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Abstract— We consider the problem of finding reduced mod-
els of stochastic processes. We use Wasserstein pseudometrics
to quantify the difference between processes. The method
proposed in this paper is applicable to any continuous-time
stochastic process with output, and pseudometrics between
processes are defined only in terms of the available outputs.
We demonstrate how to approximate a wide class of behav-
ioral pseudometrics and how to optimize parameter values
to minimize Wasserstein pseudometrics between processes. In
particular, we introduce an algorithm that allows for the
approximation of Wasserstein pseudometrics from sampled
data, even in the absence of models for the processes. We
illustrate the approach with an example from systems biology.

I. INTRODUCTION

In this paper, we consider the problem of model reduction

of stochastic processes. In most areas of scientific or engi-

neering interest, there are processes that are too complex

to model precisely. Without reasonable models, it is not

possible to develop methodologies to predict future behavior

of such processes, verify that these processes have desirable

properties of interest, or accurately control such processes. At

present, there is no general framework for determining how

complexity can safely be eliminated from process models

to produce simple models that are amenable to analysis and

reasonable approximations to the real-world process.

In particular, we consider a general approach to the prob-

lem of approximate equivalence of stochastic processes, mo-

tivated by problems in systems biology. Stochastic interpre-

tations of the chemical master equation are often used when

modeling chemical processes inside a single cell, because a

deterministic approach can be rendered incorrect when the

copy numbers of individual molecules are low [1]. The state

spaces generated by these stochastic process models are often

intractably large. As a result, these processes are usually

studied via the stochastic simulation algorithm [2], which

does not require a full enumeration of the state space, but

does not lend itself to analysis of the underlying process.

Recently, the finite state projection method [3] has been

proposed to eliminate a large number of unlikely states from

the state space, but it requires that model reduction start from

a full and complete Markov process model.

Our approach to the problem of dealing with complex

processes is based on defining a pseudometric on the space of

stochastic processes. This pseudometric quantifies the simi-

larity between two processes and can be approximated using
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sampled data for large processes. Given the basic structure

of a simple model, our method can be used to determine if

this model is close in behavior to a more complex process

and to optimize parameters so as to minimize differences

between the simple and complex models. Furthermore, our

method does not require a model of the underlying complex

process when sampled data is available.

The method we propose for calculating pseudometrics

between two processes is based on the well-known Wasser-

stein metric ([4], [5]) and is applicable to any continuous-

time stochastic process. Other approaches to the problem

of process approximation have appeared in the computer

science ([6]–[8]) and control [9] literature. In contrast to the

cited literature, our method for approximating pseudometrics

between processes is based on taking sample data from

the processes to be compared, instead of performing an

analytic calculation. Thus, stochastic processes described

by models can be compared to each other and also com-

pared to processes described by sample data generated from

simulations or experiments. Furthermore, our method for

defining pseudometrics is output-based and does not depend

on unobservable or difficult to enumerate internal states; we

do not require perfect knowledge of the process in order to

approximate our pseudometrics, as opposed to the algorithms

proposed in [6] and [7]. We can compare processes according

to various notions of similarity; for example, we can define

pseudometrics that can capture interesting aspects of either

equilibrium or non-equilibrium behavior.

We organize this paper by first defining Wasserstein pseu-

dometrics and illustrating their use in processes modeled by

stochastic reaction networks and continuous-time Markov

processes. We then present a method for approximating

Wasserstein pseudometrics from sampled data and show how

to estimate confidence intervals in which the true values

of Wasserstein pseudometrics are likely to reside. We then

state model reduction problems as stochastic optimization

problems where Wasserstein pseudometrics are used as per-

formance criteria. The results of this paper are illustrated

with an example modeling gene expression.

II. WASSERSTEIN PSEUDOMETRICS

This paper considers experiments whose outcomes are

trajectories ω : R
≥0 → Y , where Y is a set of outputs.

The sample space of such an experiment is denoted by Ω =
(R≥0 → Y ). Let d : Ω×Ω → R

≥0 be a pseudometric on Ω;

that is, we require that d satisfy the properties d(ω, η) ≥ 0
and d(ω, ϕ)+d(ϕ, η) ≥ d(ω, η) for all ω, ϕ, η ∈ Ω. However,

we do not require that d(ω, η) = 0 implies ω = η.
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Let P1 and P2 denote two probability measures on Ω. We

use the following psuedometric to quantify the difference

between P1 and P2.

