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Abstract—Based on a two-mode operation model of a parallel 

hybrid electric vehicle (PHEV) developed in previous work, this 

paper presents a hybrid optimal control solution for the power 

management problem of a PHEV.  The optimal power flows 

between the vehicle’s main subsystems are computed as solutions 

of a switching-system optimization (nonlinear programming 

problem) formulated at the supervisory level assuming a 

hierarchical vehicle control structure.  The resulting equations are 

numerically solved using collocation methods.  The approach is 

illustrated using the optimal and MPC tracking of a sawtooth 

velocity driving profile.  Unlike other work, the assumption that 

there is always sufficient power to achieve perfect tracking is not 

made in this work. 
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1. INTRODUCTION 

 Focusing on a PHEV, this paper develops a solution to 

the Power Management Control Problem (PMCP) by 

determining the power distribution among the main HEV 

subsystems so that a multi-objective functional is optimized 

while meeting physical constraints on each HEV subsystem.  

Within the paradigm of hierarchical control, the PMCP 

arises naturally at the supervisory level [Rizzoni et al. (1999), 

Brahma et al. (2000), Lin et al. (2003)].  Using a two-mode 

HEV switching model [Uthaichana (2006)], the PCMP is 

formulated as an embedded hybrid optimal control problem 

(EOCP) [Bengea and DeCarlo (2005)].  The numerical 

optimization of the embedded PMCP is based on a 

discretized model via collocation techniques. 

2. REVIEW OF A TWO-MODE SWITCHING MODEL 

FOR PHEV 

 

2.1  Model Hardware Configuration 

For this research, the PHEV has two power sources: a 

conventional ICE and a battery pack-electric drive (ED).  

The ICE, a four-cylinder, 1.9 L diesel engine, is coupled to 

the driveshaft through a continuously variable transmission 

(CVT) (and clutch in the post-transmission configuration 

[Rahman et al. (2000)]) to facilitate high-efficiency engine 

operation over a wide range of loads.  Coupled to the 

driveshaft and in parallel with the ICE-CVT, is the ED, a 30 

kW, 3-phase, 4-pole induction motor drive operated under 

maximum torque/amp control [Bodson et al (1995)].  The 

ED interfaces with a battery pack consisting of thirty 13 Ah, 

12 V, lead acid batteries connected in series.  Hotel loads are 

handled by a traditional engine-based charging system.  The 

ED can operate in unison with the ICE to propel the vehicle 

or as a generator to charge the battery. Figure 1 illustrates 

power flows and the main subsystems.  

 

 
Fig. 1.  Power flow diagram with input and output power 

flow labels. 

 

2.2.  Modes of Operation 

 The blocks and power flows in Figure 1 are used to show 

that the ED has two modes of operation denoted (using 

superscripts) as 0v =  (motoring) and 1v =  (generating). 

These modes determine the power flow directions.  As per 

[Uthaichana (2006)], a simple parallelism can be made 

between the two modes of operation considered in this work 

and the five modes of operations in [Lin et al. (2003)].  

Specifically, through careful consideration of the dynamics 

in each mode of operation, the same modal behavior (i.e., 

five distinct modes) described in [Lin et al. (2003)] can be 

captured using only two modes of operation under the 

supervisory level power flow perspective of this paper.  This 

reduction is a considerable simplification over the mixed 

power-and-torque based models since PMCP complexity 

increases exponentially with increased numbers of modes 

[Nemhauser and Wolsey (1988), Floudas (1995)].  

Nevertheless, the two-mode formulation allows an excellent 

characterization of the PMCP in terms of power flows and 

velocity/power-dependent efficiencies.  Moreover, it makes 

it possible to solve the PMCP for an HEV by using recent 

advances in hybrid optimal control theory such as [Bengea 

and DeCarlo (2005)]. 

