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Abstract— This paper investigates target motion analysis
(TMA) based on noisy measurements of power and Doppler
from a radio frequency (RF) emitter. The research is motivated
by the fact that Doppler measurements for RF signals are
much easier to obtain and power measurements are always
available. More importantly power and Doppler measurements
complement each other in terms of the Fisher information
content. However both these measurements are highly nonlinear
functions of the TMA parameters, specified uniquely by its
initial position and velocity. In addition direct use of these
measurements in TMA introduces the nuisance parameters
leading to poor numerical conditioning because of the very high
source frequency, and very small power proportional constant
for RF signals. Hence ratios of the neighboring measurements
are used to eliminate the nuisance parameters and provide
normalization of the measurement equations. An iterative least-
squares (LS) algorithm is developed, and is shown to be effective
through a numerical example.

1. INTRODUCTION

Target motion analysis (TMA) has been investigated in the

past several decades that assumes straight line motion for

the target with constant speed because the target is oblivious

of its being tracked. The TMA aims at estimation of the

initial position and velocity of the target that completely

determine the motion of the target. Most of the work in

this research area has focused on bearing-only measurements

[1], [3], [6], [9], [10]. There are also a few papers on

TMA based on both bearing and Doppler [4], [8], termed

as Doppler-bearing. In this paper we study the same TMA

problem assuming that the target transmits ratio frequency

(RF) signals, and both power and Doppler of the RF signal

are measured during the time interval of observation. This

problem has not been investigated in the past in the best of

our knowledge, and is motivated by the fact that the sensing

device is considerably simpler than those of Doppler-bearing

measurements. A suitably equipped RF receiver suffices,

and power measurements are always available with RF

signals. More importantly power and Doppler measurements

complement each other that can be concluded by analyzing

the corresponding Fisher information matrix whose inverse

is the much celebrated Cramér-Rao lower bound. Due to

the space limit, such an analysis is not included in this

conference version.
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On the other hand the simpler sensing device also brings

in the difficulty for signal processing because both power and

Doppler measurements are highly nonlinear functions of the

TMA parameters, and it is not possible to obtain quasi-linear

models as in the case of bearing-only, or Doppler-bearing. In

addition TMA based on power and Doppler measurements

gives rise to the problem of nuisance parameters. In the

former, the power of an RF signal is inversely proportional to

the distance square it travels that introduces the proportional

constant, denoted by C. Hence TMA is not possible without

knowing C. On the other hand, the Doppler frequency shifts

induced by the motion of the target are not directly available.

The source frequency, denoted by fs, is needed in order to

obtain the Doppler frequency shifts. One may include both

C and fs as parameters in estimation. However because

C > 0 is very small, and fs is very large that is the

RF carrier frequency, the nuisance parameters complicate

further the nonlinear estimation of the TMA parameters.

Indeed they induce divergence of the iterative least-squares

(LS) algorithm, widely used in nonlinear estimation, and

introduce the numerical conditioning problem in applying

the iterative LS algorithm. Moreover C is likely to fluctuate

in accordance with environments, and fs may drift near

the nominal carrier frequency. The constant assumptions for

C and fs do not truly hold in practice. These problem

pose significant challenges for the TMA problem to be

investigated in this paper.

It is the simplicity of the sensing device, complementary

nature of the information content, as well as the nonlin-

earity and numerical difficulty in TMA based on power

and Doppler measurements that provide us the impetus

for developing a feasible solution. Instead of using the

power and Doppler measurements directly, the ratios of

the neighboring measurements are employed to eliminate

the nuisance parameters. Even though C and fs may vary

considerably during the whole time interval of observation,

their variations are very small in a single sampling period

that suppress the detrimental effect on TMA by variations

of C and fs. More importantly the numerical conditioning

problem induced by C and fs is weakened significantly. The

iterative LS algorithm is convergent for a very large region

of the parameter space for a typical application example.

The only drawback brought in by ratios of measurements

is that the measurement noises become correlated, and the

corresponding covariance matrix is tri-diagonal, that is the

price to pay with the method of ratios. Our results shed light

on using power and Doppler measurements in TMA, and

provide an application example for nonlinear estimation.
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2. PROBLEM FORMULATION AND MOTIVATIONS

Denote positions at time tk by (Txk
, Tyk

) for the target,

and by (Uxk
, Uyk

) for the UAV sensor with 0 ≤ k < N .

