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Abstract— This paper presents an output-feedback controller
design for Lur’e-type systems with set-valued nonlinearities
in the feedback loop based on a generalization of a Popov-
like criterion. Hereto, we introduce the concept of absolute
input-to-state stability (ISS) that generalizes the well-known
absolute stability property. The latter concept is used to
design a state-feedback controller that renders the closed-loop
system absolutely ISS and, therewith, robust to uncertainties
in the nonlinearities and disturbances, such as measurement
noise. Furthermore, an output-feedback controller design is
constructed by exploiting the ISS property, where a model-
based observer is used to estimate the system state. The
control strategy is applied to a mechanical motion system with
non-collocation of actuation and dry friction for which well-
known strategies such as direct friction compensation fail. The
effectiveness of the proposed output-feedback control strategy
is shown in simulations.

I. INTRODUCTION

In this paper, we present an output-feedback controller
design for Lur’e-type systems with set-valued nonlinearities
in the feedback loop. Supporting such a controller design,
we propose a generalization of a Popov-like criterion (as
developed in the scope of absolute stability theory), in
the sense that it is applicable to systems with set-valued
nonlinearities. An important class of engineering systems
that can be described in this form is linear mechanical motion
systems with set-valued friction laws.

Existing stabilization techniques based on absolute sta-
bility theory for locally Lipschitzian systems with slope-
restricted nonlinearities are discussed in [1], [2]. However,
due to the set-valued nature of the nonlinearities considered
here, these results are not applicable. A generalized circle
criterion, that is suitable for systems with set-valued nonlin-
earities, is discussed in [3]. Unfortunately, the conditions of
the circle criterion are rather restrictive for typical motion
control applications as will be indicated in this paper.

The proposed extension to the Popov-criterion also guar-
antees input-to-state stability (ISS) (instead of only asymp-
totic stability) with respect to perturbations on the system
(e.g. measurement noise). In analogy with the “absolute
stability” property, obtained by satisfaction of the conven-
tional Popov-criterion, see e.g. [4], [5], one might call this
property “absolute ISS”. The fact that the satisfaction of such
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an adapted Popov criterion guarantees absolute ISS implies
robustness with respect to both uncertainties in the set-
valued nonlinearities and measurement errors. Moreover, the
ISS property is used to construct an observer-based output-
feedback controller and we provide a separation principle for
the output-feedback controlled system.

The notion of ISS [6] is a useful property in the field of
control, which ensures, roughly speaking, that the state of the
system is bounded for a bounded input. In [7], a proof of
ISS for Lur’e-type systems is given, which is not applicable
to systems with set-valued nonlinearities. Next to the fact
that the usual work on ISS considers continuous systems,
they focus typically on the use of smooth ISS Lyapunov
functions (see e.g. [7]–[9] to mention just a few). In case of
extending the Popov-criterion to the discontinuous systems
as considered here, one has to adopt non-smooth (ISS) Lya-
punov functions. The reason of non-smoothness is that the
Lyapunov function contains a term consisting of an integral
of the nonlinearity. Despite some recent work, see [10]–
[12], to bring ISS concepts to the realm of discontinuous
and switched systems, none of these papers can be used in
the present context.

The concept of absolute ISS is used for the design of
a stabilizing feedback controller for a mechanical motion
system with set-valued frictional nonlinearities that can be
described by a Lur’e-type system. An advantage of the pro-
posed controller design is that it is applicable to systems with
non-collocation of actuation and set-valued friction laws.
Additionally, the absolute ISS property implies robustness
with respect to uncertainties in the friction and measurement
errors. A common approach to tackle motion control prob-
lems for systems with (set-valued) friction is the application
of direct friction compensation techniques, see e.g. [13]–
[15] and many others. Such friction compensation schemes
are typically applied when the actuation and friction are
collocated, meaning that the friction force and the actuation
force act at the same place and the friction can be com-
pensated directly (if an accurate friction model is available).
Here, the presented approach leads to feedback controllers
for motion systems with non-collocation of actuation and
friction, that are inherently robust to uncertainties in the
friction characteristic.

