
Tracking Control of Nonaffine Systems: A Self-organizing Approximation

Approach

Wenjie Dong, Yuanyuan Zhao, Jay A. Farrell

Department of Electrical Engineering

University of California, Riverside, CA 92521

Abstract— This paper considers the tracking control of a
nonaffine system. A performance-dependent self-organizing
approximation approach is proposed. The designer specifies a
positive tracking error criteria. The self-organizing approxima-
tion based controller then monitors the tracking performance
and adds basis elements only as needed to achieve the tracking
specification.

Index Terms— self-organizing approximation based control,
adaptive nonlinear control, locally weighted learning.

I. INTRODUCTION

In the past decades, on-line approximation based control

has been considered extensively in e.g., [1–7, 9–12, 17–19,

22, 23]. The design and analysis of adaptive controllers

involving on-line approximation to achieve stability and

accurate trajectory tracking in the presence of unknown

or partially unknown nonlinear dynamics have been well

developed.

In general, on-line approximation based controllers can-

not achieve an exact modeling of unknown nonlinearities,

inherent approximation errors could arise even if optimal

approximator parameters were selected. Under reasonable

assumption on the basis function and the function to be

approximated, for any given ǫ > 0, if the network ap-

proximator has a sufficiently large number of nodes, then

ǫ approximation accuracy can be achieved by proper selec-

tion of the approximator parameters [8, 15]. Thus, to meet

ǫ approximation accuracy, one approach is to allocate a

sufficient large number of learning parameters. However,

allocating too many learning parameters bears the danger

of over-parameterizing the approximation. This may have

computation and performance penalties. The other approach

is to choose suitable approximators. With these motivations,

nonlinear adaptive control with function approximation em-

ploying automatic structure adaptation has been discussed

in a few articles [1, 3, 5, 6, 13, 14, 19, 20, 22, 23]. Articles [3,

19] used wavelet networks and adapted the structure of

the network in response to the evaluation of the magnitude

of the output weights by “hard-thresholding”. Smoothly

interpolated linear models were considered in [5].

In [1, 20], local approximators within localized receptive

field were defined and the on-line approximation was tuned

in a local region without affecting the approximation ac-

curacy previously achieved in other regions. Therefore, the

function approximation structure is able to retain approxi-

mation accuracy as a function of the operating point. As

in [5], the structure adaptation is based on exploration: if

none of the existing basis functions is excited, then a new

node is allocated. These articles also use gradient descent

to adjust the distance metric of each local approximator

so that each receptive field is tuned according to the local

curvature properties of the unknown function. In [5, 13, 14],

linearly parameterized locally model were used, which is

a special case of the Receptive Field Weighted Regression

(RFWR) approach. No stability results are given in [1, 20].

The common shortcoming of the existing approaches in [3, 5,

13, 14, 19] is that (i) they only address the stability analysis

for the state and the approximator parameters, not the change

in the number of basis functions, and (ii) the structure

adaptation algorithms are defined by the trajectory, not by the

performance. New approximator nodes are added when the

current state is sufficiently far from all existing receptive field

centers, whether or not additional approximation accuracy

is required. Recent articles [6, 23] developed an approach

where the approximation structure is adjusted during sys-

tem operation, based on the observed trajectory tracking

performance. A self-organized state estimation approach is

developed in [22] and organizes the approximator structure

based on estimation error. Article [6, 22, 23] focus on models

that are affine in the control variable.

In this article we consider the tracking control of a n-

th order nonaffine system. Our goal is to design a self-

organizing on-line approximation based controller to achieve

a prespecified tracking accuracy, without using high-gain

control nor large magnitude switching. Towards this end,

we first propose a sliding mode control such that the state

of the system comes into the operational region, then we

propose an adaptive controller in the operational region based

on the self-organizing idea in [23] and approximation ideas

in [7, 16]. It is shown that our proposed controller can

achieve the prespecified tracking performance and requires

less computation during control. The contribution of the

article is that we extend the self-organizing based control

method to control high-order nonaffine system.