For TMA, the target is a moving emitter, and assumed to

have constant speed and heading. Thus the trajectory of the

target is parameterized by the initial position (x0, y0) and

the velocity (vx, vy). Without loss of generality, t0 = 0 is

taken. It follows that at time tk,

Txk
= x0 + vxtk, Tyk

= y0 + vytk (1)

The positions and velocities of the UAV sensor at different

time samples are assumed to be known. The only unknown

is the parameter vector of the target:

θ =
[

x0 y0 vx vy

]T
(2)

to be estimated based on power and Doppler measurements.

The power measurements from the RF emitter or target

are assumed to be of the form:

P̂k = Pk + ηk, Pk =
C

R2
k

(3)

Rk =
√

(Txk
− Uxk

)2 + (Tyk
− Uyk

)2 (4)

where 0 ≤ k < N . The measurement noise ηk is assumed

to be uncorrelated Gauss with mean zero and variance σ2
pk

.

It is assumed that the variance of ηk

Pk
is a constant that is the

inverse of the signal-to-noise (SNR), denoted by SNRp.

Clearly Rk = Rk(θ) that is a function of the parameter

vector in light of (1). On the other hand, the measurements

of the Doppler shifted frequency at time tk are of the form

f̂k = fk + ζk, fk = fs

(
1 −

vk

c

)
(5)

where fs is the carrier frequency from the target source, c is

the speed of light, and vk is the (combined) projected velocity

to the radial direction from the UAV sensor to the target. Note

that fk is the Doppler shifted frequency at time k, and ζk

is the measurement noise, assumed to be uncorrelated Gauss

with mean zero and constant variance σ2
f . The expression of

the radial velocity vk is given by

vk =
(vx − U̇xk

)(Txk
− Uxk

) + (vy − U̇yk
)(Tyk

k − Uyk
)√

(Txk
− Uxk

)2 + (Tyk
− Uyk

)2

(6)

where U̇xk
and U̇yk

denote the velocities of the UAV sensor

along x and y axis, respectively, that are assumed to be

known. It is thus easy to obtain the expression for f̂k, the

Doppler measurements at time tk in (5) by substituting the

expression in (6).

Remark 2.1: Two-dimensional space is assumed for both

position and velocity due to simplicity of notations, but all

our results apply to the case of three-dimensional space

without difficulty in derivation that is contrast to bearing-

only, and Doppler-bearing measurements.

As mentioned earlier, TMA has been investigated by

many researchers based on bearing-only, and on Doppler-

bearing measurements. The use of both bearing and Doppler

measurements require an additional sensing device such as

antenna arrays. We are motivated to develop simpler and

cheaper sensing devices by removing the bearing sensor that

requires employment of antenna arrays. On the other hand

power measurements are always available when Doppler

measurements are taken. Therefore the sensing device re-

quires no more than an RF receiver. The question is whether

or not power and Doppler measurements provide similar in-

formation content to those of Doppler-bearing. Our analysis

on the corresponding FIM yields more than an affirmative

answer. However due to the space limit, the analysis is

omitted for this conference version.

3. BATCHED ESTIMATION FOR TMA

The use of both bearing and Doppler measurements has

helped to improve the TMA performance [4], [8] compared

to that of bearing-only. However its primary focus is on sonar

or acoustic applications where the signal propagation speed

is much slower than the speed of light, and more importantly,

the source frequency is rather modest that does not constitute

a nuisance in estimation. In contrast the source frequency for

a typical RF signal is much higher than the Doppler shifts

induced by target and sensor that brings in the numerical

conditioning problem, and thus become a nuisance. We begin

with TMA based on power and Doppler measurements, and

reveal its numerical difficulty in this particular nonlinear

estimation problem.

TMA Estimation Based on Power Measurements

Recall the power measurements in (3) and (Txk
, Tyk

) in

(1). Denote

Lk =





Uxk

Uyk

tkUxk

tkUyk



 , Qk =





1 0 tk 0
0 1 0 tk
tk 0 t2k 0
0 tk 0 t2k



 (7)

Then it can be verified that with ρk =
√

U2
xk

+ U2
yk

,

R2
k = (x0 + vxtk − Uxk

)2 + (y0 + vytk − Uyk
)2

= θT Qkθ − 2LT
k θ + ρ2

k (8)

Clearly estimation of θ is not possible without knowing C.

