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Abstract— A non-iterative Nonlinear Model Predictive Con-
troller (NMPC) for formation control of helicopters is proposed
and validated through simulations. The method is based on
minimizing the error of geometrical formation parameters
specifically designed for helicopters. These parameters are used
to form desired three-dimensional (3D) configurations among
members of a helicopter group. This approach is tested for
both initializing and maintaining the desired formation. Also,
simulation has been conducted considering the presence of en-
vironmental disturbances and model uncertainties. Compared
to the similar approaches, the method has a substantially
smaller computational cost. In addition, it is shown that unlike
the conventional NMPC optimization methods, the presented
framework does not require any iteration. This method inher-
ently possesses the same computational cost for all the time
steps throughout the whole time period of the flight scenario.
These features make this framework a suitable choice for
implementation for formation control of helicopter groups.

I. INTRODUCTION

In recent years, formation control of autonomous vehicles

has become a challenging interdisciplinary research topic.

Different aspects of this problem such as navigation of robot

swarms [1], [2], collaborative maneuvers [3], [4], [5], [6],

[7], payload transportation [8], initialization and reconfig-

uration [9], [10], inter-telecommunication and information

flow [11], [12] have been studied by researches from diverse

scientific fields. In this research, we consider the formation

control problem for a group of helicopter agents. Helicopters

have excellent maneuvering capabilities. However, their com-

plex and non-minimum phase dynamical behavior makes

their formation control a challenging problem.

Some aspects of the formation of aerial vehicles in general

and helicopters in particular have been addressed in previous

researches. The formation strategy considered here is based

on the well-known leader-follower technique, which is suc-

cessfully applied in the former researches. This technique

is used mostly for control of systems with two dimensional

(2D) maneuvering capabilities. Specially the mobile robots

have been a matter of interests for many researchers [5],

[7], [13], [14]. Generally, a leader-follower framework must

fulfill two main requirements. Firstly, the members must

be able to track each other sequentially. Secondly, the

framework must be able to integrate the collision avoidance

feature. In order to uniquely define the desired pattern in the

working environment, two base schemes are required. These

schemes, whose simple 2D versions were introduced for mo-

bile robots [13], are known as the l−α and the l−l schemes.

Mehdi Saffarian is a graduate student and Farbod Fahimi is an assistant
professor at the Mechanical Engineering Department, University of Alberta,
T6G 2G8, Canada. (saffaria,ffahimi)@ualberta.ca

The l−α scheme is required to maintain the distance of one

helicopter with respect to another neighboring leader. The

l − l scheme is used to constrain one agent with respect to

two neighboring leaders. Different versions of these schemes

are developed by researchers based on robot capabilities and

the required performance of the formation scenario [5], [14],

[15].

Nonlinear Model Predictive Control (NMPC) has become

one of the most attractive methods for researchers to tackle

the formation control problem. Initially developed for the

fairly slow systems such as industrial chemical processes,

and reactors and plants, the MPC method provides a sim-

ple, robust and flexible optimum control framework for an

integrated system through a time horizon. Up to recent

years, the large computational cost of this method prevented

researchers and engineers to implement it for the fast con-

trol systems such as manipulators, mobile robots or aerial

vehicles.

In addition, the fact that the optimization process of the

method results in unequal calculation times was considered

as a drawback for utilization of NMPC controllers, specifi-

cally for nonlinear systems with large amount of nonlinearity

through their entire working range.

Several attempts has been reported to provide fast algo-

rithms for NMPC controllers. In [16], the researchers de-

veloped a control framework by expanding both the outputs

and control commands of the nonlinear system using limited

terms of the Taylor series. To demonstrate the application,

the model is adopted for the flight dynamics and used to

control different flying systems. Another work is reported

in [10], where researchers design a Multi-Input-Multi-Output

(MIMO) predictive control strategy. The stability of this

approach is achieved by penalizing the end state in the

framework. This controller is tailored to be used in the

reconfigurable control systems that are exposed to actuator

saturations. The application of this controller is demonstrated

by short-term control of a civil aircraft. Finding a nonlinear

model for dynamical systems with a desired accuracy is

not always achievable. The work reported in [17] explains

the application of pseudo-partial derivatives method to dy-

namically linearize the nonlinear model through the control

horizon. The input-output data are used for calculation of

the derivatives and in steady state conditions, the method is

shown to have a zero tracking error performance.