Definition 2.1: (From [4], Ch. 11) The Wasserstein pseu-

dometric Wd between two probability measures P1 and P2

on a sample space Ω equipped with a pseudometric d is

Wd(P1,P2) = inf
Q∈J(Z1,Z2)

EQ [d(Z1, Z2)] , (1)

where Z1 is a random variable with distribution P1, Z2 is a

random variable with distribution P2, and J(Z1, Z2) is the

set of all possible joint distributions of Z1 and Z2.

A common interpretation of Wasserstein pseudometrics

comes from economics ([4], Ch. 11). If goods are produced

at locations distributed according to P1 and consumed at

locations distributed according to P2, a Wasserstein pseu-

dometric Wd(P1,P2) represents the infimal cost necessary

to transport the goods from the locations where they are

produced to the locations where they are consumed.

A distinct Wasserstein pseudometric can be defined with

respect to each d on Ω. For example, the Wasserstein

pseudometric with respect to the discrete metric (d(ω, η) = 1
if ω 6= η and 0 otherwise) is equal to the total variation

distance on Ω [5]. However, the Wasserstein pseudometric

is a more general definition that admits multiple methods for

quantifying the differences between processes.

In this paper, we consider pseudodistances of the form

d(ω, η) = |Z(ω) − Z(η)| , (2)

where Z : Ω → R is a reporter random variable defined to

capture some interesting feature of trajectories. In order to

be a well-defined random variable, Z must be measurable

with respect to a σ-field on Ω. To ensure the measurability

of Z, we equip Ω with a σ-field F satisfying

F ⊇
⋃

B∈B(R)

Z−1(B),

where B(R) denotes the Borel σ-field on the real line.

Each probability measure P defines a cumulative distribu-

tion function (CDF) of Z

FP,Z(z) , P(Z < z).

The inverse CDF of Z is

F−1
P,Z(y) , inf{z : FP,Z(z) ≥ y).

For pseudometrics of the form specified in Equation 2,

a Wasserstein pseudometric between P1 and P2 can be

expressed in terms of the CDFs of Z.

Theorem 1: (From [10]) The Wasserstein pseudometric

between two probability measures P1 and P2 on a sample

space Ω equipped with a pseudometric d defined according

to Equation 2 is

Wd(P1,P2) =

∫ ∞

−∞
|FP1,Z(z) − FP2,Z(z)| dz. (3)

Equivalently, a Wasserstein pseudometric can be calculated

using the inverse CDFs [5] by

Wd(P1,P2) =

∫ 1

0

∣

∣

∣
F−1
P1,Z(y) − F−1

P2,Z(y)
∣

∣

∣
dy, (4)

which is useful when numerically approximating Wasserstein

pseudometrics.

III. CLASSES OF PROBABILITY MEASURES

A. Reaction Networks and Continuous-Time Markov Pro-

cesses

Any stochastic process with outputs generates a proba-

bility measure P on the space (Ω,F). We are particularly

interested in those corresponding to stochastic chemical

reactions, which we now describe.

Definition 3.1: A reaction network RN = (S,R) consists

of a set of species S and a set of reactions R. Each reaction

in R takes the form

n1,LS1 + · · · + np,LSp
k
⇀n1,RS1 + · · · + nq,RSp,

where Si ∈ S, ni,L, ni,R ∈ Z
≥0, i = 1 . . . p.

Following [11], a reaction network can be interpreted

stochastically. The state of a reaction network RN is a p-

dimensional vector x(t) = [N1(t) . . . Np(t)]
T , where Ni(t)

denotes the number of the species Si at time t. The firing of

a reaction network produces a state transition

x 7→ x − [n1,L . . . np,L]
T

+ [n1,R . . . np,R]
T

corresponding to the consumption of the reactants and the

creation of the products. The propensity function for a

reaction R ∈ R is aR(x) = k
∏p

i=1 N
ni,L

i . The probability

that a reaction R will fire in the interval [t, t+dt) is defined

as aR(x)dt, given that x is the state of RN at time t.
Interpreting a reaction network in this manner produces a

continuous time Markov process.

Definition 3.2: A continuous time Markov process

(CTMP) is a tuple S = (X,Q, π0, Y, h), where X is a

countable set of states, Q is a transition rate matrix, π0 is

the initial probability distribution on X , and h : X → Y is a

state output function.