A simple way is to take C into one of the parameters in

estimation by taking θp =
[

θT C/C0

]T
as the estimation

parameter vector.

It is noted that R2
k in (8) can be written as

R2
k =

(
θ − θ̂

)T

Qk

(
θ − θ̂

)
− 2

(
Lk − Qkθ̂

)T (
θ − θ̂

)

+
(
θ̂T Qkθ̂ − 2LT

k θ̂ + ρ2
k

)
(9)

for any given θ̂. Next rewrite the measurement equations in

(3) as

gk(θ) := R2
k −

C

P̂k

= R2
k

ηk

P̂k

(10)

By ignoring the second order term and assuming ηk ≈ 0
lead to

gk(θ) ≈ −2(Lk−Qkθ̂)T θ+ρ2
k− θ̂T Qkθ̂−P̂−1

k C ≈ 0 (11)
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By packing Ap(θ) and Bp(θ) as

Ap(θ) =




2(L0 − Q0θ)

T C0P̂
−1
0

...
...

2(LN ′ − QN ′θ)T C0P̂
−1
N ′





Bp(θ) =




ρ2
0 − θT Q0θ

...

ρ2
N ′ − θT QN ′θ



 , N ′ = N − 1

there holds Ap(θ̂)θp ≈ Bp(θ̂), yielding the iterative LS

algorithm θ̂
(i+1)
p = D−1

i Ni for i = 0, 1, · · ·, where

Di = Ap(θ̂
(i))T Σp(θ̂

(i))−1Ap(θ̂
(i))

Ni = Ap(θ̂
(i))T Σp(θ̂

(i))−1Bp(θ̂
(i))

Σp(θ) ≈ SNP−1
p diag(R4

0, R
4
1, · · · , R

4
N ′)

initialized by some θ̂
(0)
p . Because of the scaling, C/C0 is

not very small any more that helps to improve estimation.

However any variation of C may still impact the estimation

results negatively.

TMA Estimation Based on Doppler Measurements

Recall the measurements of Doppler shifted frequency in

(5). Denote ϕk =
[

Uxk
Uyk

U̇xk
U̇yk

]T
, and

Qfk
=





0 0 0.5 0
0 0 0 0.5

0.5 0 tk 0
0 0.5 0 tk





Sf =





0 0 0.5 0
0 0 0 0.5

0.5 0 0 0
0 0.5 0 0





Then it is straightforward to verify that vk in (6) can be

written as

vk =
θT Qfk

θ − ϕT
k (Qfk

+ Sf )θ + ϕT
k Sfϕk√

θT Qkθ − 2LT
k θ + ρ2

k

(12)

in light of the TMA assumption or Txk
= x0 + vxtk and

Tyk
= y0 + vytk. It follows that f̂k = fk + ζk with

fk = fs



1 −
θT Qfk

θ − ϕT
k (Qfk

+ Sf )θ + ϕT
k Sfϕk

c
√

θT Qkθ − 2LT
k θ + ρ2

k





(13)

The measurement equations for Doppler are more complex

than those of power. Rewrite (5) as

hk(θ) := c

(
f̂k

fs

− 1

)
+ vk = c

ζk

fs

(14)

where vk is given as in (12). Define Lfk
:= 1

2 (Qfk
+Sf )ϕk

for 0 ≤ k < N . The above can be converted into

hk(θ) = hk(θ̂) +

(
∂hk(θ̂)

∂θ

)T (
θ − θ̂

)
+ O(‖θ − θ̂‖2) ≈ 0

(15)

by assuming that ζk ≈ 0, where

∂hk(θ)

∂θ
=

2 (Qfk
θ − Lfk

)

Rk

−
(Qkθ − Lk) vk

R2
k

(16)

Recall vk in (12) and Rk in (8).

