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Abstract— Motivated by the widespread use of networked
and embedded control systems, an algorithm for stability anal-
ysis is proposed for sampled-data feedback control systems with
uncertainly time-varying sampling intervals. The algorithm
is based on the robustness of discrete-time systems against
perturbation caused by the variation of sampling intervals.
The validity of the algorithm is demonstrated by numerical
examples.

Index Terms— networked control systems, sampled-data sys-
tems, quadratic stability, matrix exponential

I. INTRODUCTION

The sampled-data control theory (See [1] and references

therein) has been well-developed in the last two decades,

where the crucial properties is the periodicity of the closed-

loop systems which comes from the periodic sampling.

It is reasonable to consider the periodic sampling in the

conventional implementation of sampled-data systems. We,

however, recently encounter applications where the periodic

sampling is almost impossible. For example, resources for

measurement and control are restricted in networked and/or

embedded control systems (See [2], [3] and references

therein), and hence the sampling operation results to be aperi-

odic and uncertainly time-varying. In view of the widespread

use of networked and/or embedded control systems, it is

theoretically and practically important to study the robustness

of such systems against variation of sampling intervals. One

can find pioneering work for the issue in the literature [4],

[5], [6].

Recently the so-called input delay approach [7], [8] was

proposed to treat the systems with aperiodic sampling, and

a significant reduction of the conservatism is achieved. The

basic idea of the approach is modeling the aperiodic sample-

and-hold operations by a time-varying uncertain time delay

at control input, and hence one can apply methodologies

developed for delay systems to the aperiodic sampled-data

systems. One can find applications of the input delay ap-

proach to several analysis and synthesis problems [7], [8],

[9], [10], [11], [12]. Moreover this approach has inspired

the discussion of the problem from the viewpoints of hybrid

systems [13], [14] and robust control [15], [16]. It would be

worth mentioning that most of existing results verify stability

by showing the existence of a continuous-time Lyapunov

function.

The purpose of this paper is to develop an algorithm to

check the stability of the aperiodic sampled-data systems.

We, however, take a different approach. Namely we will
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verify stability by showing the existence of a discrete-time

quadratic Lyapunov function. This approach is also taken in

[6] where a quadratic Lyapunov function is searched by a

randomized algorithm. Their algorithm, however, checks the

quadratic stability of a set of discrete-time systems related

to finite number of prespecified sampling intervals between

bounds of sampling intervals. In other words, the algorithm

in [6] determines if a necessary condition (for a sufficient

condition for the stability) holds or not, and hence cannot

conclude the stability. In contrast we will derive an algorithm

of checking the quadratic stability for all sampling intervals

uncertainly varying between given lower and upper bounds,

by exploiting the robustness against perturbation caused by

the variation of sampling intervals based on the small-gain

condition.

This paper is organized as follows: The problem is for-

mulated in Section II. Section III provides a stability criteria

and an algorithm to verify the stability based on the criteria.

The validity of the algorithm is demonstrated in Section IV.

We discuss some directions to reduce the conservatism in

Section V.

II. PROBLEM FORMULATION

Let the following state-space system be given

ẋ(t) = Ax(t) + Bu(t) (1)

where x and u respectively denote the state and the input

taking values in R
n and R

m. A and B are matrices of

compatible dimensions.

We consider the following scenario of the feedback control

of (1):

• We can measure the state of (1) when t = τk (k = 0,

1, . . .) where {τk} is an uncertain set of discrete time

instances satisfying

τ0 = 0 (2)

and

0 < hℓ ≤ τk+1 − τk ≤ hu <∞ (3)

for given hℓ and hu.