The structure of this paper is as follows. Notations and
definitions used in the paper are introduced in Section II.
The controller designs are presented in Section III, where
we discuss the state-feedback controller design with the
generalization of the Popov criterion and the absolute ISS
property, the observer design and the output-feedback con-
troller design. A rotor dynamic system is presented in Section
IV as an example of a mechanical motion system with non-
collocated actuation and set-valued friction laws and the
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results of the application of the output-feedback controller
design are shown in simulations. We finish this paper with
conclusions in Section V. The proofs will be omitted due to
lack of space and can be found in [16].

II. NOTATIONS AND DEFINITIONS

A function u : R+ → R
n is piecewise continuous if

on every bounded interval the function has only a finite
number of points at which it is discontinuous. We will regard
every piecewise continuous function u to be right continuous,
i.e. limt↓τ u(t) = u(τ) for all τ ∈ R+. With ‖ · ‖ we
will denote the usual Euclidean norm for vectors in R

n. A
function γ : R+ → R+ is of class K if it is continuous,
strictly increasing and γ(0) = 0. It is of class K∞ if, in
addition, it is unbounded, i.e. γ(s) → ∞ as s → ∞. A
function β : R+ × R+ → R+ is of class KL if, for each
fixed t ∈ R+, the function β(·, t) is of class K, and for each
fixed s ∈ R+, the function β(s, ·) is decreasing and tends
to zero at infinity. A differential inclusion is given by an
expression of the form

ẋ(t) ∈ F (x(t), e(t)), (1)

where F : R
n × R

m → R
n is a set-valued mapping and

with the state x ∈ R
n and the input e ∈ R

m. An absolutely
continuous function x is considered to be a solution of the
differential inclusion (1) given a piecewise continuous input
e if (1) is satisfied almost everywhere.

Definition 1 ( [6])

The system (1) is said to be input-to-state stable (ISS) if there
exist a function β of class KL and a function γ of class K such
that for each initial condition x(0) = x0 and each piecewise
continuous bounded input function e defined on [0,∞),

• all solutions x of the system (1) exist on [0,∞), and
• all solutions satisfy

‖x(t)‖ ≤ β(‖x0‖, t)+γ sup
τ∈[0,t]

(‖e(τ)‖), ∀t ≥ 0. (2)

The system is called globally asymptotically stable (GAS) if
the above holds for e = 0.
Consider the following linear system

ẋ = Ax + Gw
z = Hx + Dw,

(3)

with the state x ∈ R
n, input w ∈ R

p and output z ∈ R
p.

Definition 2

The system (3) or the quadruple (A,G,H,D) is said to be

strictly passive if there exist an ε > 0 and a matrix P = PT >
0 such that

[

A⊤P + PA + εI PG − H⊤

G⊤P − H −D − D⊤

]

≤ 0. (4)

III. CONTROL OF LUR’E-TYPE SYSTEMS WITH

SET-VALUED NONLINEARITIES

In this section, we consider systems of the form

ẋ = Ax + Gw + Bu (5a)

z = Hx (5b)

y = Cx (5c)

w ∈ −ϕ(z), (5d)

where x ∈ R
n is the system state, w ∈ R

p and z ∈ R
p are

the respective input and output of a set-valued nonlinearity
ϕ, u ∈ R

m is the control input and y ∈ R
κ is the measured

output. The controller design proposed in this section aims
at the stabilization of the origin x = 0. We first state the
following assumptions on the properties of the set-valued
nonlinearity ϕ(z) in (5d).