In this research, we used the GMRES/Continuation

method for the problem of formation control of helicopters.

This method is a combination of the Continuation method

for finding dynamic response of smooth systems [18] and
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the Generalized Minimum Residual Method (GMRES) [19],

which is a fast solver for systems of linear equations. In

the research reported in [20] and developed further in [21],

the combination of these two techniques for solving the

nonlinear receding horizon control problems is presented.

The method is shown to be a suitable solution for real-

time application of receding horizon control for fast response

systems.

The current research is the first work in which the prob-

lem of formation control is tackled through the continua-

tion/GMRES method. In the next sections, first we introduce

the nonlinear dynamic model of the helicopter used in our

work. Next, we briefly introduce our formation schemes,

which will be used in the design procedure of the controller.

After a brief introduction of both the continuation and the

GMRES methods, a control framework is developed based

on a combination of these two techniques. Finally, the per-

formance of the method is studied through some simulated

flight scenarios. The method is also analyzed for associated

computational cost of the real-time implementation and a

comparison is made with the former analysis of classical

gradient descent method.

II. DYNAMICS OF A HELICOPTER

The simplified dynamic equations of a helicopter, which

are detailed enough for control development for quasi-steady

maneuvers, are introduced. The aerodynamic tractions are

assumed to be the control inputs. The spatial configuration of

the helicopter is shown in the Fig. 1. Using the Newton-Euler

equations of motion, one can link the absolute linear and

angular accelerations of the helicopter to the aerodynamic

tractions exerted by the main and tail rotors. The inertial

position of the helicopter is defined by vector pI , where

the index I indicates the vector is expressed in the inertial

frame {I}. The equations for the linear acceleration of the

helicopter can be formed as the following:

p̈I =
1

m
[RIB(fdB + faB) + fiI ] (1)

where RIB is the transformation between the inertial and the

body frame B defined by a successive roll (φ), pitch (θ), and

yaw (ψ) rotations. The vectors fdB , faB , fiI are representing

the drag forces, the aerodynamic tractions produced by

the main and tail rotors, and the weight of the helicopter,

respectively. As the subscript B indicates, these vectors are

expressed in the body frame {B}. Considering the rotational

kinematics of the helicopter, the following relation hold

between the helicopter’s angular velocity vector and the rates

of the Euler angles:

ωB = EγB (2)

where

E =





1 0 − sin θ
0 cosφ cos θ sinφ
0 − sinφ cos θ cosφ



 (3)

Fig. 1. The Spatial Configuration of the Helicopter

and γB = [φ̇, θ̇, ψ̇]T . The equation for rotational dynamics

of the helicopter can be formulated as follows:

ω̇B = I−1(t − ωT
B × IωB) (4)

The vector t consists of the moments caused by the aero-

dynamic tractions applied to the helicopter fuselage. I is the

helicopter’s moment of inertia tensor. The Eqs. (1)-(4) are

used to form the nonlinear relationship for the helicopter

dynamics:








ṗI

p̈I

γB

ω̇B









=









03×4
1

m
RIBA1

03×4

I−1A2









u+









ṗI
1

m
(RIBfdB + fiI)

E−1ωB

−I−1(ωT
B × IωB)









(5)

where the input vector, u = [Mφ,Mθ, TM , TT ]T , consists of

the main rotor’s roll moment, pitch moment, and thrust; and

the tail rotor thrust, respectively. The matrices A1 and A2

are utilized to rearrange the equations of motion:

A1=





0 0 0 0
0 0 0 −1
0 0 −1 0



 A2=





1 0 0 0
0 1 −lr 0
0 0 −km lt



 (6)

III. DEFINITION OF FORMATION PARAMETERS

Two schemes are developed that allow the use of triangular

building blocks to uniquely define any formation mesh with

triangular cells. The number of formation parameters (4) for

the schemes is chosen to match the number of control inputs

for a helicopter (4). Here, we briefly formulate the parameters

of each of these schemes in terms of the helicopters’ state.