 

2.3  HEV State Model Overview 
Because the ED has faster power flow dynamically than 
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that of the mechanical subsystems, input-output efficiency 

dependent algebraic equations suffice at the supervisory 

level.  This leads to the need for only three dynamical 

states: ICEP  (ICE power), batW  (normalized battery energy 

which measures the battery state-of-charge (SOC)), and 

longitudinal vehicle speed, V , in a mode dependent 

nonlinear HEV state model:   

( )T

( ) ( )

( )

( ) ( ),  ( ),  ( ) , ( )  

( )

ICE

bat v t ICE bat v t

P t

W t f P t W t V t u t

V t

 
 

   =  
 
  

�

�

�

 (2.1) 

where ( )vf ⋅  denotes the motoring, 0v = , or generating 

mode, 1v = , equations respectively with controls in mode-

0/1 being 

 
( ) ( )

[ ] [ ] [ ]

T
0 /1 /( ), ( ),

               0,1 0,1 0,1

ICE FR EM GENu t u t u t u t=   

∈ × ×
 (2.2) 

where ( ) [0,1]ICEu t ∈  is a power command that modulates 

the maximum available ICE power at a particular engine 

speed; ( )FRu t  modulates the maximum allowable frictional 

vehicle-velocity-dependent braking power, and the power 

command / ( )EM GENu t [0,1]∈  modulates the rotor speed-

dependent maximum available ED power in modes 0 and 1.  

This structure is scalable in terms of power sources with 

only a polynomial increase in optimization complexity  [Gill 

et al. (1981)]. 

 

2.3.1 State Equations 

The variable ( )ICEP t  denotes the unidirectional 

instantaneous ICE power flow to the drivetrain and vehicle 

through a continuously variable transmission (CVT).  The 

power ( )ICEP t  is quantified at the flywheel and includes 

losses due to parasitic loads and is captured by a first order 

lag differential equation,  

( )

( )

max1 1
( ) ( ) ( , )

                                        ( , ) ( )

ICE ICE ICE ICE ICE
ICE ICE

ICE ICE ICE

P t P t P V P

eng V P u t

ω
τ τ
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�

(2.3a) 

where 0.3ICEτ = s is a nominal engine power delivery delay; 

the ICEω -dependent maximum available ICE power is 
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  (2.3b) 

( )max 3900ICEω = , 1 49.59a = − , 2 136.9a = , and 

3 14.20a = − ; the CVT controller-selected engine speed is 

 
( )

( ) min max

,

          1 ( ) ( )

ICE ICE ICE

ICE ICE

V P

p V p V

ω ω

ω ω

=

= − +
 (2.3c) 

 with ( )max max
( )ICE ICE ICEp P P Vω=  and ( )max

ICE Vω  and 

min ( )ICE Vω  are set forth in [Uthaichana (2006)]; ( )ICEeng ω  

is on (has value 1) or shuts the engine off (has value 0) for 

conserving fuel; the resulting control ( ) ( )ICE ICEeng u tω  

[ ]0,1∈  modulates the maximum available engine power, i.e., 

( ) ( )max ( , ) ( , ) ( )ICE ICE ICE ICE ICE ICEP V P eng V P u tω ω⋅ ⋅  which 

denotes the desired power flow profile computed and 

demanded by the supervisory control. 

 The normalized instantaneous battery energy 
max( ) ( )bat bat batW t W t W=  approximates the battery SOC, 

defined as the ratio of the instantaneous stored charge to the 

maximum stored charge where max
batW is the maximum rated 

storage energy.  This is valid under an assumption of a 

relatively constant open circuit battery voltage during HEV 

operation, [Hopka et al. (2000)]. 

 For rendering the EOCP amenable to optimal control 

methodologies, the model is partially linearized in the 

battery power control input about the mode-dependent 

nominal battery operating power, ,
v

bat nomP , resulting in: 
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where ( )batP t  is the battery power either drawn by (positive 

for 0v = ) or provided by the ED (negative for 1v = ) and is 

implicitly controlled by /EM GENu .  Referring to Figure 1. ,  

0
,

1
,

( )
( )

ED in
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ED out
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P t
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= 
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The coefficients ,k vd , 1,..., 4k =  are chosen to fit the 

battery efficiency maps making equation 2.4 scalable to a 

variety of battery storage capacities and types.   

