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Abstract— A novel adaptive control law for nonlinear Hamil-
tonian Multi-Input Multi-Output (MIMO) systems with uncer-
tain parameters in the actuator modeling as well as the inertia
and/or the Coriolis and centrifugal terms is developed. The
physical properties of the Hamiltonian systems are effectively
used in the control design and the stability analysis. The
number of the parameter estimates is significantly lowered
as compared to the conventional adaptive control methods. A
smooth projection algorithm is applied to keep the parameter
estimates inside a singularity-free region. The developed control
scheme is applied for attitude control of a spacecraft with both
the inertia and the actuator uncertainties.

I. INTRODUCTION

We consider a multi-input multi-output (MIMO) nonlinear

Hamiltonian system represented by the second-order differ-

ential equation

H(q)q̈ +C(q, q̇)q̇+ g(q) = F (1a)

F = D(q)u (1b)

where q∈R
n is the generalized coordinates vector, H ∈R

n×n

is the (symmetric positive definite) inertia matrix, Cq̇ is

a nonlinear vector of Coriolis and centripetal forces, and

g ∈ R
n is the gravity vector. F ∈ R

n is the generalized force

and is generated by a control input vector u ∈ R
m and the

actuator matrix D ∈ R
n×m. For full tracking control, it is

generally required that n ≤ m and D has full row rank.

Expressing dynamics of systems in the form of Eq. (1),

rather than the state-space form, has several advantages.

Equation (1) can be easily derived by applying Lagrange’s

equation, and its form is so general that it can represent

various kinds of dynamic systems, such as a multilink robot

manipulator [1], [2] and a spacecraft [3]–[5], etc. In addition,

there is a physical property that the matrix Ḣ −2C is skew-

symmetric. This property is extremely useful in designing

advanced control schemes.

Suppose now that the system matrices have uncertainties

in their parameters and can be expressed as

H(q,Θs) = Hn(q)+ H∆(q,Θs) (2a)

C(q, q̇,Θs) = Cn(q, q̇)+C∆(q, q̇,Θs) (2b)

g(q,Θs) = gn(q)+ g∆(q,Θs) (2c)

D(q,Θa) = Dn(q)+ D∆(q,Θa) (2d)

where the matrices with a superscript of ‘n’ are with their

known nominal values, Θa ∈ R
p is a vector of unknown
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bounded constant uncertainties in the actuator matrix D,

and Θs ∈ R
q is in the other system matrices/vector, H,C,

and g. We also assume that, by proper definition of the

unknown parameters Θs and Θa, the uncertain matrices

H∆(q,Θs),C
∆(q, q̇,Θs),g

∆(q,Θs) and D∆(q,Θa) are linearly

dependent on Θs, and Θa, respectively.

Adaptive control for special cases where the actuator

modeling does not have uncertainties, that is D∆ = 0, has

been intensively studied in the literature (see for instance

Ref. [1]). However, adaptive control for more general cases

with D∆ 6= 0 does not seem to have received much attention

in the literature, even though this uncertainty may result in

significant degeneration of controller performance. Ge [6]

has derived an adaptive control law for multilink manipulator

systems with uncertainties in the control input term, but

the uncertainty must be in the input scalings, and thus the

uncertainty matrix must be diagonal when represented in

multiplicative form. (Or it can be said that D∆ = ∆Dn where

∆ is a diagonal matrix.) Chang [7] has provided an adaptive,

robust tracking control algorithm for nonlinear MIMO sys-

tems which is based on the “smooth projection algorithm,”

which has also been used in [8] and [9] for adaptive control

of SISO systems. More recently, one of the authors [10], [11]

has also provided an adaptive control scheme based on the

smooth projection algorithm which is applied to spacecraft

attitude tracking with uncertain misalignments/inertia of the

actuator flywheels. However, these previous results [7], [10],

[11] are based on purely mathematical approaches and do

not exploit the useful physical properties of the Hamiltonian

systems. More significantly, they considered MIMO systems

represented by the differential equations without any terms

in front of the highest derivative of the state variable vector,

like the state-space form. Therefore, in their methods, Eq. (1)

would need to be converted as

q̈ = −H−1Cq̇−H−1g + H−1Du, (3)

in which the uncertain matrices are multiplied to each other.