Assumption 1

The set-valued nonlinearity ϕ : R
p → R

p satisfies

• 0 ∈ ϕ(0);
• ϕ is upper semicontinuous (see [17]);
• ϕ is decomposed as ϕ(z) = [ϕ1(z1), ..., ϕp(zp)]

⊤, z =
[z1, ..., zp]

⊤ and ϕi : R → R, for i = 1, ...p;
• ϕi, i = 1, . . . , p, are set-valued on a countable set (of

Lebesgue measure zero) of isolated points;
• for all zi ∈ R the set ϕi(zi) ⊆ R, i = 1, ..., p, is non-

empty, convex, closed and bounded;
• each ϕi satisfies the [0, ∞] sector condition in the sense

that ziwi ≤ 0 for all wi ∈ −ϕi(zi) for i = 1, ..., p;
• there exist positive constants γ1 and γ2 such that for w ∈

−ϕ(z) and for any z ∈ R
p it holds that

‖w‖ ≤ γ1‖z‖ + γ2. (6)

The input functions u(·) are assumed to be in the space
of piecewise continuous bounded functions from [0,∞)
to R

m, denoted by PC. Clearly, the nonlinear function
(t, x) 7→ Ax − Gϕ(Hx) + Bu(t) is upper semicontinuous
on intervals, where u is continuous and attains non-empty,
convex, closed and bounded set-values. From [17, p. 98]
or [18, § 7], it follows that local existence of solutions is
guaranteed given an initial state x0 at initial time 0. Due to
the growth condition (6), finite escape times are prevented
and thus any solution to (5) is globally defined on [0,∞).
Hence, solutions x(·) and also z(·) = Hx(·) are absolutely
continuous functions. Note that 0 ∈ ϕ(0) implies that the
origin x = 0 is an equilibrium of system (5) for input u = 0.

A. State-feedback control

To stabilize the origin x = 0 of system (5), we propose a
linear static state-feedback law (assuming C = I , i.e. y = x):

u = K(x − e). (7)

where we take the measurement error e into account, which is
piecewise continuous and bounded. Here, K ∈ R

m×n is the
control gain matrix. Consequently, the resulting closed-loop
system is described by the following differential inclusion:

ẋ = (A + BK)x + Gw − BKe
z = Hx

(8a)

w ∈ −ϕ(z). (8b)

The transfer function Gcl(s) from the input w to the output
z of system (8) is given by Gcl(s) = H(sI − (A +
BK))−1G, s ∈ C. The intended control goal here is to
render the closed-loop system (8) “absolutely ISS” with
respect to e, as formalized below, by means of a proper
choice of the control gain K.
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−H(sI − (A + BK))−1BK
e

(a) Cascade representation of system (8) using the dynamic multiplier (9).

z̃ = H̃x + D̃w + Z̃e

z̃

ẋ = (A + BK)x + Gw − BKe

−w

w

w ∈ −ϕ(z)

ż = −Γ−1z + Γ−1z̃

Σ2

Σ1e

(b) Closed-loop system (10) after transformation with dynamic multiplier
(9).

Fig. 1: Block diagrams of the closed-loop system (10).

Definition 3

We call a system (8) absolutely ISS with respect to input e, if
the system (8) is ISS with respect to input e, as in Definition
1, for any ϕ satisfying Assumption 1.

To obtain sufficient conditions to guarantee that system
(8) is absolutely ISS, we use, as in [4] for smooth systems,
a so-called dynamic multiplier with transfer function M(s)
given by

M(s) = I + Γs, s ∈ C, (9)

where Γ = diag(η1, . . . ηp) ∈ R
p×p, with ηi > 0 for

i = 1, . . . , p. A cascade that represents system (8) together
with the multiplier M(s) is shown in Figure 1(a). Using the
dynamic multiplier M(s) we aim to transform the original
system into a feedback interconnection of two passive sys-
tems (with the perturbation input e), as is done in [4] and
[2] for systems with Lipschitz continuous nonlinearities.