The forward-motion differential equation in the vehicle 

velocity, ( )V t , is a variation of the standard (torque/force) 

form to specifically accommodate a power-flow based state 

model formulation: 

( ) ( ) ( )
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Here cm  is vehicle mass; 
21v

c

k
V

m
 is normalized aerodynamic 

drag ( 1 0.9288vk = ); ( )2 cos ( )vk tα  ( 2 0.1472vk = ) is the 

rolling resistance and ( )tα  denotes the angle of road 

inclination; ( )sin ( )g tα−  is the gravitational deceleration  of 

the vehicle's longitudinal velocity; , ( )v
C whP t  is the coupling 

device and differential (CDD) power flow to the wheels 

(positive for propulsion), or power flow from the wheels 

(negative for regenerative braking); ( )FRP t =  

max ( ) ( )FR FRP V u t⋅  is the frictional braking power 

with max ( )FRP V the velocity-dependent maximum available 
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braking power, modulated by the normalized control; and 

Vε is the regularization term.  For practical reasons we 

choose 

 ( )max ( ) 50 tanh 5FRP V V=  (2.6) 

Although equation 2.6 is often expressed in terms of torque 

[Powell et al. (1998), Waltermann (1996)], our objective is 

to solve the PMCP.  Thus the local control must interpret the 

frictional braking power of equation 2.6 in terms of 

rotational wheel speed and torque.   

 

2.3.2 Mode Dependent ED Modeling Equations 

As mentioned earlier, the mode-dependent ED model is 

an algebraic equation: 

 , , ,( , )v v v
ED out ED ED ED out ED inP P Pη ω=  (2.7) 

where ,( , )v
ED ED ED outPη ω  is an efficiency coefficient 

dependent on the choice of closed-loop control and mode of 

operation.  The choice of the closed loop local control 

determines the dynamics of the ED and hence the dynamics 

of the desired input-output power flow map that has been 

largely ignored in HEV literature.  In addition the ED drive 

rotor speed  

 3( )ED ED C vV k Vω ω λ= = ⋅ ⋅   (2.8) 

is proportional to the vehicle velocity by a direct lock-up 

coupling to the wheels through the lower powertrain 

( 1.525Cλ =  is a coupling device ratio between the ED shaft 

speed and the vehicle driveshaft speed, Cω , and 

3 19.26vk =  is the ratio between the driveshaft and the wheel 

radius); , ( )v
ED outP t  denotes the ED mechanical output power 

when 0v =  to help propel the vehicle through the CDD, and 

when 1v =  denotes the ED electrical output power used to 

charge the battery; (mode 0v = , propelling) the controlled 

ED input power is  

 ( )0
, ,( ) ( )Max

ED in ED in ED EMP t P u tω= ⋅  (2.9a) 

where ( ) [0,1]EMu t ∈  modulates the maximum available 

(rotor speed dependent) power, ( ),
Max
ED in EDP ω , under the 

assumption that there is sufficient battery power in which 

case, 0
, ( ) ( ) 0ED in batP t P t= ≥ ; and ( 1v = , generating)  

 ( )1
, ,( ) ( )Max

ED in ED in ED GENP t P u tω= ⋅   (2.9b) 

is the controlled ED mechanical input power delivered 

through the CDD with ( ),
Max
ED in EDP ω  being the speed 

dependent ED maximum input power modulated by the 

control ( ) [0,1 ]GENu t ∈ , implying that 

1 1
, ( ) ( ) 0ED out batP t P t= − ≤ .   

The ED is operated under a maximum torque/amp (MTA) 

control strategy [Bodson et al. (1995)] since as a local 

control strategy it is relatively insensitive to machine 

parameter variation, has relatively fast torque response, and 

has relatively high efficiencies over the majority of the speed 

range. [Wasynczuk et al. (1998)]  The desired power level 

,
v
ED outP  computed by the supervisor is transformed into an 

ED torque command, *
ET , using the rotor speed ( )ED Vω . 

 

2.3.3 The CVT 

 A CVT has the potential to allow the ICE to operate at 

more fuel efficient engine speeds for a given power 

command by (instantaneously) choosing the proper gear 

ratio [Setlur et al. (2003), Foley et al. (2001)].  At the 

supervisory level, we assume no power response lag 

between the input and output CVT powers leading to the 

algebraic equation 

 ,( ) ( )cvt cvt cvt inP t P tη=  (2.10) 

where 0.95CVTη = is an average efficiency, the input power 

, ( ) ( )cvt in ICEP t P t= , and the output power is delivered to the 

coupling-device-differential, i.e., ,( ) ( )cvt C cvtP t P t= .   