If Qij is a non-diagonal element of Q, then the probability

of a transition from xi to xj in the interval [t, t + dt) is

defined as Qijdt; if Qii is a diagonal element of Q, we

require that Qii = −∑j 6=i Qij . Following ([12], Ch. 15), a

CTMP S defines a probability measure P : F → [0, 1] on

(Ω,F).
Example 3.1: The following set of reactions defines a

generic model for gene expression:

∅ k1

⇋
k
−1

mR

mR
k2⇀ mR + P (5)

P
k3⇀ ∅,

where mR denotes messenger RNA, P denotes protein, and ∅
denotes the null species. A graphical version of this reaction

network is shown in Figure 1(a). The state space of the
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Fig. 1. (a) A graphical version of a reaction network modeling gene
expression. (b) A typical state in the CTMP generated by the stochastic
interpretation of the reaction network in (a). Each state is indicated by a
pair (nmR, nP ), and the labels on each arrow indicate the rate propensity
for each transition in or out of (nmR, nP ). Transitions to or from states
bordering (nmR, nP ) from states other than the typical state are not shown.

CTMP derived from this reaction network is Z
≥0 × Z

≥0,

and a state is of the form
[

nmR nP

]

. A typical state of this

CTMP and the rate propensities for each reaction entering

or leaving that state are shown in Figure 1(b). The output

function of this CTMP is h(
[

nmR nP

]

) = nP , which

corresponds to the ability to observe the level of protein in

the system; experimentally, this can often be accomplished

by incorporating a fluorescent marker into the protein.

We define reporter random variables to capture the follow-

ing aspects of a trajectory ω.

• Z can represent the amount of a protein at a given time

t: Z(ω) , ω(t).
• Z can represent the amount of time necessary for n

proteins to be present: Z(ω) , min{ω−1(n)}.

• Z can represent the average amount of protein over an

interval (ts, tf ): Z(ω) , 1
tf−ts

∫ tf

ts
ω(t)dt.

• Z can indicate if more than n proteins are ever present:

Z(ω) , 1 if nP (t) > n for some t ∈ R
≥0 and Z(ω) =

0 otherwise.

There are many valid choices for the reporter random vari-

able Z beyond those listed above. Each different choice

of Z gives a different notion of the difference between

processes and the Wasserstein pseudometric with respect to

d(ω, η) = |Z(ω) − Z(η)| is different as well. The choice of

the reporter random variable is motivated by what questions

are being asked about the system.

10
k

(a)

10 0
.1

.1

.1

(b)

Fig. 2. (a) A two-state continuous-time Markov Process with an unknown
rate propensity k. (b) A three-state continuous-time Markov Process.

B. Example: Analytic Calculation of a Wasserstein Pseudo-

metric

Two simple CTMPs, S1 and S2, are shown in Figures

2(a) and 2(b), respectively. We will denote the probability

distributions on (Ω,F) generated by these CTMPs as P1

and P2, respectively. The initial distributions for S1 and S2

are defined so that the initial probability of the state marked

with a vertical arrow is 1, and the initial probability of all

other states is zero. The labels within each state denote the

value of the output function in that state.

We define a reporter random variable Z by

Z(ω) = inf ω−1(1).

In this example, Z denotes the hitting time of the state with

output label 1. The pseudodistance between two trajectories

is thus d(ω, η) = | inf ω−1(1) − inf η−1(1)|.
For the system S1 in Figure 2(a), the transition rate matrix

is:

Q1 =

[

−k k
0 0

]

.

Because the state with output label 1 is an absorbing state,

the event that Z < t is equal to the event that S1 is in

the state with output 1 at time t. We compute the transition

probabilities from time 0 to time t by calculating the matrix

exponential of Q1t:

eQ1t =

[

ekt 1 − ekt

0 1

]

.

The distribution function of Z in P1(k) is the element of

eQ1t corresponding to starting in the initial state and ending

in the absorbing state. Therefore,

FP1,Z(t) =
[

1 0
]

eQ1t

[

0
1

]

= 1 − e−kt.

Following a similar procedure for S2, the transition rate

matrix is

Q2 =





−0.1 0.1 0
0.1 −0.2 0.1
0 0 0



 .
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Fig. 3. The Wasserstein pseudometric given by Equation 6 varies as the
parameter k in S1 varies.

The distribution function of Z in P2 is

FP2,Z(t) =
[

0 1 0
]

eQ2t





0
0
1





= 1 − 5 −
√

5

10
e−

1

20
(3+

√
5)t − 5 +

√
5

10
e−

1

20
(3−

√
5)t

From Equation 3, the Wasserstein pseudometric with re-

spect to d between the CTMPs S1 and S2 is

Wd(P1(k),P2) =

∫ ∞

0

∣

∣

∣

∣

∣

e−kt − 5 −
√

5

10
e−

1

20
(3+

√
5)t

−5 +
√

5

10
e−

1

20
(3−

√
5)t

∣

∣

∣

∣

∣

dt (6)

This expression can be evaluated numerically. Figure 3 shows

the values of Wd(P(S1),P(S2)) as k varies from 0.02 to 0.1.