• The control input u is determined from the sampled-

data x(τk) and a given feedback gain F ∈ R
m×n by

u(t) = Fx(τk), ∀t ∈ [τk, τk+1). (4)

The resultant feedback system composed of (1) and (4),

denoted by T , is given by

ẋ(t) = Ax(t) + BFx(τk), ∀t ∈ [τk, τk+1). (5)
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Fig. 1. Feedback control with aperiodic sample and hold actions

See also Fig. 1. Note that (3) implies

lim
k→∞

τk =∞

since hℓ > 0. Applications of this scenario can be found in

networked and/or embedded control systems [2], [3], where

resources for measurement and control are restricted.

The purpose of this paper is to provide stability criteria

for T . If τk’s satisfy

τk+1 − τk = h̃

for some h̃ ∈ [hℓ, hu], the resultant feedback control system

is periodic. This special scenario is the one well-studied in

the so-called sampled-data control theory [1]. Indeed the

stability can be easily verified by checking the spectral radius

of Φ(h̃) in the special scenario, where

Φ(h) := eAh +

∫ h

0

eA(h−η)B dη F. (6)

It is, however, obvious that our general scenario is much

more complicated, because of the uncertainly time-varying

nature.

In this paper we will verify the stability of T based on the

following lemma [6], [3]:

Lemma 1: The origin of T is exponentially stable if there

exists a matrix 0 < P = P ∗ ∈ R
n×n satisfying

(Φ(h))
∗
PΦ(h)− P < 0 (7)

for all h ∈ [hℓ, hu], where Φ(·) is defined in (6).

Note that Lemma 1 is based on the quadratic stability of

the accompanying discrete-time system Td defined by

ξ[k + 1] = Φ(τk+1 − τk)ξ[k]

with the discrete-time Lyapunov function

V (ξ[k]) := ξ∗[k]Pξ[k]

where ξ[k] := x(τk).

Note also that it is hard to find a matrix P in Lemma 1

since the inequality must hold for all values in [hℓ, hu], and

Φ is a strongly nonlinear function of h.

Zhang-Branicky [6] proposes a randomized algorithm to

search a P on a grid between hℓ and hu. In other words,

the algorithm in [6] determines if a necessary condition for a

sufficient condition for the stability holds or not, and hence

cannot conclude the stability.

III. MAIN RESULTS

The basic idea of the stability analysis in this paper is

to imply the existence of P > 0 satisfying (7) for all h ∈
[hℓ, hu] from that of P > 0 satisfying (7) for all h ∈ G
where G is a grid:

G = {h1, h2, . . . , hN} ⊂ [hℓ, hu].

Hence we discuss the robustness of systems with uniform

sampling interval against the perturbation caused by the

variation of sampling interval. It would be worth mentioning

that most of existing results for stability of T are derived by

showing the robustness of continuous-time control system

ẋ(t) = (A + BF )x(t)

against the perturbation caused by the sampled-data action.

A. Stability Criteria

In order to discuss the robustness against the variation of

sampling interval, we consider the following manipulation

of Φ: Fix h0 ∈ (hℓ, hu) and then one can define θk so that

τk+1 − τk = h0 + θk.

One has the following property, which is simple but plays a

key role in this paper:

Proposition 1: The function Φ(·) defined in (6) satisfies

Φ(τk+1 − τk) = Φ(h0) + ∆(θk)Ψ(h0) (8)

where

Ψ(h) := AΦ(h) + BF, (9)

∆(θ) :=

∫ θ

0

eAη dη.

Proof: By definition

Φ(τk+1 − τk) = eA(h0+θk) +

∫ h0+θk

0

eA(h0+θk−η)B dηF.

The first term can be transformed to

eA(h0+θk) = eAθkΦ(h0) = (I + ∆(θk)A)Φ(h0).

While for the second term we have the following:

∫ h0+θk

0

eA(h0+θk−η)B dη

=

∫ h0

0

eA(h0+θk−η)B dη +

∫ h0+θk

h0

eA(h0+θk−η)B dη

= eAθk

∫ h0

0

eA(h0−η)B dη + ∆(θk)B

= (I + ∆(θk)A)

∫ h0

0

eA(h0−η)B dη + ∆(θk)B.