II. PROBLEM STATEMENT

Consider single-input single-output (SISO), input-state

feedback linearizable systems of the form

ẋi = xi+1, 1 ≤ i ≤ n − 1 (1)

ẋn = h(x, u) (2)

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeAI02.3

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 69



where x = [x1, · · · , xn]⊤ ∈ Rn is the state vector and

u ∈ R is the control signal. The function h(x, u) represents

nonlinear effects that are unknown at the design stage. The

function h is assumed to be differentiable.

Given a desired trajectory xd(t) with derivatives

x
(i)
d (t), i = 1, . . . , n, each of which is available and

bounded ∀t ≥ 0. For convenient, we denote xc(t) =

[x1c, x2c, . . . , xnc]
⊤ = [xd, x

(1)
d , . . . , x

(n−1)
d ]⊤.

Control Problem: Design the control signal u to steer

x1(t) to track the desired trajectory xd(t) and to achieve

boundedness for the states xi for i = 2, . . . , n.

To make the problem tractable, we make the following

assumption.

Assumption 1: For any x ∈ Rn and u ∈ R,

ǫ0(x) <
∂h(x, u)

∂u
< 2c(x) (3)

|h(x, 0)| ≤ b(x) (4)

where ǫ0(x), c(x), and b(x) are known positive functions.

Remark 1: In Assumption 1, the first inequality in (3)

makes sure that the system is controllable at any time. The

second inequality in (3) makes sure that f(x) defined in

eqn. (17) is unique and continuous (see Lemma 2). The

bound b(x) in (4) is used to make sure that the tracking

error comes into and stays in a bounded operational region

which is chosen by the designer.

Remark 2: The tracking control problem could be solved

by

u = −
1

ǫ0
(Ke + (|Λ| + b(x))sign(e)) (5)

with e and Λ defined in (7) and (11), respectively; or by

u = −
1

ǫ0
(Ke + (|Λ| + b(x))sat(e/ε)) (6)

where ε is a positive constant. The control of (5) achieves

finite time convergence of e to zero and asymptotic conver-

gence of x(t) to xc(t), but requires control with magnitude

|Λ| + b(x) switching at very high rates. The control of (6)

achieves finite time convergence to |e| ≤ ε and ‖x−xc‖ < γε
where γ is a constant determined by the choice of L in

(7). The control of (6) still requires control with magnitude

|Λ|+b(x) and with the region of the sat function the effective

gain is (‖Λ‖ + b)/ε which can be quite large when the

desired accuracy ε is small. The magnitude of the switching

term in the u from (6) as a function of e is shown as

the dotted line in Fig. 1. In this paper we propose a new

approach. We introduce a new parameter σ > 0 which

is finite but can be significantly larger than ε. The large

magnitude sliding mode term will be designed (see eqn.

(12)) to ensure that |e(t)| ≤ σ is achieved in finite time

and maintained for all future times. When |e(t)| ≤ σ a

self-organizing approximation based controller (see the next

section) is designed to ultimately achieve |e| ≤ ǫ. Due to the

inclusion of the self-organizing approximator, the control is

able to achieve this same tracking accuracy using a switching

term of magnitude ε which is small in comparison to the

switching term in control law (5). Fig. 1 shows as a solid
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Fig. 1. Sketch of the magnitude of the switching term in the control laws
of eqns. (6) (dotted) and (12) (solid).

line a sketch of the magnitude of the switching term from

the proposed approach of (12).

III. TRACKING ERRORS AND BASIC CONTROL

STRUCTURE

Throughout the article the tracking error components are

defined as

x̃i = xi − xic, 1 ≤ i ≤ n

where x̃ is the tracking error vector defined as x̃ = x−xc =
[x̃1, . . . , x̃n]⊤. Note that

˙̃xi = x̃i+1, 1 ≤ i ≤ n − 1.