A. The l− α Scheme

In order to constraint two helicopters with respect to each

other, we try to formulate the relative spatial position of two

points named as control point. For each member of the group,

we define a control point, which is located on the helicopter’s

main axis with an offset of d with respect to the main rotor

center. The following vector relation is held for the follower’s

control point position (see Fig. 2):

pc1
+ d1 + l12 + z12 = pc2

+ d2 (7)
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Fig. 2. Formation Parameters of Two Neighboring Helicopters

In the above relation, the vectors pc1
and pc2

indicate the

position vectors of the leader and the follower helicopters,

respectively. The vector l12 + z12 is the relative distance

between the leader and the follower control points. The

vector di is the relative position of the control point with

respect to center of gravity of helicopter i. Representing the

sum of the last two terms on the left hand side of the Eq. (7)

with p12 and expressing all the terms in the inertial frame,

one can write:

p12 = R−1

If (pc2
− pc1

+ RI2d − RI1d) (8)

In Eq. (8), the matrices RI1 and RI2 represent the trans-

formation between the inertial coordinate system and the

leader ({1}) and the follower ({2}) body coordinate frames,

respectively. The frame f is defined attached to the leader’s

control point, with its xy-plane always parallel to the hori-

zontal plane of the inertial frame, and its xf is in the x1y1-

plane of the helicopter’s body frame. The matrix RIf is

defined as a transformation between the frame f and the

inertial system. Using the elements of the vector p12, three

geometrical parameters of the l − α formation scheme are

defined as follow:

l12 =
√

p2
12x

+ p2
12y

α12 = arctan(p12y
/p12x

) (9)

z12 = p12z
ψ2 = ψ2 (10)

In Eq. (10), we have also defined the yaw angle of the fol-

lower helicopter as our fourth control parameter. This results

in a balanced input-output relation, where the dimension of

the control input vector is equal to the number of control

output parameters. As a result, the l − α formation scheme

output is assembled in the following form:

y = g(x) =
[

l12 α12 z12 ψ2

]T
(11)

B. The l− l Scheme

Fig. 3 shows the configuration of the l − l scheme. As

for the l − α case, here, we constrain the control point of

Fig. 3. Formation Parameters of Three Neighboring Helicopters

one helicopter with respect to the control points of two other

neighbors. In order to keep the ability of each agents to link

with two different schemes simultaneously, the definition of

the control point has been kept consistent for both cases. The

following relation is held for point p3, which is the control

point of the follower:

pc1
+ l13 + d1 = pc3

+ d3 (12)

Here, the vector l13 is the relative distance between the

control points of the follower and the leader 3. The definition

of the other vectors are the same as the definition for the

l−α scheme. The first two formation parameters are defined

as the length of the vectors l13 and l23 with the following

formulations:

l13 = |l13| = |pc3
+ RI3d− pc1

− RI1d| (13)

l23 = |l23| = |pc3
+ RI3d− pc2

− RI2d| (14)

The third parameter, named β123 is defined as the angle

between the plane of p1p2p3 and the plane that is formed by

the vectors l12 and the axis zI . Defining the normal vectors

of theses two planes by n1 and n2, respectively, we can

write:

n1 = l13 × l12 n2 = zI × l12 (15)

β123 = arccos
n1.n2

|n1||n2|
(16)

Defining ψ3 as the follower’s yaw angle, the following vector

represents the parameters of the l − l control scheme:

y = g(x) = [ l13 l23 β123 ψ3 ]T (17)

Note that the defined formation parameters are, in general,

a function of time. This feature must be exploited to plan a

change in formation such that no collision happens.