In state-space formulation, the interconnected system
Σ1,Σ2 takes the following form:

Σ1 =

{

ẋ = (A + BK)x + Gw − BKe(t)

z̃ = H̃x + D̃w + Z̃e(t)
(10a)

Σ2 =

{

ż = −Γ−1z + Γ−1z̃
w ∈ −ϕ(z),

(10b)

see also Figure 1. Herein, z̃ ∈ R
p and the matrices H̃ ∈

R
p×n, D̃ ∈ R

p×p and Z̃ ∈ R
p×n can be derived from the

fact that z̃ = z + Γż (due to the choice of the multiplier
M(s) as in (9)) and, hence,

H̃ = H + ΓH(A + BK),

D̃ = ΓHG, Z̃ = −ΓHBK.
(11)

The following theorem states sufficient conditions under
which system (8) is ISS with respect to input e for any ϕ ∈
[0,∞], i.e. the system (8) is absolutely ISS.

Theorem 1

Consider system (8) and suppose there exists a diagonal
matrix Γ = diag(η1, ..., ηp) ∈ R

p×p with ηi > 0, i = 1, ..., p,

such that (A + BK,G, H̃, D̃), with D̃ and H̃ as in (11), is
strictly passive. Then system (8) is absolute ISS with respect
to input e for any ϕ satisfying Assumption 1.

Clearly, if the input e is zero, the origin x = 0 of system (8)
is absolutely stable under the conditions of Theorem 1. An
advantage of achieving absolute stability is the robustness
to uncertainties in the nonlinearity ϕ in the feedback loop.
We also note that, in [5], frequency-domain conditions
(including Popov-type conditions) guaranteeing a property
close to GAS are stated for Lur’e-type systems with
discontinuous nonlinearities. Here, we provide a Popov-like
criterion for systems with set-valued nonlinearities that
guarantees ISS with respect to input e (instead of only
global asymptotic stability).

B. Observer design

Following [19], we propose the following observer for the
system (5):

˙̂x = (A − LC)x̂ + Gŵ + Bu + Ly (12a)

ŵ ∈ −ϕ(ẑ) (12b)

ẑ = (H − NC)x̂ + Ny (12c)

ŷ = Cx̂. (12d)

with the observer gains N ∈ R
p×κ and L ∈ R

n×κ.
At this point, we state an additional assumption on the set-
valued nonlinearity ϕ(·) of system (5):

Assumption 2

The set-valued nonlinearity ϕ : R
p → R

p is such that ϕ is
monotone, i.e. for all z1 ∈ R

p and z2 ∈ R
p with w1 ∈ −ϕ(z1)

and w2 ∈ −ϕ(z2), it holds that 〈w1−w2, z1−z2〉 ≥ 0, where
〈·, ·〉 denotes the inner product in R

p.

Since the right-hand side of (12a) is again upper semi-
continuous in (t, x) due to continuity of y and piecewise
continuity of u, using Assumptions 1 and 2 on ϕ it can be
shown that there exist global solutions of (12), see [17], [18].
Knowing that both the plant and the observer have global
solutions, the dynamics for the observer error e := x − x̂ is
given by

ė = (A − LC)e + G(w − ŵ) (13a)

w ∈ −ϕ(Hx) (13b)

ŵ ∈ −ϕ(Hx̂ + N(y(t) − Cx̂)). (13c)

The problem of the observer design is finding the gains L
and N such that all solutions to the observer error dynamics
converge exponentially to the origin, which implies that
limt→∞ |x̂(t) − x(t)| = 0.

Theorem 2 ( [19])

Consider system (5) and the observer (12) with (A −
LC,G,H − NC, 0) strictly passive and the matrix G being

2318



ė = (A − LC)e + G(w − ŵ)
ŵ ∈ −ϕ(ẑ)
ẑ = Hx̂ + N(y − Cx̂)

ẋ = (A + BK)x + Gw − BKe
z = Hx
y = Cx

ϕ(·)

y

−w z

e

w

w

Fig. 2: Combination of the observer design and the controller
design.

of full column rank. Then, the point e = 0 is a globally
exponentially stable equilibrium point of the observer error
dynamics (13) for any ϕ(·) satisfying Assumptions 1 and 2.