Let

e(t) = L⊤x̃(t) (7)

where L = [l1, l2, . . . , ln−1, 1]⊤ is a constant vector. Note

that L⊤x̃ = 0 defines an (n − 1)-dimensional hyperplane

in ℜn. The absolute value of e(t) represents the distance of

x̃(t) from this hyperplane. On the hyperplane e(t) = 0, the

dynamics of x̃1 are defined by

x̃n + ln−1x̃n−1 + . . . + l3x̃3 + l2x̃2 + l1x̃1 = 0

˙̃xn−1 + ln−1
˙̃xn−2 + . . . + l3 ˙̃x2 + l2 ˙̃x1 + l1x̃1 = 0

...

(sn−1 + ln−1s
n−2 + . . . + l3s

2 + l2s + l1)x̃1 = 0

where s is the Laplace variable; therefore, L is be selected

so that (sn−1 + ln−1s
n−2 + . . . + l3s

2 + l2s + l1) = 0 is a

Hurwitz polynomial. In this case, the transfer function

x̃1(s)

e(s)
=

1

sn−1 + ln−1sn−2 + . . . + l3s2 + l2s + l1

is Bounded-Input-Bounded-Output (BIBO) stable. If e(t) can

be shown to be bounded for all t ≥ 0, then each x̃i, 1 ≤ i ≤
n is bounded.

To allow the bounds to be easily expressed, we choose L
such that

e(t) =

(

d

dt
+ λ

)n−1

x̃1

= [λn−1, C1
n−1λ

n−2, . . . , Cn−2
n−1λ, 1]x̃
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for some constant λ > 0. This implies that the vector L in

(7) is defined as li = Ci−1
n−1λ

n−i, 1 ≤ i ≤ n, where

Ci−1
n−1 =

(n − 1)!

(n − i)!(i − 1)!

is the binomial coefficient. The transfer functions to x̃i from

e are

x̃i(s)

e(s)
=

x̃1(s)

e(s)
si−1 =

si−1

(s + λ)n−1

=
1

(s + λ)n−i
·

(

1 −
λ

s + λ

)i−1

, 1 ≤ i ≤ n.

The advantage of defining e(t) in this manner is that if there

exists a constant µe > 0 such that the magnitude of e is

bounded as |e(t)| ≤ µe, ∀t ≥ 0, then the tracking errors are

asymptotically bounded by

|x̃i(t)| ≤ 2i−1λi−nµe, 1 ≤ i ≤ n, (8)

which yields

‖x̃(t)‖2 ≤ ‖λv‖2µe as t → ∞ (9)

with λ⊤
v = [λ1−n, 2λ2−n, . . . , 2n−2λ, 2n−1] and ‖ · ‖2 being

the 2-norm of a vector. See page 279-280 of [21] for

additional detail.

The self-organizing on-line approximation based controller

developed in the subsequent sections is designed to maintain

stability and to achieve a tracking accuracy of |e(t)| < µe

with µe prespecified at the design stage. If L is selected

as in the previous paragraph, then |e(t)| < µe ensures that

|x̃1| < 1
λn−1 µe

.
= µx as t → ∞. Let Dn denote the region

in Rn such that |x̃i| ≤ 2i−1λi−nσ for 1 ≤ i ≤ n. It is

obvious that Dn is bounded since xc and σ are bounded.

Noting (8), if |e| ≤ σ, then x ∈ Dn. We call the region Dn

the operational region. It can be adjusted by the choice of

σ.

With the definition of e in (7),

ė = Λ + h(x, u)

= Λ + cu + (h(x, u) − cu) (10)

where c is the bounded function in eqn. (3), and

Λ = λn−1x̃2 + C1
n−1λ

n−2x̃3 + · · · + Cn−2
n−1λx̃n − x

(n)
d . (11)

We choose the control law

u =











1

c

(

−Ke − Λ − uad − ǫfsat

(

e

ǫf

))

, |e| ≤ σ

−
1

ǫ0
[Ke + (|Λ| + b(x))sign(e)], |e| > σ

(12)

where constant K > 0, σ(> µe) is a positive constant, ǫf (>
0) will be defined later,

sat(y) =

{

sign(y), if |y| > 1
y, otherwise

and uad is defined later in (29).

