of the initial system. The actuator model equation (7) 
remains the same. The spring constant k represents structural 
flexibility. The displacement resulting from structural 
flexibility is denoted by 2z , while the electromagnetic air 
gap is denoted by z . The new equations of motion become: 
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Similar to the notation of the rigid case, the following 
notation is introduced: 
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In state equation associated with these equations can be 
expressed as: 
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The C matrix of the state-space representation (9) depends 
upon the sensor locations. When the actuator and sensor 
pairs are located together, the pair is said to be collocated 
[4]. With regard to the present system, the collocated case 
has C matrix: 

]00001[=cC  (23) 
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 The so-called non-collocated1 case, in which the input 
is applied to mass m1 and the output is measured from mass 
m2 has: 

]00010[=nC  (24) 
 The D matrix is zero for either case. Applying the 

standard transformation from state-space to transfer function 
form, the open-loop transfer function for collocated plant is: 
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and: 
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The open-loop transfer function for non-collocated plant 
is: 
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As in the rigid case, it is observed that these transfer 
functions are unstable and non-minimum phase. For the 
non-collocated case there are no zeros, a condition that 
makes the system more difficult to stabilize because it has 
lower relative degree. 

Considering each of these systems in a feedback loop 
such as Figure 2, and performing a similar Routh analysis, 
one can evaluate and compare the stability conditions. 

B. PD Control of the Collocated Flexible System 
Under PD control, the closed-loop characteristic 

polynomial for the collocated flexible system (25) is as 
follows: 
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Here the CL superscript designates closed-loop, and the 
subscript designates collocated. Upon inspection, it is 
immediately clear that the feedback gains must be negative 
for stability. Routh array analysis of the closed-loop 
collocated system yields the following sufficient conditions 
for stability: 
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Thus it can be concluded that the exact same compensation 
that stabilizes the rigid system, will also stabilize the flexible 
 

1 Since the system considered has only 2 masses, this is an extreme 
example of non-collocation. Actual system with approximate collocation 
may be more forgiving 

 

system. As in the rigid body case, the satisfaction the first 
part of (30) leads to 0<DK . 

The root locus diagram of Figure 6 illustrates typical 
stabilization of the collocated system using PD control. Note 
that, for a fixed compensator zero location (fixed KD), the 
system is stable for all values of KP less than the critical 
value identified in (30). 

 
Figure 6 Root Locus of the PD Controlled Collocated System 

C. PD Control of the Non-Collocated System 
If one evaluates the denominator of the non-collocated 

system’s closed-loop transfer function, it is found that in 
contrast to the collocated case, only the zero degree and first 
degree terms are influenced by the controller.  
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Moreover, unlike in to the collocated case, a necessary 
condition for stability is that: 
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which is usually satisfied in practice. More critically, the s3 
term in the first column of the Routh table is zero, indicating 
that the system can be marginally stable at best under PD 
control2, thus a PD compensator is unable to stabilize the 
system. Interestingly, the remaining terms indicate that the 
requirements for marginal stability are the same as the 
stability requirements (17) for the collocated case.   

IV. EXPERIMENTS 

A. Single DOF Test Rig 

A single degree of freedom test rig was constructed using 

 
2 Not necessarily the case in actual system with non-zero damping and 

with approximate collocation 
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one magnet and a short section of rail from the Old 
Dominion University Maglev system [6]. The magnet is 
capable of producing about 6000 lbs of lift force. The 
magnet is fixed in place and a section of track is suspended 
overhead from a lever arm, via a 4-bar linkage that allows 
vertical movement of the track, but keeps it aligned with the 
magnet. Weights are hung from the far end of the lever arm 
with a 4 to 1 mechanical “disadvantage,” such that the 
magnet(s) have to produce 4,000 pounds of attractive force 
to lift 1,000 pounds for example. The rig is fitted with load 
cells to measure vertical and lateral load. The lever arm can 
be locked in place using screw jacks to permit static testing 
of the magnets, for example to verify magnet force plots. An 
eddy current based sensor is used for gap measurement. 
 