Then it is straightforward to derive (8) by substituting the

above results.

Now one can regard Td as a feedback connection of an

LTI discrete-time system Σ:

Σ[z] := Ψ(h0)(zI − Φ(h0))
−1
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Fig. 2. Alternative representation of Td

and a time-varying matrix ∆(θk). See Fig. 2. Thus we obtain

the following lemma as a simple application of the small-

gain theorem1:

Lemma 2: Let an interval H ⊆ (0, ∞) be given. There

exists a matrix 0 < P = P ∗ ∈ R
n×n satisfying (7) for all

h ∈ H if ρ(Φ(h0)) < 1 and

γ ‖∆(θ)‖ ≤ 1 (10)

for all θ ∈ H− h0, where γ is an upper bound of ‖Σ‖∞:

γ > ‖Σ‖∞ . (11)

Since minimization of γ in (11) is routine, one can verify

the stability from (10) by bounding ‖∆(θ)‖. For the purpose

we invoke the following property [18]:

Lemma 3: For given A ∈ R
n×n and t ≥ 0 one has

∥

∥eAt
∥

∥ ≤ eµ(A)t (12)

where µ(A) denotes the log norm of A:

µ(A) = λmax

(

A + A∗

2

)

.

Remark 1: One can continue the following discussion by

replacing the bound in (12) by other bounds found in, e.g.,

[18], [19].

In order to state the main results of this paper we need

the following interval defined with given h > 0 and γ > 0:

H(h, γ) := [hL, hU ] ∩ (0, ∞) (13)

where hL and hU are given as follows:

L1) If µ(−A) = 0, hL = h− γ−1,

L2) else if µ(−A) ≤ −γ, hL = −∞,

L3) else

hL = h− 1

µ(−A)
log

(

1 + γ−1µ(−A)
)

.

U1) If µ(A) = 0, hU = h + γ−1,

U2) else if µ(A) ≤ −γ, hU =∞,

U3) else

hU = h +
1

µ(A)
log

(

1 + γ−1µ(A)
)

.

Now we are ready to state the basic robustness results:

Theorem 1: Let h0 > 0 be given so that ρ(Φ(h0)) < 1.

For γ > 0 satisfying (11), there exists a matrix 0 < P =
P ∗ ∈ R

n×n satisfying (7) for all h ∈ H(h0, γ).
Proof: See Appendix.

1Readers are referred to, e.g., [17] on the relationship between the
quadratic stability and the small-gain condition.

B. Algorithm for Stability Analysis

Theorem 1 provides a robustness condition for T based on

the property of the nominal system determined by the fixed

sampling period h0. A direct use of Theorem 1, however,

can be conservative in the sense that there might not exist

an h0 > 0 such that [hℓ, hu] ⊆ H(h0, γ) even though there

exists a matrix P satisfying (7) for all h ∈ [hℓ, hu], mainly

because of the small-gain type modeling of ∆(θk).
In order to reduce the conservatism we introduce the multi-

model to obtain the following theorem:

Theorem 2: Let hi > 0 (i = 1, 2, . . . , N ) be given. If

there exist a matrix 0 < X = X∗ ∈ R
n×n and αi > 0

(i = 1, 2, . . . , N ) satisfying N matrix inequalities
[

Φ(hi) I
Ψ(hi) 0

] [

X 0
0 I

] [

Φ(hi) I
Ψ(hi) 0

]∗

−
[

X 0
0 αiI

]

< 0 (14)

then (7) is satisfied with P = X−1 for all

h ∈
N
⋃

i=1

H(hi,
√

αi)

where Φ(·), Ψ(·), H(·, ·) are defined in (6), (9), and (13),

respectively.

Proof: Consider the case i = 1. The condition (14)

with i = 1 is an equivalent representation of
∥

∥Ψ(h1)(zI − Φ(h1))
−1

∥

∥

∞
<
√

αi.