Remark 3: If |e| > σ, the controller is a sliding mode

control. If |e| ≤ σ, the controller is self-organizing in a

manner that will be defined in the following section. We

choose the control law (12) to be a switching controller

because we want to use a high gain control to steer the state

of the system to the bounded operational region Dn. Within

this operational region an adaptive learning controller is in

charge of the control. Hence, in the operational region the

control does not use large magnitude high gain switching

even though the system model is unknown (see Fig. 1 and

Remark 4 for more details).

Lemma 1: If |e| > σ, with the control in (12), the tracking

error e exponentially decreases.

Proof: By the intermediate value theorem, there exists

β ∈ [0, u] such that eqn. (10) can be written as

ė = Λ + h(x, 0) +
∂h(x, β)

∂u
u. (13)

For |e| > σ, select the Lyapunov function

V =
1

2
e2. (14)

Differentiating V along the solution of (13) with the control

(12) yields

V̇ = e[Λ + h(x, 0)]

−
e

ǫ0

∂h(x, β)

∂u
[Ke + |Λ|sign(e) + b sign(e)]

≤ −
Ke2

ǫ0

∂h(x, β)

∂u
−

[

1

ǫ0

∂h(x, β)

∂u
− 1

]

|e|(|Λ| + b)

≤ −
Ke2

ǫ0

∂h(x, β)

∂u
≤ −Ke2. (15)

Therefore, e exponentially decreases if |e| > σ.

Due to the exponential decrease proved in Lemma 1,

from any initial condition e(0), the condition |e(t)| ≤ σ
is achieved in finite time. Once the condition |e(t)| ≤ σ is

achieved, it will be maintained for all future times. In the

following, we mainly discuss the case that |e| ≤ σ.

If |e| ≤ σ, substituting (12) into (10) yields

ė = −Ke + (∆(x, u) − uad) − ǫfsat

(

e

ǫf

)

(16)

where

∆(x, u) = h(x, u) − cu.

If

∆(x, u) − uad = 0,

it is easy to prove that e converges to zero. Lemma 2 shows

that under suitable assumptions there indeed exists a unique

u∗
ad = f(x) such that

∆(x, u) − f(x) = 0. (17)

Lemma 2: Under Assumption 1, there exits a unique

continuous f(x) such that f(x) satisfies (17) for all x ∈ Dn.

Proof: Noting Assumption 1, Lemma 2 can be proved

by following the proof of Lemma 1 in [2, 16].

By Lemma 2, function f exists. However, we cannot ob-

tain the explicit expression of f because h(x, u) is unknown.
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In the sequel, we apply a self-organized locally weighted

learning algorithm (LWL) to develop a basis for and an

approximation to f(x).

IV. LWL ALGORITHM AND STRUCTURE ADAPTATION

In LWL [6, 22], the approximation to f(x) at a point x
is formed from the normalized weighted average of local

approximators f̂k(x) such that

f̂(x) =

∑

k ωk(x)f̂k(x)
∑

k ωk(x)
(18)

where each ωk is nonzero only on a set denoted by Sk

(defined below in eqn. (19)) over which f̂k will be adapted

to improve its accuracy relative to f .

A. Weighting Functions

We define a continuous, non-negative and locally sup-

ported weighting function ωk(x) for the k-th local approxi-

mator. Denote the support of ωk(x) by

Sk =
{

x ∈ Dn | ωk(x) 6= 0
}

. (19)

Let S̄k denote the closure of Sk. Note that S̄k is a compact

set. An example of a weighting function satisfying the above

conditions is the biquadratic kernel defined as

ωk(x) =







(

1 −
(

||x−ck||
µk

)2
)2

, if ||x − ck|| < µk

0, otherwise.