This example motivates the use of Wasserstein pseudomet-

rics as performance criteria in optimization problems. Figure

3 indicates that the optimal value of k that minimizes the

Wasserstein pseudometric between the two and three-state

CTMPs is k∗ = .047, and that the value of this pseudometric

is Wd(P1(k
∗),P2) = 3.0 s. For this example, we define the

error introduced by approximating the process P2 with the

process P1(k) by

ε ,
Wd(P1(k),P2)

EP2
(Z)

.

The error introduced by using P1(k
∗) as a reduced model

for P2 is ε = 3.0/20.0 = 15%. This indicates that for any

choice of k, using a model of the form in Figure 2(a) as a

reduction of the process in Figure 2(b) results in significant

error.

This example also illustrates that, even for very simple

processes, analytical calculation of a Wasserstein pseudo-

metric can be very difficult. For processes of the complexity

generated by reaction networks modeling biochemical pro-

cesses, analytically calculating a Wasserstein pseudometric

is most likely intractable. In the next section, we present

a technique for approximating a Wasserstein pseudometric

from sample data taken from a complex or unknown proba-

bility distribution.

IV. WASSERSTEIN PSEUDOMETRICS FROM SAMPLED

DATA

The probability measure P on (Ω,F) generated by a

CTMP may be too complex to calculate exactly and thus

must remain unknown. Furthermore, the CTMP is merely an

approximation of an actual physical process that is also an

unknown probability measure on (Ω,F).
In practice, we can usually approximate an unknown

probability measure P by taking n independent samples of

Ω according to P and generating an empirical probability

measure P̂n from the sample data. We calculate a Wasser-

stein pseudometric between empirical probability distribu-

tions to approximate the pseudometric between the unknown

underlying distributions. The sample data used to make this

approximation can be generated from physical processes by

performing experiments or obtained from models by using

the stochastic simulation algorithm (SSA) [2].

Given a set of n samples {ω1, . . . , ωn}, the empirical

probability measure of Z is defined as

P̂n(Z−1(B)) ,
|{ω : Z(ω) ∈ B}|

n
, (7)

for all B ∈ B(R). The empirical CDF of Z is thus

FP̂n,Z
(z) =

|{ω : Z(ω) < z}|
n

. (8)

Consider two unknown probability distributions P1 and

P2, and suppose that we take n independent sam-

ples {ω1, . . . , ωn} from P1 and ℓn independent samples

{η1, . . . , ηℓn} from P2, where ℓ ∈ N. Without loss of

generality, we will assume that these sets of samples are

sorted so that Z(ω1) ≤ Z(ω2) ≤ · · · ≤ Z(ωn) and

Z(η1) ≤ Z(η2) ≤ · · · ≤ Z(ηℓn). From these two sets of

samples we generate the empirical probability measures P̂1,n

and P̂2,ℓn, respectively. Because the samples are sorted, the

inverse empirical CDFs of P1 and P2 are of the form

F−1

P̂n,Z
(y) = Z(ωi), where

i − 1

n
< y ≤ i

n
. (9)

The empirical probability distributions can be used to quickly

approximate a Wasserstein pseudometric between the un-

derlying probability distributions according to the following

theorem.

Theorem 2: Suppose EPi
(|Z|) < ∞ for i = 1, 2. The

Wasserstein pseudometric Wd(P1,P2) between two proba-

bility distributions P1 and P2 with respect to a pseudodis-

tance function d(ω, η) = |Z(ω) − Z(η)| on Ω is equal to

Wd(P1,P2) = lim
n→∞

1

ℓn

ℓn
∑

i=1

∣

∣

∣
Z(ω⌈ i

ℓ
⌉) − Z(ηi)

∣

∣

∣
(10)

almost surely.

Proof: The proof is a straightforward application of

the Glivenko-Cantelli Theorem and the strong law of large

numbers sketched in part in [13]. For the benefit of readers

with only a basic knowledge of probability theory, we present

all the details. The proof consists of two steps. First we show

that

i) Wd(P1,P2) = lim
n→∞

Wd(P̂1,n, P̂2,ℓn)
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almost surely. We then show that

ii) Wd(P̂1,n, P̂2,ℓn) =
1

ℓn

ℓn
∑

i=1

∣

∣

∣
Z(ω⌈ i

ℓ
⌉) − Z(ηi)

∣

∣

∣

for all n, and by combining these two statements the theorem

is proven.