Hence, by invoking Theorem 1, there exists a matrix 0 <
P = P ∗ ∈ R

n×n satisfying (7) for all h ∈ H(h1,
√

α1).
Moreover we can verify that one of such P is given by X−1

from the standard procedure. With similar discussion, we can

conclude that there exists a matrix 0 < P = P ∗ = X−1 ∈
R

n×n satisfying (7) for all h ∈ H(hi,
√

αi), i = 2, . . ., N .

This concludes the proof.

Once we find a matrix P > 0 satisfying (7) on a grid by

any methods, e.g., one proposed in [6], we can verify the

robustness by invoking Theorem 2. In this paper we propose

the following concrete algorithm for stability analysis which

generates a grid effectively based on Theorem 2:

Algorithm 1: Given 0 < hℓ < hu < ∞, and a large

positive integer N0.

0. Initialization: G ← {(hℓ + hu)/2}
1. If there exists an h ∈ G satisfying ρ(Φ(h)) ≥ 1, the

origin of T is unstable. Stop.

2. If #(G) ≥ N0, stop without deciding the stability of

the origin of T . Here #(G) denotes the number of

elements in G.

3. Minimize
#(G)
∑

i=1

βi

‖Σi‖2∞
subject to
[

Φ(hi) I
Ψ(hi) 0

] [

X 0
0 I

] [

Φ(hi) I
Ψ(hi) 0

]∗

−
[

X 0
0 βiI

]

< 0

for all hi’s and X > 0, where

Σi[z] := Ψ(hi)(zI − Φ(hi))
−1,
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and hi is the i-th smallest element in G.

4. If

[hℓ, hu] ⊆
#(G)
⋃

i=1

H(hi,
√

αi),

the origin of T is exponentially stable. Stop. Here

αi := λmax(Ri − S∗
i (Qi −Xi)

−1Si) + ε

where ε is a small positive number and
[

Qi Si

S∗
i Ri

]

:=

[

Φ(hi) I
Ψ(hi) 0

] [

X 0
0 I

] [

Φ(hi) I
Ψ(hi) 0

]∗

.

5. Update G by

G ← G ∪ {(Lj + Uj)/2}
for all j where Lj and Uj are determined so that

M
M

j=1

(Lj , Uj) = (hℓ, hu)\

0

@(hℓ, hu) ∩
#(G)
[

i=1

H(hi,
√

αi)

1

A ,

L1 < U1 < L2 < U2 < · · · < LM < UM

are satisfied. Go to Step 1.

We have some remarks for Algorithm 1: Step 2 is intro-

duced to avoid numerical issues which could happen when

#(G) is too large. The performance of the algorithm can

be tuned by modifying the objective function in Step 3.

Note that αi satisfies (14) with X determined in Step 3 and

αi ≤ βi with sufficiently small ε. The integer M in Step 4

is #(G) + 1 at most.

IV. NUMERICAL EXAMPLES

In this section we demonstrate the validity of the proposed

method for stability analysis.

A. Example in [6]

Let us consider the following problem parameters [6]:

A =

[

0 1
0 −0.1

]

, B =

[

0
0.1

]

, F = −
[

3.75 11.5
]

.

We search for an interval H̃ satisfying that the origin of T
is exponentially stable if

τk+1 − τk ∈ H̃.

Applying the methods in the literature we obtain several

H̃’s: From the results in [4] we have (0, 2.7 × 10−4]
(reported in [5]). It is improved to (0, 4.5 × 10−4] in [5],

and (0, 0.0593] in [6]. The input delay approach significantly

improved the conservatism to have (0, 0.869] in [7], [8],

[10]. One can find further improvements: (0, 0.887] in [11],

(0, 1.113] in [13], [14], and (0, 1.365] in [15].