IV. DESIGN OF THE FORMATION CONTROLLER

In this research, the continuation/GMRES method ([20]

and [21]) is used as the design platform for formation

control of the helicopter groups. The method combines

both the continuation and GMRES approaches to come up

with an NMPC framework with an acceptable computational

load. The former is used to express a desired trace for

the control input trajectory and designed to guarantee the
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convergence of the control force to a value that optimizes

a well-defined cost function. The latter is used to form

a fast method for integrating the trace path of the input.

The main idea is to approximate the time derivative of

the input vector through substituting its equivalent from the

complete difference expansion of the input. The complete

difference is approximated using the desired trend defined by

the computational method. Through this approach, the input

trace equation is converted into a system of linear algebraic

relations, which are solved for the time trend of the input

vector usung the GMRES algorithm. The GMRES method

itself is a fast numeric solver for linear systems of algebraic

equations based on minimizing the norm of the residual.

As a first advantage, by significantly reducing the com-

putational cost, this method makes the NMPC framework

a feasible solution to be used for fast response systems.

Second, by eliminating the iteration in the optimization

process, the method equalizes the required computational

time for all the time steps through the horizon.

In the following sections, first we briefly introduce the

NMPC formation framework for the helicopter groups. Then,

we develop different subroutins of the GMRES/Continuation

method for implementation in the helicopter groups.

A. Nonlinear Model Predictive Control Framework

First, we discretize the nonlinear helicopter dynamics

(Eq. 5) and its output model (Eqs. 11 or 17) in the following

form:

xi+1 = f(xi,ui) yi = g(xi) (18)

where f(xi,ui) = xi + fc(xi,ui)∆t. Here, fc(xi,ui) is the

right hand side of Eq. (5), and ∆t is the horizon time step.

In the NMPC approach, we are interested to find a set of

control inputs for a time horizon that optimizes the value of

a cost function. For formation control of the helicopters, the

cost function penalizes the deviation, e, of the formation

parameters from their desired values, in addition to the

excessive values for the control forces u. The future stepwise

control input ui (i = 0, ..., Nt − 1) must be found such

that the cost function is minimized. The relation between

the states and the control inputs (the discretized dynamics of

the helicopter) must affect the solution to the optimization

problem. This relation is incorporated by defining costates

λi’s, and defining the cost function as:

J =
1

2
eT

Nt
PeNt

+

Nt−1
∑

i=0

[
1

2
(eT

i Qei + uT
i Rui]

+λT
i+1(−xi+1 + f(xi,ui)) (19)

where e = y−yd. In Eq. (19), Nt is the horizon length and

P, Q and R are the weight matrices.

It should be noted that, in this article, we assumed no con-

straint in the cost function. However, it is easy to incorporate

the saturation of the control inputs as constraints. Also, one

could incorporate obstacle avoidance by adding a potential

function, penalizing the helicopter’s distance to obstacles, to

the cost function (19).

To simplify the notation, we define the term H as follows:

H (xi, ei,ui) =
1

2

(

eT
i Qei + uT

i Rui

)

+λT
i+1f (xi,ui) (20)

This results in the following simplified form for J :

J=
1

2
eT

Nt
PeNt

−λT
Nt

xNt
+

Nt−1
∑

i=0

[H(xi, ei,ui) − λT
i xi](21)

Since λi’s are being multiplied by zero terms in Eq. (19)

[see Eq. (18)], they can be arbitrarily selected to simplify

the calculations. They are defined as follows:

λT
Nt

= eT
Nt

P
∂yNt

∂xNt

(22)

λT
i = eT

i Q
∂yi

∂xi

+
∂f(xi,ui)

∂xi

i = Nt − 1, ..., 0 (23)

Taking a complete difference of the cost function and plug-

ging in the above terms for the costates result in the following

simplified form for the term dJ :

dJ =
∂H0

∂y0

dy0 +

Nt−1
∑

i=0

∂Hi

∂ui

dui (24)

where
∂Hi

∂ui

= uT
i R + λ

T
i+1

∂f(xi,ui)