C. Output-feedback control

In this section, an observer-based output-feedback con-
troller is presented, where we use the observer design,
presented in the previous section, to provide an estimate
x̂ for the system state. Next, the estimated state x̂ is fed
back to the system (5) via u = Kx̂ = K(x − e) as in
(7), where e now represent the estimation error. Application
of the observer-based output-feedback controller results in
an interconnection of system (8) and system (13), which is
depicted in Figure 2. We aim to prove global asymptotic
stability (GAS) of the equilibrium (x, e)=(0,0) of the inter-
connected system (8), (13).

Theorem 3

Consider system (8) and observer (12). Suppose there exists a
matrix Γ = diag(η1, ..., ηp) ∈ R

p×p with ηi > 0, i = 1, ..., p,

such that (A + BK,G, H̃, D̃) is strictly passive with D̃ and
H̃ as in (11). Moreover, suppose, (A−LC,G,H −NC, 0) is
strictly passive and G being full column rank. Then, (x, e) =
(0, 0) is a globally asymptotically stable equilibrium point of
the interconnected system (8), (13) for any ϕ(·) satisfying
Assumptions 1 and 2 (i.e. system (8), (13) is absolutely
stable).

IV. APPLICATION TO A ROTOR DYNAMIC SYSTEM WITH

NON-COLLOCATED FRICTION AND ACTUATION

In this section, we apply the controller design proposed
in the previous section to tackle a motion control problem
for mechanical systems with non-collocation of friction and
actuation. As a typical example, we consider a rotor dynamic
system as depicted schematically in Figure 3, which is a
model of an experimental setup as presented in [20]. The
system consists of an upper disc actuated by a drive part
(power amplifier, motor) and a lower disc. The upper disc is
connected to the lower disc by a steel string, which is a low-
stiffness connection between the discs. In the experimental
setup, a (lubricated) brake mechanism applies a friction
torque Tfl to the lower disc. Moreover, the friction torque
Tfu acting on the upper disc is due to friction in the bearings
at the upper disc and electromagnetic effects in the drive part.
The respective angular positions θl, θu of the lower and the
upper discs can be measured and u is the input voltage to the

Fig. 3: The rotor dynamic system.

drive part. The configuration of this setup can be recognized
in the structure of drilling systems and other rotor dynamic
motion systems.

In order to describe the dynamics of the system in first-
order Lur’e-type form, we define the state vector x as x =
[

x1 x2 x3

]⊤
=

[

α ωu ωl

]⊤
=

[

θu − θl θ̇u θ̇l

]⊤
.

Note that the state x1 = α = θu − θl represents the
relative angular displacement of the lower disc with respect
to the upper disc, which can be obtained via the encoder
measurements of θu and θl (y = x1). The desired solution
for the rotor dynamic system is a constant (and identical)
velocity for both discs, which corresponds to an equilibrium
(note that in drilling systems such constant velocity solution
corresponds to nominal operating conditions). The state-
space equations of the rotor dynamic system in Lur’e-type
form are given by (5), with state x ∈ R

3, w, z ∈ R
2,

input u ∈ R, measured output y ∈ R, and ϕ(z) =
[ϕ1(z1) ϕ2(z2)]

⊤ = [Tfu(z1) Tfl(z2)]
⊤ with ϕi : R →

R for i = 1, 2. The matrices and the nonlinearity ϕ(z) in (5)
are given by

A =





0 1 −1
− kθ

Ju
−b b

kθ

Jl
b −b



 , B =





0
km

Ju

0



 , (14)

G =





0 0
1

Ju
0

0 1
Jl



 ,H =

[

0 1 0
0 0 1

]

, (15)

C =
[

1 0 0
]

and ϕ(z) =
[

Tfu(z1) Tfl(z2)
]⊤

.
Herein, Ju and Jl represent the moments of inertia of the

upper and lower disc, respectively, kθ is the torsional stiffness
of the steel string, b represents the material damping in the
string and km is a motor constant. Set-valued force laws are
needed to model the friction acting on the upper and lower
disc to account for the pronounced sticking effect in both
characteristics, see [20], [21]:

Tfu(θ̇u) ∈







Tcu(θ̇u)sgn(θ̇u) for θ̇u 6= 0
[−Tsu + ∆Tsu ,

Tsu + ∆Tsu] for θ̇u = 0,
(16)
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Tsl

−Tsl

θ̇l

Tfl

−Tcl(θ̇l)

Tcl(θ̇l)

Fig. 4: Lower friction model Tfl.