It would be natural to take hℓ > 0 for practical situations

of networked/embedded control systems. There are less re-

sults which explicitly consider the case of hℓ > 0. We obtain

[0.01, 0.87] from the results in [10] but this is included in

(0, 1.365] in [15].

In contrast to the existing results, the proposed algorithm

proved the exponential stability of the origin of T for H̃ =
[0.01, 1.72] with

P =

[

4.03 5.09
5.09 13.49

]

× 10−3.

We remark that T is unstable when the sampling period is

fixed to 1.73.

We have implemented Algorithm 1 on MATLAB 7.4,

YALMIP (R20070523) [20], and SDPT3 (4.0β) [21]. The

search took 6.33 [s] on a laptop with Intel Core 2 Duo

(2.33GHz) running MacOSX, and the maximal #(G) in the

search was 25.

B. Example in [16]

Let us consider the following problem parameters [16]:

A = −2, B = F = 1.

The stability of T is verified for any fixed hu <∞ in [16],

where the passivity theorem plays the key role. Note that

most of other existing results cannot conclude the stability

for large hu. Now let us apply the proposed methods in this

paper: One can verify that

∥

∥Ψ(h0)(zI − Φ(h0))
−1

∥

∥

∞
=

2e−2h0

e−2h0 + 3
<

1

4
< 2

and hence Theorem 1 guarantees the stability for any large

hu (Case U2 in the definition of H).

It seems to be unlikely that one can guarantee the sta-

bility for large hu with small-gain type discussion in the

continuous-time domain if we take a time-invariant system as

the nominal part, since the perturbation can grow extremely

large for large hu. Hence this example clarifies one of the

benefits to take the discrete-time approach, noting that we

have taken the small gain approach in the discrete-time

domain.

V. EXTENSIONS FOR CONSERVATISM REDUCTION

The proposed algorithm chops the given interval [hℓ, hu]
into pieces to verify the stability by using Theorem 1.

Although it enables to test the stability for large range

of the sampling interval in spite of the conservatism in

Theorem 1, it is obvious that the performance of the al-

gorithm is improved if one can reduce the conservatism in

Theorem 1. There are several directions for the purpose.

In this section we suggest and discuss some of them with

numerical evaluation.

A straightforward way is to replace the bound of the

maximal singular value of matrix exponential in (12) by other

bounds found in, e.g., [18], [19]. Since the performance of

the bound depends on the matrix taken the exponential [18],

[19], which is the ‘A’-matrix of the plant in our problem,

it might be practical to use bounds as many as possible if

computational time is allowed.

Another way to reduce the conservatism is to replace the

small gain condition (10) by a general quadratic condition
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Fig. 3. hU and hL varying α

in, e.g., [22], [23], [24]. For the generalization it is required

to find a matrix Π = Π∗ ∈ R
(n+m)×(n+m) satisfying

[

I
∆

]∗

Π

[

I
∆

]

≥ 0

for all ∆ ∈ {∆(θ), θ ∈ [hℓ − h0, hu − h0]}. One such Π is

given by

Π =

[

e−A∗αe−Aα 0

0 −γ2e−A∗αe−Aα

]

for all α ∈ R and γ ≤ 1/ ‖∆‖, noting that ∆(θ) and eAα

commute. Note that this Π is related to the scaled small gain

condition and one can reduce the conservatism in Theorem 1

by replacing ‖Σ‖∞ by
∥

∥e−AαΣeAα
∥

∥

∞
. For the problem data

in Section IV-A with h0 = 0.1, Theorem 1 and the above

condition verify the stability for h0 + [−6.85, 6.87]× 10−2

and h0 +[−9.52, 9.57]×10−2 respectively, where we swept

α from −6 to 3 with 0.01 step. This is more than 35%

improvement. One drawback of this method is the fact that

the corresponding optimization problem is not convex: For

the problem data in Section IV-A with h0 = 1.5, we plot

[hL, hU ] = H(h0, γ)

for γ >
∥

∥e−AαΣeAα
∥

∥

∞
in Fig. 3, varying α. We see that

both hL and hU are multimodal in α.

