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Abstract— In this work, we study the implementation
of magnetorheological fluid (MRF) to the semi-active
suspension. Owing to the nonlinear hysteretic phenomenon,
the analysis and synthesis of a controller is not trivial.
The kinematic energy and spring potential function of the
suspension system plus an integral term of the hysteretic
component of an MR damper is chosen as the Lyaupnov
function to verify the stability and dissipativity of the
system. Then a multi-level controller, which is constructed
in virtue of stability analysis, turns out to be effective in
vibration suppression. In addition, the controller algorithm
is simple and easy to implement, requires only the mea-
surements of relative displacement and velocity between
sprung and unsprung masses, and the damping force of
the MR damper.

keywords: semi-active controller, quarter vehicle suspen-
sion system, MR damper, Lyapunov function, dissipativity

I. INTRODUCTION

For years, vibration attenuation of various dynamic

systems has received broad attentions from both aca-

demic and industry. In the automobile industry the

perceived comfort level and ride stability of a vehicle

are two of the most important factors in a subjective

evaluation of a vehicle. There are many aspects of a

vehicle that influence these two properties, the most

important ones of which are the primary suspension

components, which isolate the frame of the vehicle from

the axle and wheel assemblies.

If a primary suspension is designed to optimize the

handling and stability of the vehicle, the operator often

perceives the ride to be rough and uncomfortable. On the

other hand, if the suspension is designed for ride comfort

alone, the vehicle may not be stable during maneuvers.

As such, the performance of primary suspensions is

always defined by the compromise between ride and

handling.

The concept of semi-active suspension and semi-

active vibration control in connection with the power
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consumed was introduced by Karnopp [1]. A semi-active

suspension consists of a spring and a damper but, unlike

a passive suspension, the value of the damper coefficient

“c” can be controlled and updated. Various semi-active

devices have been proposed to dissipate vibration energy

in a structural or vehicle suspension system (see [2] and

the references therein). The magneto-rheological (MR)

dampers are new devices that use MR fluid to alter the

damping coefficient. These fluids demonstrate dramatic

changes in their rheological behaviors in response to a

magnetic field.

To control the MR dampers, various control strategies

have been proposed, but most of them are either com-

plicated or no direct stability analysis is provided, for

example, sliding mode control [3, 4] (needs reference

model), H∞ control [5] (needs inverse model of MR

damper), clipped-optimal control [6] (on-off type, needs

another desired control force hence no direct stability

analysis). While the proposed controller has the feature

of simplicity and it is obtained directly from the stability

analysis of the closed-loop suspension system. In the

mean time, this stability analysis also explains why we

need the measurements of relative displacement and

velocity between sprung and unsprung masses, and the

damping force of MR damper.

This paper is organized as follows. At first we con-

struct the quarter vehicle model with an MR damper

utilizing a modified Bouc-Wen model in section II.

Then the stability analysis is conducted in section III-A,

after that a multi-level dissipative controller is proposed

to suppress the vehicle vibration. Finally, a numerical

example is used to demonstrate the effectiveness of the

controller.

II. QUARTER VEHICLE MODEL WITH MR DAMPER

A. Quarter Vehicle Model

As the vertically oscillating behavior of a vehicle is

considered we investigate response of vertical dynamics.

The response can be mathematically described with

a relatively simple set of dynamic equations known

as a quarter-car simulation.The frequency response of

the quarter car extends from approximately 0.5 to 20

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThC09.1

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3213



Hz with some emphasis on roughness at the body

bounce frequency and the axle resonance frequency.

The rationale favoring the quarter car is the fact that

it covers the appropriate frequency range responsible

for exciting vehicle vibrations and emphasizes those that

excite modal resonances.