Let θf =
[

θT cf−1
s

]T
. As in the power case, packing

Af and Bf as

Af (θf ) =





(
∂h0

∂θ

)T

f̂0

...
...(

∂hN ′

∂θ

)T

f̂N ′





Bf (θf ) =





(
∂h0

∂θ

)T

θ + f̂0cf
−1
s − h0(θ)

...(
∂hN ′

∂θ

)T

θ + f̂N ′cf−1
s − hN ′(θ)





yields Af (θ̂f )θf ≈ Bf (θ̂f ) by taking ζk ≈ 0 for each k,

leading to the iterative LS algorithm θ̂
(i+1)
f = D−1

i Ni for

i = 0, 1, · · ·, where

Di = Af (θ̂
(i)
f )T Σ−1

f Af (θ̂
(i)
f )

Ni = Af (θ̂
(i)
f )T Σ−1

f Bp(θ̂
(i)
f )

and Σf =
c2σ2

f

f2
s

I , initialized by some θ̂
(0)
f . Note that in the

expression of Bf (θf ),

f̂kcf−1
s −hk(θ) = c−

θT Qfk
θ − ϕT

k (Qfk
+ Sf )θ + ϕT

k Sfϕk√
θT Qkθ − 2LT

k θ + ρ2
k

It is important to point out that Af (θf ) is badly condi-

tioned, even though scaling of fs is used. Because fs is

very large, and the Doppler frequency shifts induced by

motions of the target and sensor are so small, f̂k are very

large. It follows that Af (θ) has only one large singular value

with rest much smaller. That is, the discrepancy between the

large and small singular values is very large that introduce

the conditioning problem in iterative LS algorithm, that

persists even if power measurements are jointly used in TMA

estimation as described next.

TMA Estimation Based on Both Measurements

If both power and Doppler measurements are available,

then the previous derivations can be combined. Denote In

as identity matrix with size n, and

A(θpf ) =




Ap(θp)

(
I4

0

)
Ap(θp)

(
0 0
1 0

)

Af (θ)

(
I4

0

)
Af (θ)

(
0 0
0 1

)





B(θ) =

[
Bp(θp)
Bf (θf )

]
, θpf =




θ

C/C0

cf−1
s




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Then A(θ̂pf )θpf ≈ B(θ̂pf ), leading to the iterative LS

algorithm θ̂
(i+1)
pf = D−1

i Ni for i = 0, 1, · · ·, where

Di = A(θ̂
(i)
pf )T Σ(θ̂

(i)
pf )−1A(θ̂

(i)
pf )

Ni = A(θ̂
(i)
pf )T Σ(θ̂

(i)
pf )−1B(θ̂

(i)
pf )

Σ(θpf ) = diag(Σp(θ), Σf )

initialized by some θ
(0)
pf .

Often the estimation performance is assessed by the

Cramér-Rao lower bound. Although the FIMs for power

and Doppler are presented in the previous section, more

convenient forms for MATLAB implementation are given

as follows:

FIMp = 4SNRp

N−1∑

k=0

(Qkθ − Lk)(Qkθ − Lk)T

(θT Qkθ − 2LT
k θ + ρ2

k)2
(17)

On the other hand the FIM for TMA estimation based on N
Doppler measurements is given by

FIMf ≈
f2

s

c2σ2
f

N−1∑

k=0

[
∂hk(θ)

∂θ

] [
∂hk(θ)

∂θ

]T

(18)

where the partial derivative of hk(θ) is given in (16). If

both the power and Doppler measurements are employed for

estimation, then the corresponding FIM is the sum of FIMp

and FIMf . The Gauss assumption is crucial in computing

the above FIMs.

4. BATCHED ESTIMATION WITH RATIOS OF

MEASUREMENTS

While the iterative LS algorithm has been widely used

in nonlinear estimation, its direct use as in the previous

section fails to give good results because of the nuisance

parameters C and fs of which C is very small easily leading

to negative estimate due to the presence of noise, and fs

is very large leading to the poor conditioning number for

the corresponding A-matrix. For these reasons, ratios of the

measurements are introduced to remove the unknown C
and fs. Another motivation for using ratios is the possible

fluctuation of C due to changes of the environment, and

existence of drifting in carrier frequency fs.