∂ui

(25)

B. The Continuation/GMRES Method

In this section, we introduce the continuation method that

is utilized to solve the optimization problem in a non-iterative

manner. Continuation method is the mean that enables one

to exactly trace the optimum solution throughout the control

time. The key point is to constrain the input dynamics

and express the dependency of the optimum solution with

time. As the first step, we define the following vectors by

assembling the control and state vectors through the whole

horizon in the U and X vectors, respectively:

U = [uT
0 , . . . ,u

T
Nt−1]

T ,X = [xT
0 , . . . ,x

T
Nt−1]

T (26)

Note that we discretized the time from now to Nt time steps

ahead with the time step of ∆t. Hence, each of the indices

0 to Nt − 1 represent the corresponding snap shot in the

whole interval of [t . . . t+ (Nt − 1)∆t]. From the previous

section, the optimum answer of the cost function presented

in Eq. (21) is a set of control inputs that results in vanishing

the following vector function (see Eq. 24):

F(U(t),X(t)) =













∂H
∂u

(x0,u0,λ1)

∂H
∂u

(x1,u1,λ2)
...

∂H
∂u

(xNt−1,uNt−1,λNt
)













= 0 (27)

In Eq. (27), the general form of the function F for a receding

horizon control problem is defined. Here, ∂H/∂u can be
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Fig. 4. Triangular Formation Maneuver of 6 Helicopters

determined using Eq. (25). The following dynamic behavior

is suggested for the above equation:

Ḟ(U(t),X(t)) = −ζF(U(t),X(t)) (28)

where U(0) is chosen to satisfy F(U(0),X(0)) = 0n×1

and ζ > 0. The above equation possesses an stable response

and, with the assumed initial condition, it guarantees that the

vector F remains zero through time. Expanding the term Ḟ

in Eq. (28) results in:
(

∂F

∂U

)

U̇ =

(

−ζF −
∂F

∂X
Ẋ−

∂F

∂t

)

(29)

The GMRES method is used to find the value of U̇ that

minimizes the error between the two sides of Eq. (29). To

speed up the calculation of ∂F/∂U, ∂F/∂X, and ∂F/∂t
a forward difference approximation is used [21]. Once U̇

is determined, the new control command is calculated using

U(t + ∆t) = U(t) + U̇(t)∆t. The first element of U is

applied to the system. Then, U is shifted (uk = uk+1, k =
0, ..., Nt − 2, uNt−1 = uNt−1) and used as an initial guess

for the next step in time.

V. SIMULATION RESULTS

In this section, the simulation result of the application of

the method for formation control of helicopters is presented.

As an illustrative example, these schemes are used to bring

a group of 6 helicopters into a triangular formation in the

presence of the parameter uncertainties and disturbances. The

helicopters start from rest with an initial error in formation.

We used the specifications of the Ikarus ECO electric model

helicopter provided in [22].

The result is demonstrated in Fig. 4. Except the leader that

is flying at the front, all the group members are exposed to

both 20% parameter uncertainty and a wind gust. The wind

gust exists between the 20th and 30th seconds of the 100
second flight scenario. It should be noted that the change of

the flying path for the whole group of followers results in

a least deviation from the desired triangular pattern of the 6
helicopters.

VI. REAL-TIME FEASIBILITY OF THE CONTROL

SCHEMES

For real-time applications, the computational cost of the

method must be within the available processing power used

for similar flight control applications. In this section, we are

going to study our purposed algorithm in terms of its required

FLoating point OPerations (FLOPs) and compare it with the

processing power of commercial processing units available

for autonomous flight controls.

Overall, we can write the following set of equations for

the required FLOPs for the l − α and l − l controllers,

respectively:

OP=6063Nt + 4006kmaxNt + 21kmax + 32

+

kmax
∑

k=1

[6k2 + 60Ntk + 7k] for l− α (30)

OP=6879Nt + 4544kmaxNt + 21kmax + 32

+

kmax
∑

k=1

[6k2 + 60Ntk + 7k] for l − l (31)

In these equations, OP is the number of required FLOPs

for the routine that calculates the control commands at each

sampling time.