 

2.3.4  Mode-dependent CDD Power Flow Equations 
The CDD channels power flows from the ICE-CVT, 

from or to the ED, and from or to the wheels depending on 

the mode of operation and whether or not there is 

regenerative braking.  In both modes, we assume that the 

CDD’s power transfer occurs instantaneously and can be 

modeled as an algebraic equation via conservation of power 

in terms of the CDD’s input/output power flows and 

efficiencies/losses as: 

 0 0
, 1 , 2 ,( )C wh cdd C cvt cdd C EDP t P Pη η= +  (2.11a) 

and 

 1 1
, 2 , 2 ,( ) ( ) ( )C ED cdd C cvt cdd C whP t P t P tη η= −  (2.11b) 

where: (i) in both modes, , ( ) ( ) 0C cvt cvtP t P t= ≥ , the CVT 

output power flow is (without loss) coupled to the input of 

the CDD; (ii) 1 1cddη =  is the power transfer efficiency 

between the CVT output and the wheels; 2cddη  0.93=  is 

the power transfer efficiency between the ED and the 

CVT/wheels; (iii)  0 0
, ,C ED ED outP P= is the propulsion power 

coming directly from the output of the ED in mode-0; in 

mode-1 1 1
, ,C ED ED inP P=  is an output power port of the CDD 

providing mechanical power to the input of the ED operating 

as an generator; (iv)  the power flow at the wheel-side 

driveshaft of the CDD in mode-0 is always propulsive, i.e., 
0
, ( ) 0C whP t ≥ .  However, in mode-1, the ICE could provide 

propulsion power to the wheels, 1
, ( ) 0C whP t ≥ , and to the ED, 

i.e., 1
, ( ) 0C EDP t >  simultaneously and 1

, ( ) 0C whP t <  for 

regenerative braking where the ICE-CVT may also help 

charge the battery pack i.e., ( ), 0C cvtP t ≥ . 

 

3. THE PCMP AS A SOLUTION OF THE EOCP 

 

3.1.  The Idea of the EOCP 

 This section formulates the PCMP as an EOCP [Bengea 
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and DeCarlo (2005), Uthaichana et al. (2005)] wherein the 

modal switching function ( )v t  takes values not in the set 

{ }0,1  (the so-called switched optimal control problem 

(SOCP)), but rather in the closed interval [0,1] , i.e., the 

EOCP.  In other words, the original problem of having two 

distinct modes of operation (SOCP) is embedded into a 

larger family parameterized by an enlarged mode-switching 

input ( ) [0,1]v t ∈ , a continuum of potential values.  This 

embedding converts a non-convex SOCP into a convex 

EOCP.  As per [Bengea and DeCarlo (2005)] the SOCP can 

almost always be solved by first solving the EOCP and any 

solution of the EOCP can be approximated to any degree of 

precision by some solution of the SOCP.    

 

3.2  Formulation of the EOCP 

The embedding requires creating a convex 

combination of the vector fields of equation 2.1:  

 
( )

[ ] ( ) ( )
0 1

0 0 1 1

( ) ( ), ( ), ( ), ( )

      1 ( ) ( ), ( ) ( ) ( ), ( )

Ex t f x t u t u t v t

v t f x t u t v t f x t u t

=

= − +

�

  (3.1) 

Similarly, the performance index (PI) of the EOCP is a 

convex combination of the PIs associated with each mode of 

operation of the SOCP:   

 

0

0 0 1 0 0 0

0 1

( , , , ,[ , ]) ( , , , )

                    ( , , , , )
f

E f f f

t

Et

J x u u v t t g t x t x

L t x u u v dt

=

+∫
 (3.2) 

( )
0

0 0

0 0 1 1

( , , , )

1 ( ) ( , , , ) ( ) ( , , , )
f

f f

t

t

g t x t x

v t L t x u v v t L t x u v dt

=

+ − +  ∫
 

with 0 ( )L ⋅ and 1( )L ⋅  defining the integrands of the PI in 

modes 0 and 1 respectively.  Thus the EOCP (the structure 

for solving the PMCP) becomes: 

 
0 1

0 0 1 0
, ,

Min   ( , , , ,[ , ])E f
u u v

J x u u v t t  (3.3a) 

with ( )EJ ⋅  given by equation 3.2, subject to  

 0 1( ) ( ( ), ( ), ( ), ( ))Ex t f x t u t u t v t=�  (3.3b) 

with Ef  given in equation. 3.1, ( ) [0,1]v t ∈ , and 0u , 

1u ∈ Ω  (a compact set).   