Fig. 1. Quarter Vehicle Suspension model

The equations of motion of the quarter-car model

depicted in Fig. 1 can be written as

M

[

ẍs

ẍu

]

+C

[

ẋs

ẋu

]

+K

[

xs

xu

]

=

[

−m1

−m2

]

g+

[

0

ktxg + ct ẋg

]

+

[

−1

1

]

Frh,

(1)

where the matrices

M ,

[

m1 0
0 m2

]

,C ,

[

cs −cs

−cs cs + ct

]

,K ,

[

ks −ks

−ks ks + kt

]

,

and the quantities

m1,m2 are the masses of vehicle body and axle,

xs,xu denote vertical displacements of m1 and m2,

xg is the road disturbance,

ks,cs represent the stiffness and damping of the

uncontrolled suspension,

kt ,ct denote the stiffness, damping of the tyre,

To remove the gravitational force from the equations

of motion, let’s define the shifted state variables

x =

[

x1

x2

]

,

[

xs

xu

]

− xr, (2)

where the the reference point, xr, is the static equilibrium

position

xr =

[

xr1

xr2

]

, K−1

[

−m1

−m2

]

g =

[

−m1+m2
kt

− m1
ks

−m1+m2
kt

]

g. (3)

Then we have the equation of motion for x,

Mẍ+Cẋ+Kx =

[

−1

1

]

Frh +

[

0

ktxg + ct ẋg

]

. (4)

For convenience, we further define the state vector

xP ,

[

xP1

xP2

]

,

[

x1 − x2

x2 − xg

]

, or xP = TPx−

[

0

xg

]

, (5)

where the transformation matrix

TP ,

[

1 −1

0 1

]

.

Note that the inverse matrix T−1
P =

[

1 1

0 1

]

. Then the

equations of motion (4) can be re-formulated as

MPẍP +CPẋP +KPxP =

[

−1

0

]

Frh −

[

m1

m1 +m2

]

ẍg. (6)

where the transformed matrices

MP , T−T
P MT−1

P =

[

m1 m1

m1 m1 +m2

]

,

CP , T−T
P CT−1

P =

[

cs 0

0 ct

]

,

KP , T−T
P KT−1

P =

[

ks 0

0 kt

]

.

B. Modified Bouc-Wen MR Damper Model

Fig. 2. Modified Bouc-Wen model

A modified Bouc-Wen model (see Fig. 2) for better

predicting the response of the MR damper in the region

of the yield point was proposed by Spencer [2] and is

adoppted in this work. The equations for the force in

this model are given by

ẋ1 − ẏ =
1

c0 + c1
[−k0(x1 − y)−αz+ c1ẋP1] , (7)

ż = (ẋ1 − ẏ){δ −|z|n [β + γsgn(ẋ1 − ẏ)sgn(z)]} , (8)

and the equation governing the force exerted by the MRF

damper, Frh, is

Frh = −c1(ẋ1 − ẏ)+ c1ẋP1 + k1(xP1 − x̄0),

=
c1

c0 + c1
[k0(x1 − y)+αz]+

c0c1

c0 + c1
ẋP1

+ k1(xP1 − x̄0),

(9)
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where

x1 − y and z are the internal relative displacement

and hysteretic component of the MR damper, re-

spectively,

δ ,β ,γ and n are positive constant parameters, and

α is a scaling value for Bouc-Wen model,

k0, k1 are spring constants,

x̄0 corresponds to the initial displacement.

The voltage dependent parameters are modeled by

α = αa +αbu, c0 = c0a + c0bu, c1 = c1a + c1bu,

where αa,αb,c0a,c0b and c1a,c1b are positive constants.

Furthermore, the command voltage is accounted for

through the first-order filter

u̇ = −η(u− v),u(0) = 0, (10)

where v is the command voltage sent to the current

driver, and η is a positive number that reflects the time

lag of the MR damper. An efficient identification method

for the MR fluid damper can be found in, for example

[7].

To reflect the real situation, the command input v

is confined to be finite positive. As a result, u is also

limited to be positive finite, that is,

0 ≤ v ≤Vmax and 0 ≤ u ≤Vmax,

where Vmax is the maximum voltage to the current driver

associated with the saturation of the magnetic field in

the MR fluid damper. It follows that all the related

parameters α,c0 and c1 are all finite positive as well.