The first two terms in Eq. (30) and (31) are resulted from

assembling and disassembling the input control horizon from

series of vectors to one vector and vice versa. The summation

term is resulted from the calculation inside the GMRES

routine. The other terms are resulted from initialization

section of the algorithm and overhead terms of the routines.

Note that the difference of the l − α and l − l computation

cost is caused by the difference in the computation cost of

yi and ∂yi

∂xi
terms for each schemes.

As can be seen, the FLOPs formulas are nonlinear rela-

tions in terms of kmax and Nt. If we examine these relations,

we can see that the computation cost is more sensitive to

the horizon length than to the iteration number. This is

an expected result, because all the computations must be

repeated for all of the horizon steps. Also, a large kmax has a

substantial effect on the calculation effort via the summation

term in Eq. (30) and (31). However, the GMRES method

converges to an acceptable result using a small number for

kmax.

This term appears in the second term of the Eq. (30)

and (31) along with Nt, which dominates the computa-

tion cost of both the controllers. Examining the two equa-

tions (30) and (31), we can see that both the first and second

terms of the l − l possess 13% higher computation cost

compared to that of the l−α controller. Using the mentioned

parameters, the resulting OP of both the l − α and l − l
controller for different values of horizon length and iteration

number are calculated and recorded in Table I. For a feasible

implementation of the controllers in real-time systems, the

following relation must be true, OP ≤ CP.∆t, where CP
indicates the computing performance of the processor.

To compare the computation cost of both the l − α and

l−l controllers, with the capabilities of the available compu-

tational power, we consider a 1.8 GHz Intel Pentium M 755

processor that can be found on PC104 embedded computers

that are available in our laboratory. The assumed processor

has 1 Giga Floating Operations Per Second (GFLOPS)

calculation capacity.
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TABLE I

CALCULATED FLOPS NUMBER OF THE l − α AND l − l CONTROLLERS

FOR DIFFERENT HORIZON LENGTH AND ITERATION NUMBER

kmax Nt l − α l − l

2
5 20629 23319

20 82339 93099

5
5 21676 24366

20 86086 96846

The iteration number, the horizon number of steps, and the

sampling time for the simulation presented in this paper are

kmax = 2, Nt = 20, and ∆t = 0.01 second. To calculate the

control input for the l – l scheme for one real-time second

9309900 FLOPs are required (Table I). This is 107.4 times

less than the processing power of the assumed processor that

does 1 GFLOPS. This ensures real-time feasibility of the

purposed approach.

The same simulation has been previously done in [23],

[24] using the gradient descent method approach, which

solves Eq. (27) for U using the iterative Newton’s method.

The iteration number required for convergence varied

throughout the simulation with the maximum number being

29 for the l – l scheme where the wind disturbance was at

its maximum. This means that the gradient decent method

has been 14.5 times slower than the C/GMRES method for

the presented simulation.

VII. CONCLUSION

Geometrical formation control schemes, tailored specif-

ically for autonomous helicopters, were introduced in this

paper. The geometrical schemes provide building blocks with

which any three-dimensional formation mesh can be defined

for arbitrary number of helicopters. Nonlinear Model Pre-

dictive Method (NMPC) has been used to design formation

controllers to maintain the formation. Although not shown

in the paper, obstacle avoidance can be achieved by adding

potential functions that penalize the distance of the helicopter

to obstacles to the NMPC optimization cost function, and

the input saturation can be addressed by adding Lagrange

multipliers and the constraints to the NMPC Hamiltonian

function. In this paper, the efficient Continuation/GMRES

(Generalized Minimum REsidual) method has been used

to lower the computation load to an applicable level. The

applicability of this method for formation control has been

shown by number of FLOPs (FLoating point OPerations)

analysis required for the real-time calculations.
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