Therefore, in order to design adaptive laws based on the

linear dependency of uncertainties, their methods need a

“over-parameterization”, which means they need to estimate

the combinations of the elements in Θa and Θs, and thus the

number of parameter estimates would significantly increase.

In the present paper, an adaptive control algorithm for the

general case where the uncertain matrices in Eq. (2) are all

nonzero is developed using the smooth projection algorithm,

which keeps the parameter estimates inside a properly de-

fined singular-free convex set. The proposed adaptive law

exploits the physical properties of the Hamiltonion system
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and has a more compact form with a smaller number of

parameter estimates. The proposed method is then applied for

a spacecraft attitude control problem with inertia/actuator un-

certainties. Finally, numerical examples with the spacecraft

are provided to validate the proposed law.

II. ADAPTIVE CONTROL LAW

The first part of the derivation of the adaptive control

law follows the standard design procedure for Hamiltonian

systems in [1], [4]. Let us assume the desired trajectory

qd(t), q̇d(t) and q̈d(t) to be bounded. The tracking error

vector is defined as q̃ , q−qd and a measure of tracking s

and the reference velocity q̇r are defined as

s , ˙̃q+ Λq̃ = q̇− q̇r, (4)

and

q̇r , q̇d −Λq̃, (5)

where the matrix −Λ is assumed to be Hurwitz. Let Θ̂∗ be

the parameter estimate vector and let Θ̃∗ , Θ̂∗ −Θ∗ be a

parameter estimate error vector, when ∗ is a or s.

As suggested by Slotine et. al. [1] from a physical insight

that q̇T Hq̇ is the system’s kinetic energy, the following

Lyapunov function candidate is defined as

V (t) =
1

2

[

sT Hs+ Θ̃T
a Γ−1

a Θ̃a + Θ̃T
s Γ−1

s Θ̃s

]

(6)

where Γa,Γs are positive definite weighting matrices.

Differentiating V (t) with respect to time and using the

skew-symmetry property of the matrix Ḣ − 2C to replace

the term 1
2
sT Ḣs with sTCs, one can have the following

expression:

V̇ = sT (Du−Hq̈r −Cq̇r −g)+ Θ̃T
a Γ−1

a
˙̃Θa + Θ̃T

s Γ−1
s

˙̃Θs. (7)

When the actuator matrix D is exactly known (i.e., D∆ = 0)

and has full row rank (i.e., rank(D) = n), one can easily

design an adaptive control law using the methods proposed

in the previous works [1].

However, since D is assumed to contain unknown param-

eters as well as H,C and g, a novel control law is proposed

as follows:

(Dn + D̂∆)u =
(

(Hn + Ĥ∆)q̈r +(Cn + Ĉ∆)q̇r

+(gn + ĝ∆)−Kds
) (8)

where the matrices/vector with a ‘hat’ symbol are constructed

using the parameter estimates Θ̂a and Θ̂s instead of the

(unknown) actual parameters. Kd is a gain matrix which is

a positive definite. When the matrix Dn + D̂∆ is assumed to

have full row rank, the (weighted) minimum norm solution

is given by

u = (Dn + D̂∆)†
(

(Hn + Ĥ∆)q̈r +(Cn + Ĉ∆)q̇r

+(gn + ĝ∆)−Kds
) (9)

where (·)† denotes the (weighted) pseudo-inverse of a matrix

[5], [11].