(20)

where ck is the center location of the k-th weighting function

and µk is a constant which represents the radius of the region

of support. In this example, the region of support is

Sk =
{

x ∈ Dn | ‖x − ck‖ < µk

}

. (21)

Since the approximator is self-organizing, the number of

local approximators N(t) is not constant. Conditions for

increasing N at discrete instants of time are presented in

Section IV-C. Since N is time varying, the region over which

the approximator defined in eqn. (18) can have a nonzero

value is also time varying. This region is defined as

AN(t) =
⋃

1≤k≤N(t)

Sk.

When x(t) ∈ AN(t), there exists at least one k such that

ωk(x) 6= 0. The normalized weighting functions are defined

as

ω̄k(x) =
ωk(x)

∑N(t)
k=1 ωk(x)

.

The set of non-negative functions {ω̄k(x)}
N(t)
k=1 forms a

partition of unity on AN(t):

N(t)
∑

k=1

ω̄k(x) = 1, for all x ∈ AN(t).

Note that the support of ωk(x) is exactly the same as the

support of ω̄k(x).

When x(t) /∈ AN(t), all ωk(x) for 1 ≤ k ≤ N(t) are zero.

Therefore, to complete the approximator definition of eqn.

(18) to be valid for any x ∈ ℜn:

f̂(x) =











N(t)
∑

k=1

ω̄k(x)f̂k(x) if x ∈ AN(t)

0 if x ∈ ℜn −AN(t).

(22)

In the reminder of this section, we will only consider the

case when x(t) ∈ AN(t) to give all definitions for the LWL

algorithm.

B. Local Approximators

We define

f̂k(x) = ΦT
k θ̂fk

(23)

where Φk is a prespecified vector of continuous basis func-

tions. For the function f(x), the vector θ∗fk
denotes the

unknown optimal parameter estimates for x ∈ S̄k:

θ∗fk
= argmin

θ̂fk

(
∫

S̄k

ωk(x)
∣

∣

∣
f(x) − f̂k(x)

∣

∣

∣

2

dx

)

. (24)

Note that θ∗fk
is well defined for each k because f and f̂k

are smooth on compact S̄k. Therefore,

f∗
k = Φ⊤

k θ∗k

will be referred to as the optimal local approximator to f on

S̄k.

Let the optimal approximation error to f on S̄k be denoted

as ǫfk
:

ǫfk
(x) = f(x) − f∗

k (x). (25)

Since in subsequent expressions ǫfk
only appears as a

product with ωk(x), the value of ǫfk
(x) is immaterial outside

Sk. In order for ǫfk
to be defined everywhere, let

ǫfk
(x) =

{

f(x) − f∗
k (x), on S̄k,

0, otherwise.

The controller will use a known design constant ǫf > 0. We

make the following assumption.

Assumption 2: The basis set Φk is sufficiently rich and

µk is sufficiently small such that |ǫfk
(x)| ≤ ǭf for x ∈ S̄k

for some (unknown) positive constant ǭf < ǫf .

For a linear basis set [1, x − ck] for k ∈ [1, N ] and

the region of supports are chosen as (21), this assumption

is satisfied if |f ′′(x)| < ǫ
2µ2

k

. Note that the boundedness

of maxx∈S̄k
(|ǫfk

(x)|) comes from the fact that |ǫfk
| is

continuous on compact S̄k.

For any x ∈ AN(t), f(x) can be represented as the

weighted sum of the local optimal approximators:

f(x) =
∑

k

ω̄k(x)f∗
k (x) + δf (x). (26)
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This expression defines the optimal approximation error

δf (x) on AN(t) which satisfies |δf (x)| ≤ ǭf , since

|δf | =

∣

∣

∣

∣

∣

f(x) −
∑

k

ω̄k(x)f∗
k (x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

k

ω̄k(x)(f(x) − f∗
k (x))

∣

∣

∣

∣

∣

≤
∑

k

ω̄k(x)|ǫfk
(x)| (27)

|δf | ≤ max
k

(|ǫfk
|)