TMA Based on Ratios of Power Measurements

As discussed earlier, it is more sensible to work with the

ratios of the power measurements taken in the neighboring

time samples:

µ̂k =
P̂k

P̂k−1

=
1 + ηk

Pk

1 + ηk−1

Pk−1

×
R2

k−1

R2
k

(19)

for k = 1, 2, · · · , N − 1. The expression in (19) can be

alternatively written as

R̂2
k−1 := R2

k−1

(
1 +

ηk

Pk

)
= R2

kµ̂k

(
1 +

ηk−1

Pk−1

)
(20)

Using the notations in the previous section, (19) can be

rewritten as

ĝk(θ) :=
(
θT Qk−1θ − 2LT

k−1θ + ρ2
k−1

)
(21)

− µ̂k

(
θT Qkθ − 2LT

k θ + ρ2
k

)

= µ̂k

(
θT Qkθ − 2LT

k θ + ρ2
k

)
ηk−1/Pk−1

−
(
θT Qk−1θ − 2LT

k−1θ + ρ2
k−1

)
ηk/Pk

Let θ̂ be an estimate of θ. Then

ĝk(θ) =
(
θ − θ̂

)T

∆Q̂k

(
θ − θ̂

)
(22)

− 2
(
∆L̂k − ∆Q̂kθ̂

)T (
θ − θ̂

)

+ θ̂T ∆Q̂kθ̂ − 2∆L̂T
k θ̂ + ∆ρ̂k

where ∆Q̂k, ∆L̂k, and ∆ρ̂k are given respectively by

∆Q̂k = Qk−1 − µ̂kQk, ∆L̂k = Lk−1 − µ̂kLk (23)

and ∆ρ̂k = ρ2
k−1 − µ̂kρ2

k. If SNRp is adequately large, then

ĝk(θ, η) ≈ 0, and thus

2
(
∆L̂k − ∆Q̂kθ̂

)T

θ ≈ ∆ρ̂k − θ̂T ∆Q̂kθ̂ (24)

+
(
θ − θ̂

)T

∆Q̂k

(
θ − θ̂

)

Recall N ′ = N − 1. Pack for k = 1, 2, · · · , N − 1 with

Lp(θ̂) = 2




∆L̂T

1 − θ̂T ∆Q̂1

...

∆L̂T
N ′ − θ̂T ∆Q̂N ′





ψp(θ̂) =




∆ρ̂1 − θ̂T ∆Q̂1θ̂

...

∆ρ̂N ′ − θ̂T ∆Q̂N ′ θ̂





q(θ, θ̂) =





(
θ − θ̂

)T

∆Q̂1

(
θ − θ̂

)

...(
θ − θ̂

)T

∆Q̂N ′

(
θ − θ̂

)





A set of quadratic equations are obtained as follows:

Lp(θ̂)θ ≈ φ(θ̂), φ(θ̂) = ψp(θ̂) + q(θ, θ̂) (25)

By ignoring the quadratic term, iterative LS can be used

to compute iteratively the estimate as θ̂i+1 = D−1
i Ni for

i = 0, 1, · · ·, where

Di = Lp(θ̂i)
T Σ̂p(θ̂i)

−1Lp(θ̂i)

Ni = Lp(θ̂i)
T Σ̂p(θ̂i)

−1ψp(θ̂i)

initialized by some θ0 where Σp(θ) is the covariance matrix

for the noise term ignored in (24) that is tri-diagonal with

diagonal element µ̂2
kR4

k + R4
k−1, and off diagonal element

µ̂k+1R
2
k−1R

2
k+1 on right for the kth row.

TMA Based on Ratios of Doppler Measurements

It is also sensible to bypass fs in estimation of the

parameter vector θ, leading to the following ratios of the
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Doppler measurements in the neighboring time samples:

ν̂k =
f̂k

f̂k−1

=
1 + ζk

fk

1 + ζk−1

fk−1

×

(
1 − vk

c

)
(
1 − vk−1

c

) (26)

where 1 ≤ k < N and vk is the same as in (6). The above

can be converted into

ĥk(θ) =
ζk

fk

(
1 −

vk

c

)
−

ν̂kζk−1

fk−1

(
1 −

vk−1

c

)
(27)

The noise term ζk

fk
has variance

σ2
f

f2
s

approximately. If σf is

adequately small, then ĥk(θ, ζ) ≈ 0.