The control law (9) leads to

V̇ = sT
[{

(Dn + D̂∆)− D̃∆)
}

u− (Hn + H∆)q̈r − (Cn +C∆)q̇r

−(gn + g∆)
]

+ Θ̃T
a Γ−1

a
˙̃Θa + Θ̃T

s Γ−1
s

˙̃Θs

= sT
[

(Hn + Ĥ∆)q̈r +(Cn + Ĉ∆)q̇r +(gn + ĝ∆)−Kds

− D̃∆u− (Hn + H∆)q̈r − (Cn +C∆)q̇r − (gn + g∆)
]

+ Θ̃T
a Γ−1

a
˙̃Θa + Θ̃T

s Γ−1
s

˙̃Θs

= sT
[

H̃∆q̈r + C̃∆q̇r + g̃∆ −Kds− D̃∆u
]

+ Θ̃T
a Γ−1

a
˙̃Θa + Θ̃T

s Γ−1
s

˙̃Θs

= −sT Kds+ sT (H̃∆q̈r + C̃∆q̇r + g̃∆)− sT D̃∆u

+ Θ̃T
a Γ−1

a
˙̃Θa + Θ̃T

s Γ−1
s

˙̃Θs

(10)

Since the uncertainty matrices/vector are assumed to

depend linearly on Θ’s, one can define known regressor

matrices (in fact, row vectors) Ys = Ys(q, q̇, q̇r, q̈r,s) ∈ R
1×q

and Ya = Ya(q, q̇, q̇r, q̈r,s,u) ∈ R
1×p such that

sT (H∆q̈r +C∆q̇r + g∆) = YsΘs (11)

and

−sT D∆u = YaΘa (12)

Notice that the definition of the regressor matrix Ys in

Eq. (11) is slightly different from that in the previous

works by Slotine [1], [3]. By including s in the regressor’s

definition, the size of the regressor Ys becomes smaller than

that of Slotine’s works where the regressor has a size of

n×q.

The time derivative of V then becomes

V̇ = −sT Kds+YsΘ̃s +YaΘ̃a + Θ̃T
s Γ−1

s
˙̂Θs + Θ̃T

a Γ−1
a

˙̂Θa (13)

and taking the adaptation laws of the parameter estimates to

be
˙̂Θs = −ΓsY

T
s (14)

and
˙̂Θa = −ΓaY T

a (15)

then yields

V̇ (t) = −sT Kds ≤ 0. (16)

Using standard arguments in [1], [11] which use Barbalat’s

lemma, one can easily show that V̇ → 0 and thus s → 0 as

t → ∞. This also implies the tracking error q̃ → 0 as well.

A. Smooth Projection Algorithm

We previously used an assumption that the matrix Dn +D̂∆

has full row rank in deriving the adaptive control laws,

Eqs.(9) ,(14) and (15). In general, for the full tracking

control, the nominal matrix Dn in general has full row rank.

However, a drift of the parameter estimates Θ̂a, governed by

an update law (15), can result in Dn + D̂∆ losing rank. We

will refer to this situation as a “singularity” of the steering

law due to the adaptation. This singularity hinders the use

of the derived control laws, so they need to be modified.
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If the nominal matrix Dn has full row rank, and the

true value of the parameter uncertainty Θa is bounded by

a sufficiently small number, and the parameter estimate Θ̂a

is also kept small, then the matrix Dn +D̂∆ will also have full

row rank. To this end, we define the following two convex

sets,

ΩΘa , {Θa ∈ R
p| ‖Θa‖

2 < β} (17)

Ω̂Θa , {Θ̂a ∈ R
p| ‖Θ̂a‖

2 < β + δ} (18)

where β > 0 and δ > 0 are known constants. Notice that

ΩΘa ⊂ Ω̂Θa . We make the following three assumptions.

• Assumption 1. The nominal value Dn has full row rank

of n.

• Assumption 2. The actual value Θa belongs to the set

ΩΘa .

• Assumption 3. If Θ̂a ∈ Ω̂Θa , then Dn + D̂∆ is non-

singular.