Remark 2.1: The original form for ẏ given by

Spencer is motivated by the force balance as given in

the following (with moving x2),

c1(ẏ− ẋ2) = αz+ k0(x1 − y)+ c0(ẋ1 − ẏ),

or

ẏ =
1

c0 + c1
[k0(x1 − y)+αz+ c1ẋ2 + c0ẋ1] ,

equivalently. While equations (7)-(9) make it clear that

the inputs of the modified Bouc-Wen model are xP1, ẋP1

and the state variables are x1 − y and z.

Remark 2.2: On the (x1 − y,z)-plane there are two

sets of trajectories, which are determined by either of

the following two differential equations,

d(x1 − y) =
dz

δ −|z|n(β + γ)
,

d(x1 − y) =
dz

δ −|z|n(β − γ)
.

The “+” or “−” sign between β and γ is determined by

the sign of the product (ẋ1− ẏ)z, while the sign of ẋ1− ẏ

is directly controlled by the input to the MR damper, ẋP1.

For n = 2, the two corresponding sets of trajectories are

x1 − y =
1

√

δ (β + γ)
tanh−1 (β + γ)z

√

δ (β + γ)
+C1,

x1 − y =
1

√

δ (β − γ)
tanh−1 (β − γ)z

√

δ (β − γ)
+C2,

where C1 and C2 are constants that depend on initial

conditions.

III. STABILITY ANALYSIS AND CONTROLLER

SYNTHESIS

A. System Stability

Although it is well known that an MR damper is a dis-

sipative device, while to the best of authors’ knowledge,

a direct proof of this property has not been provided.

Hence, in this section, we prove this fundamental prop-

erty of the MR damper when implemented on a vehicle

suspension system.

Theorem 3.1: The quarter-car system (6) with the

passive MR damper force Frh defined by (9) and (7),
(8) is dissipative if

1) δ > 0,β > 0,γ ≥ 0, the voltage dependent para-

meters α ≥ 0,c0 > 0,c1 > 0,

2) the initial condition of z satisfies |z(0)| ≤ zM , zM ,

n

√

δ
β−γ

,

Proof: Define the Lyapunov candidate function for

the quarter car model

Vqc ,
1

2
ẋT

PMPẋP +
1

2
xT

PKPxP, (11)

it follows immediately that the time derivative of Vqc

along the system trajectories is

V̇qc = −ẋT
PCPẋP + ẋT

P

[

−1

0

]

Frh − ẋT
P

[

m1

m1 +m2

]

ẍg,

= −ẋT
PCPẋP − ẋP1Frh − [m1ẋP1 +(m1 +m2)ẋP2]ẍg,

where the power consumed by the MR damper can be

written in detail as

−ẋP1Frh = −
c0c1

c0 + c1
ẋ2

P1 − k1ẋP1(xP1 − x̄0)

−
c1ẋP1

c0 + c1
[k0(x1 − y)+αz] .

A naive choice of the Lyapunov candidate function for

the MR damper is

Vrh ,
1

2
k1(xP1 − x̄0)

2 +
1

2
k0(x1 − y)2 +

∫ z

0

α

δ
zdz. (12)
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It is easy to see that

V̇rh = k1ẋP1(xP1 − x̄0)+ [k0(x1 − y)+αz] (ẋ1 − ẏ)

−
α

δ
z(ẋ1 − ẏ)|z|n [β + γsgn(ẋ1 − ẏ)sgn(z)] .

Henceforth, if we let the Lyapunov candidate function

for the quarter car and suspension system be

V = Vqc +Vrh,

it follows that

V̇ = −ẋT
PCPẋP −

c0c1

c0 + c1
ẋ2

P1 −
1

c0 + c1
[k0(x1 − y)+αz]2

−
α

δ
z(ẋ1 − ẏ)|z|n [β + γsgn(ẋ1 − ẏ)sgn(z)]

+ [m1ẋP1 +(m1 +m2)ẋP2]ẍg.

Two cases will be considered in the following.

Case I: β > 0,γ ≥ 0,β − γ ≤ 0: In this case, we have

V̇ − [m1ẋP1 +(m1 +m2)ẋP2]ẍg

= −ẋT
PCPẋP −

c0c1

c0 + c1
ẋ2

P1 −
1

c0 + c1
[k0(x1 − y)+αz]2

−
α

δ
z(ẋ1 − ẏ)|z|n [β + γsgn(ẋ1 − ẏ)sgn(z)] ≤ 0,

since the last term in the above equation is positive for

(ẋ1 − ẏ)z is either positive or negative.