Fig. 5: Bifurcation diagram for the open-loop rotor dynamic sys-
tem.

Tcu(θ̇u) = Tsu + ∆Tsusgn(θ̇u) + bu|θ̇u|+ ∆buθ̇u. (17)

which accounts for an asymmetric combined Coulomb and
viscous friction characteristic, and

Tfl(θ̇l) ∈

{

Tcl(θ̇l)sgn(θ̇l) for θ̇l 6= 0

[−Tsl, Tsl] for θ̇l = 0,
(18)

Tcl(θ̇l) = Tcl + (Tsl − Tcl)e
−|

θ̇l

ωsl
|δsl

+ bl|θ̇l|. (19)

Figure 4 depicts a schematic representation of the friction
law (18), (19) at the lower disc and reveals the presence of
a Stribeck effect.

The parameters of the rotor dynamic model are taken
from [20] and are estimated by dedicated parameter iden-
tification experiments. The parameter values are given by:
km = 4.3228 Nm/V, Ju = 0.4765 kg m2, Tsu = 0.37975
Nm, ∆Tsu = −0.00575 Nm, bu = 2.4245 kg m2/rad s,
∆bu = −0.0084 kg m2/rad s, kθ = 0.075 Nm/rad, b = 0 kg
m2/rad s, Jl = 0.035 kg m2, Tsl = 0.26 Nm, Tcl0.05 Nm,
ωsl = 2.2 rad/s, δsl = 1.5 and bl = 0.009 kg m2/rad s.

For varying constant inputs uc (i.e. u = uc in (5)),
different (co-existing) steady-state solutions of the rotor
dynamic system exist and are depicted in a bifurcation
diagram in Figure 5, with uc the bifurcation parameter. For
the case where the steady-state response is a periodic solution
(stick-slip limit cycle), we plot the maximum and minimum
value of the state variable ωl (velocity of the lower disc) in
the bifurcation diagram. For the region with constant input
voltages up to approximately uc = 2.7 V, we observe only

0 2 4 6 8 10 12 14 16 18 20
−5

0

5

10

15

time [s]

ω
l
[r
a
d
/
s]

Fig. 6: Limit cycle response of the rotor dynamic system for uc =

2.5 V.

stable limit cycles. Figure 6 shows such a limit cycle for
uc = 2.5 V. In the region from approximately 2.7 V - 4.5
V, two stable steady-state solutions co-exist: an equilibrium
point and a stick-slip limit cycle. For constant input voltages
higher than 4.5 V, only a stable equilibrium point occurs.
As we remarked earlier, the equilibria of the rotor dynamic
system correspond to both discs rotating with the same
constant velocity, which are the desired operating conditions.
As such, the control goal is to stabilize the unstable equilibria
up to uc = 2.7 V and to eliminate the limit cycles up to
uc = 4.5 V.

A. Output-feedback controller

One could opt to design an output-feedback controller
by using the circle criterion, instead of the more involved
Popov-criterion-inspired approach with the dynamic multi-
plier M(s). However, the controller design based on the
circle criterion is not feasible for the rotor dynamic system
(5) according the presented feasibility conditions in [1]. In
order to satisfy the feasibility conditions in [1], the damping
coefficient b should satisfy {b > min ∂

∂ωl
Tfl(ωl)|ωl > 0}.

This would imply that the negative damping in the friction
model Tfl, which is, basically, the cause of the friction-
induced stick-slip vibrations is dominated by such viscous
damping b in the string. However, the damping coefficient b
reflects only material damping in the string which is gener-
ally very low and will not satisfy the above condition (b = 0
as introduced earlier). As many mechanical motion systems
consist of inertias coupled by a low-damping connection,
there exists a large class of systems for which a circle-
criterion based controller design is not feasible. For these
systems, the output-feedback controller design, presented in
Section III-C, can be a solution since the use of the dynamic
multiplier relaxes the circle-criterion conditions.