These assumptions allow us to modify the adaptation law

(15) by using the “smooth projection algorithm” as follows1:

˙̂Θa = Proj(Θ̂a,Φa) (19)

where

Φa , −ΓaY T
a (20)

and

Proj(Θ̂a,Φa)=







































Φa, if (i) ‖Θ̂a‖
2 < β ,or

(ii) ‖Θ̂a‖
2 ≥ β and ΦT

a Θ̂a ≤ 0,

(

Φa −
(‖Θ̂a‖

2 −β )ΦT
a Θ̂a

δa‖Θ̂a‖2
Θ̂a

)

,

if (iii) ‖Θ̂a‖
2 ≥ β and ΦT

a Θ̂a > 0.
(21)

This adaptation law is identical to (15) in cases (i) and (ii),

and switches smoothly to a new expression in case (iii).

The projection operator Proj(Θ̂a,Φa) is locally Lipschitz in

(Θ̂a,Φa), thus the system has a unique solution defined for

some time interval [0,T ), T > 0.

Proposition 1: Under Assumptions 1,2, and 3, the control

law Eq. (9) along with the adaptation laws Eqs. (14) and

(19) yields

V̇ ≤−sT Kds ≤ 0, (22)

and

Θ̂a(t = 0) ∈ ΩΘa ⇒ Θ̂a(t) ∈ Ω̂Θa , ∀t ≥ 0. (23)

Proof: The proof is straightforward and therefore

omitted here. It is similar with the proof in the author’s

previous works [11], [13].

From Proposition 1, one can conclude that, using the

feedback control law (9) and the adaptation laws (14) and

(19), q̃ → 0 as t → ∞ and (Dn + D̂∆) will not lose rank, if

1The adaptation law is, in fact, only Lipschitz continuous, not continu-
ously differentiable. The use of the term “smooth” is a slight misnomer in
this context, but we use it here in accordance to prior usage in the literature.
It should be noted that a new parameter projection operator which is C n

has been recently introduced in Ref. [12].

we choose the initial parameter guess Θ̂a(0) inside the set

ΩΘa . For instance, we may take Θ̂a(0) = 0.

It is also worth mentioning that the proposed adaptation

law (19) has the additional benefit of keeping the parameter

estimates from “bursting”, which may happen when the

persistency of excitation condition does not hold [14].

III. APPLICATION TO SPACECRAFT ATTITUDE CONTROL

A. Equations of Motion

In this section, applying the proposed adaptive control

scheme, we design an adaptive attitude tracking control law

for a spacecraft. A cluster of Variable-Speed Control Moment

Gyros (VSCMGs) with N flywheels is used for the torque

actuator. While a conventional Control Moment Gyro (CMG)

keeps its flywheel spinning at a constant rate, a VSCMG – as

its name implies – is essentially a single-gimbal CMG with

the flywheel allowed to have variable speed. (See Refs. [10],

[15] for more details and applications of VSCMGs.)

Body Frame

Inertial Frame

Gimbal Frame

gi

si

ti

O

b1

b2

b3

Fig. 1. Spacecraft Body with the i-th VSCMG.

Figure 1 shows a spacecraft with the i-th VSCMG, where

gi is (body-fixed) gimbal axis, si is spin axis, and ti , gi ×
si is transverse torque axis. The equations of motion of a

spacecraft with VSCMGs are complicated as shown in the

aforementioned references, but under assumptions which are

standard in the literature [11], [13], they can be simplified

as follows:

Jω̇ − [h×]ω + Qu = 0, (24)

and

h = Jω + AsIwΩ, (25)

where

Q = [Qcmg,Qrw] ∈ R
3×2N , (26)

and where Qcmg(γ,Ω) = AtIwΩd , Qrw(γ) = AsIw, and the

control input of this system is

u = [u1, · · · ,u2N ]T = [γ̇T ,Ω̇
T
]T ∈ R

2N . (27)