Clearly ĥk(·) is also a nonlinear function of θ and involves

higher order terms than those of ĝ(·) as in the case of power

measurements. If the iterative LS algorithm is employed to

estimate θ, the Jacobian matrix needs to be evaluated. It can

be obtained through some calculation that

c
∂ĥk

∂θ
=

∂hk(θ)

∂θ
− νk

∂hk−1(θ)

∂θ
(28)

where the partial derivative of hk(θ) is given as in (16).

Pack {ĥk(·, ·)} into a column vector ĥ(θ, ζ). Let Lf (θ) be

the Jacobian of ĥ(θ, ζ), and

Lf (θ) = c

[
∂ĥ1

∂θ

∂ĥ2

∂θ
· · ·

∂ĥN−1

∂θ

]T

(29)

In this case the column vector of the functions h(θ, ζ) has

the expansion

cĥ(θ, ζ) = cĥ(θ̂, ζ)+Lf (θ̂)(θ−θ̂)+O(c‖θ−θ̂‖2) ≈ 0 (30)

The scaling by c for RF signal is necessary that is the speed

of light. Indeed there holds now

cĥk(θ̂) = (1 − ν̂k)c + ν̂kvk−1 − vk (31)

By ignoring the high order terms, there holds approximately

the linear equations

Lf (θ̂)θ ≈ ψf (θ̂), ψf (θ̂) = Lf (θ̂)θ̂ − cĥ(θ̂, ζ) (32)

Hence the iterative LS algorithm can be obtained as θ̂i+1 =
D−1

i Ni for i = 0, 1, · · ·, where

Di = Lf (θ̂i)
T Σ̂f (θ̂i)

−1Lf (θ̂i)

Ni = Lf (θ̂i)
T Σ̂f (θ̂i)

−1ψf (θ̂i)

that is initialized by some θ̂0. The covariance matrix
f2

s

c2σ2
f

Σ̂f (θ) is tri-diagonal as well with diagonal element
(
1 − vk

c

)2
+ ν̂2

k

(
1 − vk−1

c

)2
, and off diagonal element

−ν̂k+1

(
1 − vk+1

c

)2
on right for the kth row.

TMA Based on Ratios of Both Measurements

If both power and Doppler measurements are available,

then there holds L(θ̂)θ ≈ ψ(θ̂) where

L(θ̂) =

[
Lp(θ̂)

Lf (θ̂)

]
, ψ(θ̂) =

[
ψp(θ̂)

ψf (θ̂)

]
(33)

and θ̂ an estimate close to the true parameter vector. The

iterative LS algorithm leads to

θ̂i+1 =
[
L(θ̂i)

T Σ̂(θ̂i)
−1L(θ̂i)

]
−1

L(θ̂i)
T Σ̂(θ̂i)

−1ψ(θ̂i)

(34)

initialized by some θ̂0 where Σ̂(θ) = diag
(
Σ̂p(θ), Σ̂f (θ)

)
.

5. SIMULATION STUDIES

In our simulation studies, the target transmits RF signals

at 1.9 GHz over a time interval of two minutes. The target is

oblivious of its being tracked and thus moves along a straight

line at constant speed of 90 km per hour or 25 meters per

second. The small aerial vehicle (SAV) sensor flies at 180

km per hour or 50 meters per second. The following figure

shows the trajectories of the target and the sensor.
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Fig. 1 Trajectories of the target and the SAV

The true parameter vector for the target is given by

θ =
[

3200 3200 −21.65 −12.5
]
. The average dis-

tance between the target and the sensor is 2.72 km with

maximum 3.63 km and minimum 1.94 km. The power and

Doppler measurements are taken every second, and thus a

total of 120 samples are obtained. The Cramér-Rao lower

bounds (CRLBs) are computed for the above trajectories that

lead to the following root mean-squared (RMS) errors from

the lower bounds for unbiased estimators where SNRp = 40
dB and σ2

f = 1.92:

Table 1: RMS values for CRLBs in meters

Parameters Power only Doppler only Power & Doppler

x0 15.7821 15.3020 3.9263

y0 15.6618 15.7205 3.8172

vx 0.1252 0.3150 0.0361

vy 0.4294 0.2005 0.1025

For the case of SNRp = 20 dB and σ2
f = 1.92, the

following table is obtained:

Table 2: RMS values for CRLBs in meters

Parameters Power only Doppler only Power & Doppler

x0 157.8205 15.3020 8.2231

y0 156.6182 15.7205 8.3520

vx 1.2518 0.3150 0.1559

vy 4.2940 0.2005 0.1340
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For the case of SNRp = 40 dB and σ2
f = 192, the

following table is obtained:

Table 3: RMS values for CRLBs in meters

Parameters Power only Doppler only Power & Doppler

x0 15.7821 153.0203 14.6164

y0 15.6618 157.2053 14.4891

vx 0.1252 3.1496 0.1166

vy 0.4294 2.0049 0.3973

Based on the CRLBs, it is reasonable to investigate the

case of SNRp = 40 dB and σ2
f = 1.92. It is noted that

small σ2
f for the Doppler measurements holds because of the

advanced RF technology. It is also noted that the maximum

Doppler shift induced by the moving target is only 158.4

Hz, compared to the standard deviation for the Doppler

measurement error that is 1.9 Hz. In addition there is a

drifting error in the carrier frequency close to 2.5 Hz over

the 2 minutes time interval to be explained later.

For the power measurements in (3), we use the model of

power loss from [5] in the case of 1.9 GHz carrier frequency

that yields C = C0 := (λ/4π)2 = 1.5766 × 10−4 using

fs = 1.9 GHz.

For the simulation studies, we first carried out estima-

tion based on power only. It turns out that the iterative

LS algorithm fails to compute meaningful estimates with

SNRp = 40 dB even if the initial guess of the parameter

vector is close to the true parameter vector. If SNRp = 60
dB is used, then it gives more accurate estimates, though still

far from what predicted by the Cramér-Rao lower bounds,

but only under the condition that the initial parameter vector

is close to the true parameter.

On the other hand, if estimation based on Doppler only

is carried out with σ2
f = 1.92 and initial parameter vector

(2200, 2700,−16,−8), the RMS estimation errors (averaged

over 100 runs) are: (36.2257, 16.1438, 0.4168, 0.5940).
For estimation based on both power and Doppler measure-

ments where SNRp = 40 dB and σ2
f = 1.92 are used, the

RMS errors (200 runs) are: (6.2987, 7.6909, 0.1192, 0.1304),
which are greater than though, but close to the corresponding

CRLB RMS values. The interesting observation is that the

iterative LS algorithm converges for most of the initial pa-

rameter vectors simulated unless the initial parameter vector

is too far away from the true one. The above RMS errors use

the initial parameter vector (4900, 1200, 0, 0) that is close

to the reality. The simulation studies suggest that the use

of both power and Doppler measurements complement each

other and help to overcome divergence problem even when

initial parameter vectors are relatively far away from the true

parameter vector.

6. CONCLUSION

This report investigated TMA problem based on mea-

surements of power and Doppler. The associated FIMs are

analyzed and compared with those based on Doppler-bearing

measurements to make the case in using power and Doppler

measurements for localization and tracking of the ground

moving target (GMT). It is a fact that power and Doppler

are complementary to each other in estimation of the position

and velocity of the GMT. The research work conducted in

this paper is also motivated by the simplicity and low cost

of the sensing device for power and Doppler measurements.

However the development of the TMA tools based on power

and Doppler measurements also encounters the difficulties.

One of them is the nuisance parameters that may change

with respect to time; The other is the numerical difficulty

due to much higher source frequency than the Doppler

frequency induced by the motions of the target and the

sensor. To overcome these difficulties, normalization via

ratios of the measurements over neighboring time samples

is employed based on which the iterative LS algorithm is

developed. It is interesting to observe from the simulation

example that the iterative LS algorithm has a much larger

region of convergence than the case without using the ratios.

In fact our results show that the RMS error is close to

what predicted by the Cramér-Rao lower bound. Due to

the space limit, our simulation results for the case where

variation of constant C and drifting of fs are skipped. The

interested readers can request for the complete report [7] 1.

It needs to be mentioned, though, that the simulation results

are much worse when variations of power constant C and

source frequency fs are involved that is currently under our

investigation.
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