Finally let us notice that the conservatism is Theorem 1 is

more serious for very small h0 since Φ(h0) is close to the

identity and γ is large. One might reduce the conservatism

by modifying the modeling. Noting that

∆(θ) =

∫ θ

0

(eAt − I + I) dt = θI +

∫ θ

0

(eAt − I) dt,

one can show that the exponential stability of origin of T
for h ∈ [−θ, θ] + h0 if there exist a matrix P > 0 and α
satisfying

[

Ω+(h0, θ) I
Ψ(h0) 0

] [

X 0
0 I

] [

Ω+(h0, θ) I
Ψ(h0) 0

]∗

−
[

X 0
0 αI

]

< 0,

[

Ω−(h0, θ) I
Ψ(h0) 0

] [

X 0
0 I

] [

Ω−(h0, θ) I
Ψ(h0) 0

]∗

−
[

X 0
0 αI

]

< 0,

√
α

2

‖A‖
1 + ‖A‖θ

2e‖A‖θ ≤ 1,

where

Ω±(h0, θ) := Φ(h0)± θΨ(h0).

In the derivation the following property [18] plays the key

role:
∥

∥eAt − I
∥

∥ ≤ t ‖A‖ e‖A‖t, (15)

although the detail is omitted. For the problem data in

Section IV with h0 = 0.01, Theorem 1 and the above

condition verify the stability for h0 + [−6.79, 6.79]× 10−4

and h0 + [−9.50, 9.50]× 10−4 respectively (more than 40%

improvement is achieved). One drawback of this method is

the dependence of conditions to be checked on θ which

makes the algorithm more complicated.

VI. CONCLUDING REMARKS

We have considered the stability of sampled-data feedback

control systems where the state is sampled aperiodically,

motivated by widespread use of networked and embedded

control systems.

We have proposed a stability analysis algorithm by show-

ing robustness of sampled-data systems against perturbation

caused by variation of sampling intervals based on the small-

gain framework. We have also discussed some directions for

reducing the conservatism.

In this paper we have considered an analysis problem for a

simple sampled state feedback scenario, however, application

to more practical analysis and synthesis problems are not

hard.
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APPENDIX

Proof of Theorem 1

We here prove that (10) holds for all h ∈ [h0, hU ]. The

proof for the interval [hL, h0] is similar so it is omitted. Note

that H(h0, γ) ⊆ [hL, hU ].
Invoking Lemma 3 we have

‖∆(θ)‖ ≤
∫ θ

0

∥

∥eAt
∥

∥ dt ≤
∫ θ

0

eµ(A)t dt

when θ ≥ 0. If µ(A) = 0

‖∆(θ)‖ ≤ θ.

Hence (10) holds as long as γθ ≤ 1. This completes the

proof for the case U1.

Let us next consider the case of µ(A) 6= 0. In this case

‖∆(θ)‖ ≤ eµ(A)θ − 1

µ(A)
. (16)

Suppose that µ(A) < 0. Noting that the right hand side goes

to −1/µ(A) when θ tends to ∞. Hence (10) holds for all

θ > 0 if

− γ

µ(A)
≤ 1.

This completes the proof for the case U2.

Finally let us consider the case of µ(A) 6= 0 and

− γ

µ(A)
> 1.

The small gain condition (10) holds for all θ > 0 if

γ
eµ(A)θ − 1

µ(A)
≤ 1.

Noting that 1 + γ−1µ(A) > 0 in this case, this condition

turns to

Case A) If µ(A) > 0

µ(A)θ ≤ log(1 + γ−1µ(A)).

Case B) If µ(A) < 0

µ(A)θ ≥ log(1 + γ−1µ(A)).

Hence we have

θ ≥ 1

µ(A)
log(1 + γ−1µ(A)).

for both cases. This completes the proof for the case U3.
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