J is the total moment of inertia of the spacecraft which is

assumed to be constant2, ω is the body rate vector of the

spacecraft, h is the total angular momentum of the spacecraft,

γ = [γ1, . . . ,γN ]T ∈ R
N and Ω = [Ω1, . . . ,ΩN ]T ∈ R

N are

vectors of gimbal angles and flywheel spinning speeds,

2In fact, J is a function of γ but the dependence is weak in general.
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respectively, and Iw is a diagonal matrix with the inertias of

VSCMGs flywheels. The skew-symmetric matrix [v×], for

v ∈ R
3, represents the cross product operation. The matrices

A∗ ∈ R
3×N have as columns the gimbal (gi), spin (si) and

transverse (ti) directional unit vectors expressed in the body-

frame, where ∗ is g,s or t. These matrices depend on the

gimbal angles as follows

Ag = Ag0 (28)

As = As0[cosγ]d + At0[sinγ]d (29)

At = At0[cosγ]d −As0[sinγ]d (30)

where the A∗0’s denote the values of A∗ at γ = 0. The symbol

xd denotes the diagonal matrix with elements the components

of the vector x, and cosγ , [cosγ1, · · · ,cosγN ]T and sinγ ,

[sinγ1, · · · ,sin γN ]T .

The modified Rodrigues parameters (MRPs) [16]–[18] are

chosen to describe the attitude kinematics of the spacecraft.3

The kinematics in terms of the MRPs is given by

σ̇ = G(σ)ω , (31)

where

G(σ) =
1

2

(

I3 +[σ×]+ σσT − [
1

2
(1 + σT σ)]I3

)

(32)

and Ir is the r× r identity matrix.

As suggested in Refs. [1] and [5], we combine the kinetic

equation (24) and the kinematic equations (31) into one

second-order system as follows:

H(σ)σ̈ +C(σ , σ̇ )σ̇ = D(σ)u (33)

where

H(σ) = G−T JG−1, (34)

C(σ , σ̇) = −G−T JG−1ĠG−1 −G−T [(R(σ)hI)×]G−1, (35)

D(σ) = −G−T Q. (36)

R(σ) is a rotational matrix from the inertial frame to the

body frame, and hI is the total angular momentum of a

spacecraft expressed in the inertial frame which is conserved

to be constant if there is no external torque applied to the

spacecraft. Therefore, h = R(σ)hI .

Notice that the equation of motion (33) has the form of

(1) with the gravitational term g = 0. Moreover, it can be

easily shown that the matrix Ḣ −2C is skew-symmetric [1].

B. Adaptive Attitude Tracking Control

Suppose that there are uncertainties in D as well as J. We

assume that the exact values of the initial axis directions of

VSCMGs actuator at γ = 0 are unknown. This can happen

when the VSCMGs are installed with small misalignments

and/or the measure of gimbal angles has constant unknown

bias. In addition, hI is also unknown constant not only

because of uncertain J but also because of uncertain As.

3We hasten to point out that the use of the MRPs to describe the
kinematics is done without loss of generality. Any other suitable kinematic
description could have been used with the conclusions of the paper remain-
ing essentially the same.

For most cases the effect of axes uncertainties on the

overall system performance is not significant. However, for

the case of flywheels used as “mechanical batteries” in an

Integrated Power and Attitude Control System (IPACS) [5],

[19], [20], even small misalignments of the flywheel axes

can be detrimental. Flywheels for IPACS applications spin at

high speeds and have large amounts of stored kinetic energy

(and hence angular momentum). Precise attitude control

requires proper momentum management, while minimizing

spurious output torques. This can be achieved with the use

(in the simplest scenario) of at least four flywheels, whose

angular momenta have to be canceled or regulated with

high precision. If the exact direction of the axes (hence

the direction of the angular momenta) are not known with

sufficient accuracy, large output torque errors will impact the

attitude of the spacecraft.