 It can be shown (Corollary 2 in Bengea and DeCarlo 

(2005)) that the trajectories of the switched system (equation 

2.1) are dense in the trajectories of the embedded system 

(equations 3.3b).  If the EOCP has a bang-bang type solution 

( ( )v t  only takes values in {0,1} ) then clearly it is also a 

solution to the original SOCP.  These expected relationships 

between SOCP and EOCP motivate and justify the effort on 

determining SOCP solutions by solving the EOCP.  

Additional relationships between the SOCP and EOCP can 

be found in [Bengea and DeCarlo (2005)]. 

 

3.3  Performance Index for PMCP 

The choice for the integrand 0 1( , , , , )EL t x u u v  depends on 

the optimization objective, such as minimizing fuel 

consumption as in [Anatone et al. (2005), Diop et al. (2002)], 

or a combination of fuel consumption and emissions as in 

[Koot et al. (2005), Lin et al. (2003)], or equivalent fuel 

consumption [Pisu and Rizzoni (2007)].  For the work 

reported here, an integral quadratic PI uses the same 

integrand for both modes of operation, 0 1EL L L= = : 

( ) ( )

( )
( )

22

2
2

( ) 0.6 ( ) ( )

( )
          ( )

,

f

o

t des
E bat bat f Vt

ICE
ICE FR FR

ICE ICE

J C W t C V t V t

P t
C C P t dt

P Vη


= − + −



  + +     

∫
 

  (3.4) 

This PI was selected to explore a tradeoff among velocity 

tracking error, ( )
2

( ) ( )
des

VC V t V t− , fuel consumption 

approximated by ICE power usage divided by fuel 

conversion efficiency, 
( )

2
( )

,

ICE
ICE

ICE ICE

P t
C

P Vη

 
  
 

, frictional 

losses, ( )2
( )FR FRC P t , and the deviation of SOC from the 

nominal of 60% at ft , ( )
2

( ) 0.6bat bat fC W t − . This strategy 

is similar to the charge-sustaining operation of [Paganelli et 

al. (2001), Won et al. (2005)].  A more elaborate PI 

accounting for drivetrain losses can be found in [Uthaichana 

(2006)].   

 

4. THEORETICAL FOUNDATIONS 

 

The presence of the discrete-valued input {0,1}v ∈  

renders, in general, the SOCP non-convex.  For a variety of 

assumptions on system vector fields vf , cost EJ , and 

mode-switching penalties and constraints, several 

approaches have been employed in the literature for 

characterizing and computing SOCP solutions, consisting of: 

mode sequences, switching instants, and continuous control 

values.  Without discussing sufficient conditions for 

optimality nor accounting for the singular solution scenarios 

[Riedinger et al. (1999)] directly applies the Maximum 

Principle to the SOCP.  For a larger class of systems, and 

with a cost that depends on the mode sequence, [Sussmann 

(1999)] derives necessary conditions for optimality via a 

generalized Maximum Principle.  Other approaches include 

pre-assigned switching sequence method (for a limited class 

of problems) in [Giua et al. (2001)], and a hybrid Bellman 

inequality approach in [Hedlund and Rantzer (1999)].  

Mixed integer programming (MIP) approaches have also 

been employed to find optimal solutions [Bemporad and 

Morari (1999)].  Solving the the SOCP using MIP methods, 

however, is NP-hard; indeed the scalability of this technique 

is problematic [Wei et al. (2006)]. 