Case II: β > 0,γ ≥ 0,β − γ > 0: In this case, if (ẋ1 −
ẏ)z is positive, similar to Case I, we have V̇ ≤ 0. While

if (ẋ1 − ẏ)z is negative, we rewrite the above inequality

for V̇ as

V̇ +
α

δ
zż

|z|n

zn
M −|z|n

− [m1ẋP1 +(m1 +m2)ẋP2]ẍg

= −ẋT
PCPẋP −

c0c1

c0 + c1
ẋ2

P1 −
1

c0 + c1
[k0(x1 − y)+αz]2

≤ 0, (13)

where the second term on the left-hand side of the

equation is obtained by utilizing (8). It has been shown

that for bounded input ẋP1 (hence bounded ẋ1 − ẏ) if

the initial condition of z satisfies |z(0)| ≤ zM , then

|z(t)| ≤ max{|z(0)|,zm},∀t, where zm , n

√

δ
β+γ

[8]. This

further implies that ż is bounded, hence the system (6)
is dissipative with respective to supplied rate [m1ẋP1 +

(m1 +m2)ẋP2]ẍg −
α
δ

zż
|z|n

zn
M−|z|n [9].

From the above two cases, we conclude that the

system is dissipative under the given conditions.

Remark 3.1: Note that the minimum value of the

Lyapunov function is zero only if x̄0 = 0.

Remark 3.2: V̇ = 0 implies that ẋP = 0,k0(x1 − y)+
αz = 0 and z(ẋ1 − ẏ) = 0, respectively, which in turn

imply that ẋ1 − y = 0, ż = 0 and xP satisfies KPxP =
[

−1

0

]

k1(xP1 − x̄0).

B. A Lyapunov Function Based Multi-level Controller

The implementation of (9) to the third term of (13)
renders

V̇ +
α

δ
zż

|z|n

zn
M −|z|n

− [m1ẋP1 +(m1 +m2)ẋP2]ẍg

= −ẋT
PCPẋP −

c0c1

c0 + c1
ẋ2

P1

−
c0 + c1

c2
1

[

Frh −
c0c1

c0 + c1
ẋP1 − k1(xP1 − x̄0)

]2

= −ẋT
PCPẋP − c0ẋ2

P1 −
c0 + c1

c2
1

[Frh − k1(xP1 − x̄0)]
2

+
2c0

c1
[Frh − k1(xP1 − x̄0)]ẋP1,

, −ẋT
PCPẋP +V̇a(xP1, ẋP1,Frh,u).

Since the hysteretic component z of an MR damper is

fictitious, it can not be measured. Hence the correspond-

ing term is treated as a supply rate to the system. The

above expression suggests that the input function v takes

the form

v = v(xP1, ẋP1,Frh,u),

which indicates that the measurements needed to con-

struct the feedback controller are the relative displace-

ment, xP1, and velocity, ẋP1, between the sprung and

unsprung masses of vehicle, and the damping force, Frh,

of MR damper. While the input voltage u is determined

by minimizing the augmented function V̇a. Owing to

the fast dynamics of the command voltage (10), it is

reasonable to assume that v = u. Hence, a simple multi-

level controller is proposed as follows:

v =
i

N
Vmax, if V̇a(xP1, ẋP1,Frh,Vmaxi/N)

≤ V̇a(xP1, ẋP1,Frh,Vmax j/N),

∀ j 6= i, i = 0, . . . ,N.

(14)

where N is the number of levels that the input voltage

is divided. To have a smooth input voltage, a first order

filter, 1
τvs+1

, may be augmented to the damper controller.

IV. NUMERICAL EXAMPLE

Consider the quarter car and an MR damper model

with the parameters defined by Table I and II, respec-

tively [4]. Assume that the maximum input voltage of

the MR damper is Vmax = 2.0V.