The uncertain parameters in H and C can be defined as

follows:

Θs = [∆ j11,∆ j22,∆ j33,∆ j12,∆ j13,∆ j23,∆h1,∆h2,∆h3]
T ∈ R

9

(37)

where ∆ j’s are the elements of J∆ , J − Jn and Jn is the

nominal value of the actual inertia matrix J. Similarly, ∆h’s

are elements of hI∆ , hI −hIn. The uncertain parameters in

D are defined as

Θa = [ΘT
t,1, · · · ,Θ

T
t,N ,ΘT

s,1, · · · ,Θ
T
s,N ]T ∈ R

6N (38)

where

Θt,i , ti,0 − tn
i,0, Θs,i , si,0 − sn

i,0, i = 1, · · · ,N. (39)

and ti,0 and si,0 are actual value of ti and si at γi = 0,

respectively, and tn
i,0 and sn

i,0 are their nominal values. The

total number of parameter estimates is then 6N + 9. If one

uses the methods in the previous works [7], [10], [11],

[13], then the number of the estimates will be as much as

6× (6N + 3).
Exact mathematical expressions of the regressor vectors Ys

defined in (11) can be easily obtained using symbolic math

packages, and can be constructed from the measurements of

σ , σ̇ , and the desired trajectories σd , σ̇d , σ̈d . The regressor

vector Ya defined in (12) can be obtained in the same way,

but it is also possible to derive its mathematical expression

by manipulating the matrices as follows:

Ya = sT G−T [(Mu)1I3, · · · ,(Mu)2NI3] (40)

where

M ,

[

[cosγ]d [sinγ]d

−[sinγ]d [cosγ]d

][

IwΩd 0

0 Iw

]

(41)

and (x)i is the ith element of a vector x. Then using the

developed control scheme in Sec. II, one can design an

adaptive attitude tracking control law for the spacecraft.

IV. NUMERICAL EXAMPLES

Numerical examples for a satellite with a VSCMGs cluster

are provided in this section to test the proposed adaptive

control algorithm. A standard four-VSCMG pyramid con-

figuration (N = 4) is utilized [20]. The parameters used for
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TABLE I

SIMULATION PARAMETERS AND GAINS

Symbol Value Units

σ(0) [0,0,0]T −

ω(0) [0,0,0]T rad/sec

ω̇(0) [0,0,0]T rad/sec2

γ(0) [0,0,0,0]T rad

γ̇(0) [0,0,0,0]T rad/sec

Ω(0) 104 × [2.5,3.5,3.5,3.0]T rpm

Iw diag{2.0, 2.0, 2.0, 2.0} kgm2

Kd 103I3 −

Λ I3 −

β 0.01 −

δ 0.01 −

the simulations are shown in Table I. Notice that the initial

wheel speeds of the VSCMGs are set to 25,000∼35,000

RPM, which are an order of magnitude larger than the speed

of conventional CMGs, since the flywheels of VSCMGs

used for IPACS in general need to spin very fast so that

they are competitive against traditional chemical batteries.

According to Ref. [21], even a higher speed than these vales

is implementable, at least in a laboratory.

The nominal values of the axis directions at γ = [0,0,0,0]T

are

An
s0 =





0 −1 0 1

1 0 −1 0

0 0 0 0



 , (42)

An
t0 =





−0.5774 0 0.5774 0

0 −0.5774 0 0.5774

0.8165 0.8165 0.8165 0.8165



 . (43)

The (unknown) actual axis directions at γ = 0 used in the

present example are assumed as

As0 =





−0.0072 −0.9999 −0.0072 0.9999

0.9999 0.0143 −0.9999 0.0057

−0.0071 0.0071 −0.0142 −0.0117



 ,

(44)