The nonconvexity of the SOCP and the inapplicability of 

the mentioned existing techniques—too general and 

impractical, or very specific results, or insufficient 

characterization of the solution— to the SOCP has led to the 

development the parameterized family of problems, the 
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EOCP, set forth in the previous section. 

 

4.1  EOCP:  Sufficient Existence Conditions 

This section summarizes the main sufficient conditions 

for EOCP’s solutions.  Sufficient conditions for optimality 

are [Theorem 9, in Bengea and DeCarlo (2005)]: 

(i) the admissible pair set (control, trajectory) is nonempty; 

(ii) the points ( ), ( )t x t are included in a compact set for all 

0[ , ]ft t t∈ ; 

(iii) the terminal set is compact; 

(iv) the input constraint set is compact and convex; 

(v) the vector fields 0f and 1f are linear in their (control) 

inputs 0u , and 1u , respectively i.e., 

(S1) 0 0 0 0 0( , , ) ( , ) ( , )f t x u A t x B t x u= +  

(S2) 1 1 1 1 1( , , ) ( , ) ( , )f t x u A t x B t x u= +  

(vi) for each ( ), ( )t x t , the integrands of the penalty functions, 

0 0( , , )L t x u  and 1 1( , , )L t x u , are convex functions of 0u , and 

1u , respectively. 

 Based on the assumptions made on the input constraint 

set and on the vector fields 0f and 1f , one can conclude that 

conditions (i), (ii), and (iv) are met.  Further, a sufficiently 

large compact set can be substituted for the terminal set, 

meeting condition (iii).  Condition (v) is also met by 

construction (Sections 2) since only the power terms ,des
ICEP  

,
v
ED outP , and FRP  depend on the continuous control inputs, 

and can be factored as a product of two terms, one a control 

and the other only state dependent 
T

ICE batx P W V =   .  

Utilizing again the form of these power terms, and the forms 

of 0 0( , , )L t x u  and 1 1( , , )L t x u  one concludes that condition 

(vi) is also met.  Hence the EOCP has a solution. 

The above sufficient conditions only guarantee the 

existence of EOCP’s solutions, but do not provide a solution 

methodology.  In conjunction with the SOCP-EOCP 

relationships mentioned earlier, the necessary conditions 

obtained by direct application of the Maximum Principle 

[Uthaichana et al. (2005)] provide a method for obtaining at 

least suboptimal solutions of the SOCP.   By using this 

approach, the optimization problem is transformed into a 

two-point boundary value problem on the state and adjoint 

(co-state) equations where only the initial condition on the 

state dynamics and the final condition on the adjoint 

equations are known.  However, numerical experimentations 

with shooting methods for deriving the boundary value 

problem solutions have demonstrated in [Uthaichana et al. 

(2005)] that the solution is very sensitive with respect to co-

state initial condition.  This paper takes the alternate 

approach of computing numerical solutions for the EOCP 

via collocation methods, described in the next section.   

 

5.  NUMERICAL SOLUTION TECHNIQUE, AND 

MPC 

This section overviews the numerical solution algorithm 

and the model predictive control (MPC) [Camacho and 

Bordons (2004)] strategy used in the solution of the PMCP 

as a solution of the EOCP that underlie the simulation results 

of the next section.  Specifically we discuss the collocation 

method for solving the HOC problems.  [Gregory and Lin 

(1992), Neuman and Sen (1973), Pytlak and Vinter (1995), 

Zefran (1996)]  

 

5.1 Discretization via the Collocation Technique 

Given the PI of equation 3.2 and the state equation and 

constraints of equations 3.1, one discretizes these equations 

using the collocation method.  The discretization of the PI 

uses a variation of the trapezoidal rule to evaluate the 

integral whereas the state and constraint equations use the 

mid-point rule.  These discretized equations convert the 

EOCP into a finite dimensional nonlinear programming 

problem (NLP) where states and inputs are treated as 

unknown variables.  The NLP is solvable using a sequential 

quadratic programming subroutine, such as fmincon in the 

optimization toolbox of MATLAB.  The discretization-and-

collocation technique consists of several steps that have two 

main stages: (i) time discretization, and state and input 

function approximations by a finite number of polynomial 

basis functions; (ii) approximation of the continuous state 

dynamics and cost index integrand by discrete-state and 

discrete-input-dependent counterparts.   