 
Figure 7. Simple Schematic of the Maglev Test Rig 
 

The test rig was designed to exhibit structural flexibility 
representative of a full scale system. For lumped parameter 
analysis, a simplified representation of the system’s 
flexibility was considered. In effect, this model simplifies 
the structure to three point masses connected by two discrete 
springs as illustrated in Figure 8.  

Bode plots for a collocated (based on mass 1) and non-
collocated (output at mass 2) model of the system are given 
in Figure 9. It can be seen that the non-colocated case is 
similar to collocated, with the exception that the pair of 
zeros at 80Hz is not present in the non-collocated case. This 
is similar to the simple two mass example presented earlier.  
Note that this plot represents the “levitated” case, that is, 
when the entire system is floating in space. 

 

 
Figure 8. Three Mass Model of the Test Rig 

 
Figure 9. Analytical Bode Plots for the Levitated Test Rig 
 

In practice, it was not practical to experimentally validate 
the model represented in Figure 9. Instead, the open-loop 
model of the non-levitated case was verified. This 
corresponds to the load M resting on the ground, in effect 
locking it in place which would be equivalent to setting x3 to 
zero.  

A Hewlett Packard dynamic signal analyzer was used to 
verify this case using 3 different air gap settings. The test 
was performed by driving the magnet current with a sine 
sweep input while monitoring the air gap reading. The 
analytical and experimental results were found to be in close 
agreement as shown in Figure 10.  
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Figure 10 Experimental and analytical data for three different cases gap z = 
0.4, z = 0.55, and z = 0.7[in] (Thin solid lines are analytical) 

B. Levitation Control of the Test Rig 

Numerous successful levitation experiments have been 
conducted using the ODU single degree of freedom test rig. 
Controllers are implemented using a Matlab® application 
known as xPC Target®. With this application, a compensator 
constructed graphically using Matlab’s Simulink® 
environment on a host computer, can be converted to C-code 
and compiled, then uploaded to the target machine. In this 
particular test configuration a desktop PC computer was 
used as a host. A PC104 single based computer with Intel 
468 series processor was used as a target.  Communication 
between these two devices was established via Ethernet.  
The PC104 computer was equipped with a PCI based 
National Instruments data acquisition card. The sample rate 
for was set to 20 kHz. The high sample rate was used to 
allow over-sampling of the measurements so that digital 
filters could be used to help reduce signal noise.  

Typically, to obtain acceptably stable results, controller 
designs had to be slightly more conservative in terms of gain 
and phase margin than analysis suggested. It is believed that 
this was primarily due to discrete time implementation, the 
presence of anti-aliasing filters, and electromagnetic non-
linearities. 

 In the interest of brevity, the experimental 
implementation is not exhaustively covered here; however a 
typical result is presented in Figure 11. The controller was 
designed as a PD controller, based on the principles 
described in this paper. After suitable performance was 
achieved, a low gain error integrator term was added to 
reduce steady state error. The commanded gap value was 
0.4”.  

 
Figure 11. Typical Test Rig Levitation Using PID Control 

V. CONCLUSIONS 
This paper has presented simple analysis to explore the 

stability of maglev systems with structural flexibility. 
Although not discussed exhaustively in this paper, the 
results can be extended to more complex flexible systems. 
Initial results with a single degree of freedom test rig 
corroborate the analytical results. The main conclusion is 
that PD control can always stabilize a flexible maglev 
system providing that actuators and sensors are collocated, 
and subject to these restrictions and providing that the mass 
and electrodynamics are the same the exact same 
compensator that stabilizes a rigid maglev structure will also 
stabilize the corresponding flexible structure.  These 
principles have been successfully demonstrated on a single 
magnet laboratory test rig, a 5000 pound 6 magnet 
laboratory test bogie, and finally on the full scale 12 magnet 
ODU maglev on the elevated guideway. 
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