At0 =





−0.5657 −0.0024 0.5831 0.0061

0.0018 −0.5715 −0.0157 0.5868

0.8246 0.8206 0.8123 0.8097



 , (45)

which are obtained by rotating each nominal gimbal frame

(gi,si, ti) with 1 degree about arbitrary direction. With these

values, ||Θa||
2 ≃ 0.0015. The nominal value of the spacecraft

inertia matrix is

Jn =





15000 3000 −1000

3000 6500 2000

−1000 2000 12000



 kgm2 (46)

and the (unknown) actual inertia matrix is

J =





18000 2400 −1200

2400 5200 1600

−1200 1600 14400



 kgm2 (47)

which is obtained by adding/subtracting 20% of the nominal

values. The reference trajectory is chosen so that the initial

reference attitude is aligned with the body frame which is

also aligned with the inertial frame, and the angular velocity

of the reference attitude is chosen as

ωd(t) = 0.04
(

sin
2πt

400
,sin

2πt

300
,sin

2πt

200

)T

rad/sec. (48)

First, in order to show the effect of the misalignment of the

axes of the VSCMG cluster and the uncertain inertia matrix,

a simulation without adaptation was performed. Figure 2

shows the attitude tracking error (expressed with ‘3-2-1’

Euler angles)4 under control law with the adaptation gains

Γa and Γs set to zero matrices. Since the flywheel speeds

are very fast, there is large attitude tracking error without

adaptation.

Next, another simulation was run with adaptation of the

actuator uncertainty Θa only. The adaptation gains are set

to Γa = 10 I6N and Γs = 0, and the resulting attitude

error is shown in Fig. 3. There is significant performance

improvement with the adaptation of Θa only, but tracking

error with a magnitude of about 0.2 degree remains. On

the other hand, Fig. 4 shows the attitude tracking error with

adaptation of Θs only. The adaptation gains are Γa = 0 and

Γs = diag(107 I6,105 I3). In fact, the control law in this

scenario is almost identical with Slotine’s method [1]. The

attitude error is significantly attenuated using the adaptive

controller, but there are again residual tracking errors with a

magnitude of about 0.1 degree.

Finally, a simulation is performed with adaptation of both

Γa and Γs, that is Γa = 10 I6N and Γs = diag(107 I6,105 I3).
Figure 5 shows the tracking performance is improved upon

Slotine’s control law. Figure 6 shows the time history of

||Θ̂a||
2. It is confirmed that ||Θ̂a||

2 does not drift more than

β + δ = 0.02 owing to the smooth projection algorithm. As

a result, the steering law (9) remains well-defined.

V. CONCLUSIONS

In this paper, we proposed an adaptive tracking control law

for a nonlinear Hamiltonian MIMO dynamic system. The

proposed control scheme has several significant improve-

ments over the previous works in the literature. First, the

proposed method can deal with uncertainties in the actuator

terms which Slotine’s method [1] does not deal with. The re-

gressor matrix for adaptation of the uncertain inertia also has

a smaller size than that of [1]. Second, the proposed method

exploits the physical properties of the Hamiltonian systems

and so the designed law is more compact than those in [7],

[11], [13] which deal with actuator uncertainties but are

derived based on purely mathematical approaches. Finally,

the proposed method deals with the actuator uncertainties

separately from the uncertain inertia/Coriolis/gravity terms.

Therefore, it does not need over-parameterization to deal

with both kinds of uncertainties at the same time, while [7],

[11], [13] do.

The developed adaptive algorithm is shown to significantly

improve the tracking performance in the application to the

4The use of Euler angles in the figures in done solely for the convenience
of the reader who may not be familiar with the MRPs.
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spacecraft attitude control, but it still has room for improve-

ment. For instance, while only 3 parameters are generally

needed to express a misalignment of axis frame for one

VSCMG, a total of 6 parameters are used in this method.

Development of methods to reduce the number of estimated

parameters would be extremely beneficial.
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Fig. 2. Tracking Error Without Adaptation.
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Fig. 3. Tracking Error With Adaptation of Θa Only.
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Fig. 4. Tracking Error With Adaptation of Θs Only.
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Fig. 5. Tracking Error With Adaptation of Θa and Θs.
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