Without going through a lengthy derivation, the 

continuous time interval 0[ , ]ft t  is discretized into a 

sequence of points 0 1 2 1N N ft t t t t t−< < < ⋅⋅⋅ < < =  where, 

for simplicity, we take 1j jt t h−− = , for 1,...,j N= .  The 

collocation points are the mid-points, say jt
�

, of the time 

partitions.  A "hat" notation is also used to distinguish the 

numerically estimated state and control values from their 

actual counterparts that are "hatless": ˆ ˆ( )j jx x t= , 

0, 0ˆ ˆ ( )j ju u t= , 1, 1ˆ ˆ ( )j ju u t= and ˆ ( )j j jv v t=
�

.  The 

collocation method used here assumes triangular basis 

functions for the state and piecewise constant basis functions 

(derivatives of triangular functions) for the controls.  The 

essence of the midpoint rule is to enforce the constraints at 

the midpoints of each interval 1[ , ]j jt t−  for 1,...,j N= .  

Applying this approach to equation 3.1 results in the 

discretized embedded state dynamics 

 

1
1 0 0

1
1 1

ˆ ˆ
ˆ ˆ ˆ ˆ(1 ) ,

2

ˆ ˆ
ˆ ˆ              ,

2

j j
j j j j

j j
j j

x x
x x h v f u

x x
h v f u

−
−

−

+ 
= + ⋅ − ⋅   

 

+ 
+ ⋅ ⋅   

 

 (5.1)  

for 1,...,j N= , with 0 ( )f ⋅  and 1( )f ⋅  the discretized state 

dynamics.  Thus the NLP is to minimize 
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E j j j j j j
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L t x u u v p

=
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= − +

+

∑
�

�

over the controls [ ]ˆ ˆ( , ) 0,1j ju v ∈ Ω× , subject to equation 

5.1 and any other equality constraints represented as 

1ˆ ˆ ˆ ˆ( , , , , ) 0j j j j jh x x u v p− =
�

.  Here ( )EL ⋅  is the integrand of 

equation 3.4 properly discretized and jp
�

 represents the 

various power flows in the model at the midpoint. 

 

5.2 Model Predictive Control 

The MPC solution strategy in this study uses a moving 

four second (receding horizon) window with the control 

applied over 1 sec sub-intervals.  In particular the NLP of 

the above subsection is solved over a four second window 

1 2, 3 4[ , , , ]j j j j jt t t t t+ + + +  instead of the entire driving cycle. 

The resulting control at each iteration is applied only over 

the first second of the actual time window, i.e., over 

1[ , ]j jt t +  to the system model. The system model is then 

simulated over 1[ , ]j jt t +  to obtain the updated state at 1jt + .  

Of course as we approach ft , the window shrinks 

appropriately.  Finally for the MPC strategy the coefficient 

penalizing the deviation from nominal SOC, ,bat jC  is 

linearly interpolated according to the equation 

 , ,( )bat j f j f batC t t C=  (5.4) 

where ,f jt is the final time of each MPC iteration. 

 

6. Results: Optimal and MPC Tracking of a Sawtooth 

Velocity Profile 

In this study, the vehicle must track a sawtooth driving 

profile for 40 sec on a flat road, whose rates of 

acceleration/deceleration and desired maximum velocity test 

the limits of performance of the vehicle drive train.  The 

tradeoff among the velocity tracking error, power 

usages/losses, and the deviation of the SOC from nominal at 

the final time are explored, by choosing appropriate values 

of the coefficients in the PI.  The vehicle’s weight is set at 

1890 kg similar to the hybrid SUV weights of the Ford 

Escape (1720 kg) or the Toyota Highlander (1850 kg).   

This study compares the performances of the hybrid 

optimal controller (case 1) that is optimized over the entire 

driving cycle against an MPC version (case 2).  The 

coefficients of the PI of equation 3.2 are 10VC = , 

310ICEC −= , 410FRC −= , and 5
, 10bat NC = .  The PI cost 

for the overall optimal control, 223, is smaller than the 248.5 

cost for MPC, with respective fuel economies of 25.1 mpg 

versus 25.6 mpg for the MPC.  This is primarily due to the 

fact that MPC deviation from nominal SOC is not 

significantly penalized until the end of the driving cycle as 

will be discussed.   
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Fig. 6.1  Velocity tracking performance: (a) case 1 overall 

optimal hybrid control; (b) suboptimal results for MPC. 