The control strategy presented in Section III-C is applied
to the rotor dynamic system (5) and the output-feedback
control law is given by

u = uc + ucomp + K(x̂ − xeq), (20)

with xeq = [αeq ωeq ωeq]
⊤ the desired equilibrium of the

rotor dynamic system (5), the control gain K ∈ R
1×3 and

ucomp = (Tfu(x̂2) − bux̂2)/km.
The part ucomp of the control law compensates partly

the friction acting at the upper disc of the rotor dynamic
system. The ‘effective’ friction after compensation acting at
the upper disc is purely viscous. Note that such a friction
compensation can not be employed to compensate for the
friction at the lower disc (which is responsible for the stick-
slip limit cycling), due to the non-collocation of actuation
and friction. We can easily transform the closed-loop rotor
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Fig. 7: Closed-loop response of the rotor dynamic system for uc =

2.5 V and 4.0 V, respectively.

dynamic system (5), (20) to a system in Lur’e-type form
with the origin as equilibrium by choosing, for example, the
new state ξ = x−xeq. For the sake of brevity, we will omit
this transformation here (see [20] for more details).
Assumption 2 requires that the set-valued nonlinearity ϕ
is monotone. If we consider the friction model Tfl, see
Figure 4, which is contained in ϕ, then it is clear that
Tfl is not monotone. We will render ϕ monotone by
applying a loop transformation, which will add ‘viscous’
damping to Tfl and subtract it from the linear part of
(5), see [20]. The following feedback and observer gains
satisfy Theorem 3: K =

[

15.9 1.57 27.6
]

, L⊤ =
[

195 −312 −9080
]

, N⊤ =
[

−2.22 −37.8
]

, with
the multiplier matrix Γ = 10I . A solution for P that satisfies
the strict passivity condition for (A + BK,G, H̃, D̃), i.e.
satisfies the corresponding LMI condition (4), is

P =





3.639 0.431 6.382
0.431 0.070 0.740
6.382 0.740 11.627



 . (21)

B. Closed-loop Simulations

The presented output-feedback controller is applied to
the rotor dynamic system to stabilize the equilibria of the
rotor dynamic setup for any bounded constant input uc.
Simulations are performed and we show the closed-loop
transient response for the constant input voltages uc = 2.5
V and uc = 4.0 V in Figure 7, where the initial open-
loop solutions are stick-slip limit cycles. The output-feedback
controller is switched on at t = 5 s for uc = 2.5 V and
the closed-loop system converges to the equilibrium state
(ωeq = 4.40 rad/s). Also for uc = 4.0 V, the closed-loop
system converges to the equilibrium state (ωeq = 7.06 rad/s).

V. CONCLUSIONS

In this paper, we considered the output-feedback control of
Lur’e-type systems with set-valued nonlinearities. The con-
cept of absolute input-to-state stability (ISS) was presented,
together with a generalization of a Popov-like criterion
that guarantees absolute ISS for systems with set-valued
nonlinearities. The latter concept is used to design a state-
feedback controller and the related absolute stability condi-
tions are less restrictive than those related to a controller
design based on the circle criterion. Since the presented
controller induces absolute ISS, the closed-loop system is
robust to uncertainties in the nonlinearities and measurement
errors. Furthermore, an output-feedback controller design is

constructed by exploiting the ISS property, where a model-
based observer, for which stability of the error dynamics is
proven, is used to estimate the system state. We provided a
separation principle for the considered class of Lur’e-type
systems.

The control strategy is applied to a mechanical motion
system with non-collocation of actuation and dry friction
for which well-known strategies such as direct friction com-
pensation techniques fail. The effectiveness of the proposed
output-feedback control strategy is shown in simulations.
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