∑

k

ω̄k(x) = ǭf . (28)

Therefore, if each local optimal model fk(x) has accuracy

ǭf on S̄k, then the global accuracy of
∑

k ω̄k(x)fk(x) on

AN(t) also achieves at least accuracy ǭf . The δf term in

(26) is the inherent approximation error of f̂(x) for f(x).
For the adaptive portion of the control law we choose

uad = f̂ . (29)

To obtain f̂ , we need to estimate θ̂. For x ∈ Ai, we choose

the adaptive laws

θ̇fk
=

{

Γfk
ω̄keΦk if |e| > µe

0 otherwise
(30)

The parameter adaptation will turn off when either x /∈ Ai

or |e| ≤ µe.

C. Structure Adaptation

We initialize the estimation of f in (22) by f̂ with no

local approximators, i.e., N(0) = 0; therefore, the set A0 is

initially empty. We define the following criteria for adding

a new local approximator to the approximation structure. A

local approximator f̂k is added and N(t) is increased by one:

1) if |e| ≤ σ and the present operating point x(t) does not

activate any of the existing local approximators (i.e.,

max1≤k≤N(t)(ωk(x)) = 0); and

2) if |e| ≤ σ and the function eė ≥ 0 while |e(t)| > µe.

With the above criterions, N(t) monotonically increases.

AN(t) changes as N(t) increases. Therefore, the structure of

f̂ in (22) changes as N(t) increases.

V. SELF-ORGANIZING CONTROLLER AND STABILITY

ANALYSIS

For the controller described in Sections III-IV, we have

the following result.

Theorem 1: The system described by eqn. (1–2) with

control law

u =











1

c

(

−Ke − Λ − f̂ − ǫfsat

(

e

ǫf

))

, |e| ≤ σ

−
1

ǫ0
[Ke + (|Λ| + b(x))sign(e)], |e| > σ

(31)

using the self-organizing function approximation (22) with

updated laws (30) and structure adaptive criterion in Subsec-

tion IV-C has the following properties:

1) x̃, e, θ̃fk
, θfk

, N(t) ∈ L∞;

2) e(t) = L⊤x̃ is ultimately bounded by |e(t)| ≤ µe;

3) each x̃i is ultimately bounded by |x̃i| ≤ 2i−1λi−nµe,

for i = 1, . . . , n, with λ being a constant selected for

designing the L vector.

The proof of Theorem 1 is omitted due to space limitation.

Remark 4: In Theorem 1, the proposed control law con-

sists of two parts. If |e| > σ, the control law is a sliding

mode control. The magnitude of the control depends on

the bound function b(x). If |e| ≤ σ, the control law is

a self-organizing control. The self-organizing control learns

the unknown system and improves the tracking performance

gradually based on the structure adaptation scheme. In the

self-organizing control the magnitude of the self-organizing

control does not depend on the bound function b(x). Fig

1. 1 shows a sketch of the control magnitude with the

control law in Theorem 1. In the control, several control

parameters play important roles. Constant σ determines the

size of the operational region Dn which the self-organizing

control applies. If σ is large, the size of the region Dn will

be large. Constant µe(< σ) determines the tracking error as

time tends to infinity. If µe is small the tracking error will

be small. During the control, µk determine the size of the

locally learning region. If µk are small, ǫf can be chosen

small. But small µk means that there will be large number

of locally learning regions. In practical control, the control

parameters should be chosen according to the tradeoff of

different factors.

VI. CONCLUSION

This paper considers tracking control for nonaffine sys-

tems. In the operational region a self-organizing controller

is proposed with the aid of a lemma from [2, 16] and the

self-organizing approach proposed in [23]. The proposed

controller has the ability to adjust the structure of approxi-

mators and will make the tracking error smaller than a given

positive constant. The approach can be directly extended to

case where ẋn = f(x) + g(x)u + h(x, u) where f(x) and

g(x) are known, and h(x, u) represents model error.
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