 

Fig. 6.1 shows relatively good velocity tracking 

performance for cases 1 (solid blue) and 2 (dashed 

green/MPC).  Initially neither profile tracks perfectly 

although both the ED, and the ICE provide power at their 

maximum capacities.  Also, in case 2 the vehicle velocity 

misses the reference peaks at 10 and 30 sec slightly more 

than in case 1.   

Figure 6.2 illustrates that in both cases the vehicle 

operates in mode-0 during the first 10 sec, and in mode-1 

during the last 10 sec.  Between 10 and 20 sec, the vehicle 

operates in the generating mode less often for MPC (green 

dashed) because of a relatively lower penalty (coefficient) 

on the deviation from nominal SOC.   
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Fig. 6.2  Modes of operation: (a) case 1 (solid blue); and (b) 

case 2 (green dashed). 

 

 Figure 6.3 depicts the battery normalized energy (SOC) 

profiles. Case 1 shows consistency with the mode of 

operation and returns to the vicinity of the 60% nominal 

level at the end of the cycle.  In case 2 (MPC/green dashed) 

SOC deviation is only mildly penalized allowing lower 

levels than in case 1 during the first half cycle.  In the 

second half of the driving cycle, the vehicle draws less 

power from the battery in case 2 consistent with an 

increasing penalty on the deviation from nominal SOC.   
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Fig.. 6.3  Battery normalized energy (SOC):  solid blue for 

case 1 and dashed green for case 2. 
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Fig. 6.4  ED output power profiles: (a)  case 1 and (b) case 2 

 

Figure 6.4 shows ED power for cases 1 and 2.  For case 2, 

during the first 10 s the ED provides more propelling power 

than case 1, consistent with the above SOC profiles and the 

penalty coefficient of equation 5.4.  Between 20 and 30 sec, 

the ED provides less propelling power so as not to further 

increase the penalty in the PI on deviation from nominal 

SOC as the dashed green curve is lower than the solid blue 

in this time frame.  During the last 10 sec, the ED operates 

as a generator in both cases using regenerative braking 

power to recharge the battery and bring the SOC closer to its 

nominal level.  

As per Figure 6.5, in both cases, the ICE is off at startup 

(propelling from ED alone) due to the closed-loop local ICE 

control constraint until a minimum operating speed of 800 

RPM is reached.  At about 1.2 s, in both cases, the ICE is 

activated to provide power slightly below the maximum 

level due to the built-in power train lag of 0.3 sec.  In case 2, 

the vehicle draws less power from the ICE during the first 

half of the driving cycle than case 1 as shown in Fig 6.5b 

due to relatively lower cost on the propelling power from the 

ED, yielding a better fuel economy of 25.6 mpg, relative to 

25.1 mpg in case 1.    
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Fig. 6.5  ICE power: case 1 (solid blue); case 2 (dashed 

green).  
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Fig. 6.6 Frictional-braking power losses:  case 1 (solid blue) 

and case 2 (dashed green).  
 

When the propelling power from the ED becomes more 

expensive in the second half of the driving cycle, the vehicle 

draws less power from the ED in case 2.  In both cases, the 

ICE is shut off during the last 10 s as the vehicle slows and 

kinetic energy is channeled to the battery or is expended in 

frictional braking as shown in Figure 6.6.  Indeed, frictional 

braking is virtually identical in both cases and is only used 

during the last 10 seconds of the driving profile as one 

would expect. 

 It is noted that the coefficients in the PI are selected to 

emphasize the velocity tracking error more than the fuel 

economy and the penalty on the deviation of the final SOC 

from the nominal level.  The optimal trajectory in case 1 

attains lower cost than that in case 2 despite slightly worse 

results on fuel economy and final SOC.  If desired, one can 

obtain better fuel economy and closer final SOC by 

increasing penalty on fuel economy and final SOC deviation, 

at the expense of an increase in tracking error. 
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