Two kinds of road profile inputs are considered in this

example.
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TABLE I

QUARTER CAR MODEL PARAMETERS

Parameter value

m1 372 kg
m2 45 kg
ks 40 kN/m
kt 190 kN/m
cs 0 N s/m
ct 0 N s/m

TABLE II

PARAMETERS FOR THE MR DAMPER RD-1005-1 [4]

Coeff. Coeff.

αa 12441 N/m c0a 784 N · s/m
αb 38430 N/m · V c0b

1803 N · s/m · V

β 2059020 m−2 c1a 14649 N · s/m

γ 136320 m−2 c1b
34622 N · s/m · V

δ 58 n 2

η 190 s−1 x̄0 0 m
k0 3610 N/m k1 840 N/m

A. Case I: 0.03m height bump disturbance

Let the vehicle be subject to a bump excitation with

amplitude 0.03m as shown in Fig. 3. Then we implement

the above controller (14) along with a first-order filter to

the system, and let N = 4,τv = 0.02. The corresponding

responses of sprung mass and unsprung mass, force

and input voltage history are shown in Fig. 4 and 5,

respectively. Note that the ”ride” of a motor vehicle is

most commonly measured by the acceleration on the

body [10].

0 0.5 1 1.5 2 2.5 3 3.5 4
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0 0.5 1 1.5 2 2.5 3 3.5 4
−0.01

−0.005

0

0.005

0.01

0.015

time (sec)

x
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)

Fig. 3. (Left) Bump Excitation (Right) Grade C random road profile

For comparison purpose, the responses of the cases

with constant input voltage v = 0V and v = 2V are given

in Fig. 6 and 7, respectively. As we can tell from the

given results, the proposed controller for the MR damper

improves the performance for vibration suppression of

the sprung mass under bump excitation. The maximum

voltage required is only slightly larger than 1V. Also

larger damper forces do not always produce better

results. In addition, compared with the results shown in

[4], the performance of the controller (14) outperforms

0 1 2 3 4
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time (sec)

x
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ẍ
1

(m
/
s2

)

0 1 2 3 4
−0.01

0

0.01

0.02

0.03

0.04

time (sec)

x
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0

1

2
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ẍ
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(m
/
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Fig. 4. Responses of sprung and unsprung masses under bump
excitation
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Fig. 5. Damping force and input voltage of MR damper

that of the paper, in the sense of less settling time,

smaller peak values of response and acceleration of

sprung mass. Besides the proposed algorithm is simple

and no reference model is required.

B. Case II: grade C random road profile

A grade C road profile shown in Fig. 3 is given as

the random excitation to the suspension system. Some

typical values of the RMS of the acceleration of the

sprung, the suspension deflection (x1 −x2), and the tyre

deflection (x2 − xg) for the listed four different cases

are given in Table III. These results indicate that the

proposed controller provides an acceptable performance

compared with that of the passive suspension systems

(input voltage v = 0V and v = 2V).
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Fig. 6. Responses of sprung and unsprung masses under bump
excitation for v = 0
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Fig. 7. Responses of sprung and unsprung masses under bump
excitation for v = 2

TABLE III

RMS ANALYSIS FOR GRADE C ROAD EXCITATION TESTS

Controller ẍ1(m/sec2) x1 − x2(m) x2 − xg(m)

(14) 1.1426 0.0021 0.0026
v = 0 0.7035 0.0039 0.0029
v = 2 1.3462 0.0019 0.0029

V. CONCLUSIONS AND FUTURE WORKS

In this work, a Lyapunov function consisted of the

kinematic energy and spring potential function of a

suspension system plus an integral term of the hysteretic

component of an MR damper is chosen to examine the

stability and dissipativity of the system. To suppress the

vibration, an multi-level controller based on the deriv-

ative of the Lyapunov function is proposed. Through

numerical examples, the proposed controller turns out to

be effective and the algorithm is simple to implement. It

requires only the measurements of relative displacement

and velocity between sprung and unsprung masses, the

damping force, and the voltage dependent coefficients

c0,c1 and k1, which can be identified in the beginning.

While the parameters of quarter-vehicle are not required.

In the future, the effects on the parameter uncertainties

will be further investigated.
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