(Proof of Statement i) We apply the Glivenko-Cantelli

Theorem [4] to determine that

lim
n→∞

∣

∣

∣
FP̂1,n,Z

(z) − FP1,Z(z)
∣

∣

∣
= 0

almost surely for all z ∈ R. It immediately follows that
∫ ∞

−∞
lim

n→∞

∣

∣

∣
FP̂1,n,Z

(z) − FP1,Z(z)
∣

∣

∣
dz = 0. (11)

Since EPi
(|Z|) < ∞, the dominated convergence theorem

is applicable (see appendix) and thus

lim
n→∞

∫ ∞

−∞

∣

∣

∣
FP̂1,n,Z

(z) − FP1,Z(z)
∣

∣

∣
dz = 0

lim
n→∞

Wd(P̂1,n,P1) = 0.

Similarly we show that limn→∞ Wd(P̂2,ℓn,P2) = 0.

Since Wd is a pseudometric, we apply the triangle inequal-

ity to get

Wd(P1,P2) ≤ Wd(P1, P̂1,n) + Wd(P̂1,n, P̂2,ℓn)

+ Wd(P̂2,ℓn,P2).

Taking the limit as n → ∞, the first and third terms on the

right-hand side of the inequality vanish, yielding

Wd(P1,P2) ≤ lim
n→∞

Wd(P̂1,n, P̂2,ℓn).

Similarly, re-applying the triangle inequality yields

Wd(P̂1,n, P̂2,ℓn) ≤ Wd(P̂1,n,P1) + Wd(P1,P2)

+ Wd(P2, P̂2,ℓn),

from which it follows that

Wd(P1,P2) ≥ lim
n→∞

Wd(P̂1,n, P̂2,ℓn).

Therefore

Wd(P1,P2) = lim
n→∞

Wd(P̂1,n, P̂2,ℓn). (12)

(Proof of Statement ii) From Equation 4, for any n ∈ N,

a Wasserstein pseudometric between P̂1,n and P̂2,ℓn is

Wd(P̂1,n, P̂2,ℓn) =

∫ 1

0

∣

∣

∣
F−1

P̂1,n,Z
(y) − F−1

P̂2,ℓn,Z
(y)
∣

∣

∣
dy.

We partition the interval [0, 1] into ℓn intervals of size 1
n

,

yielding

Wd(P̂1,n, P̂2,ℓn)

=
ℓn
∑

i=1

(

∫ i
ℓn

i−1

ℓn

∣

∣

∣
F−1

P̂1,n,Z
(y) − F−1

P̂2,ℓn,Z
(y)
∣

∣

∣
dy

)

.

From Equation 9, on each interval ( i−1
ℓn

, i
ℓn

), the values

of both inverse empirical distributions are constant and

are F−1

P̂1,n,Z
(y) = Z(ω⌈ i

ℓ
⌉) and F−1

P̂2,ℓn,Z
(y) = Z(ηi),

respectively. The integral on each such interval is therefore
1
n

∣

∣

∣
Z(ω⌈ i

ℓ
⌉) − Z(ηi)

∣

∣

∣
, and thus

Wd(P̂1,n, P̂2,ℓn) =
1

ℓn

ℓn
∑

i=1

|Z(ω⌈ i
ℓ
⌉) − Z(ηi)|. (13)

Thus statement ii) is proven. Substituting Equation 13 into

Equation 12 proves the theorem.

Theorem 2 suggests an algorithm for approximating a

Wasserstein pseudometric between two probability measures

P1 and P2.

Algorithm WP: Wasserstein Pseudometric Computation

Input n samples {ω1, . . . ωn} generated according to P1.

Input ℓn samples {η1, . . . ηℓn} generated according to P2.

1) Calculate Z(ωi) for each ωi, i = 1 . . . n.

2) Sort and re-index {ω1, . . . ωn} so that Z(ω1) ≤
Z(ω2) ≤ · · · ≤ Z(ωn).

3) Calculate Z(ηi) for each ηi, i = 1 . . . ℓn.

4) Sort and re-index {η1, . . . ηℓn} so that Z(η1) ≤
Z(η2) ≤ · · · ≤ Z(ηℓn).

5) Calculate |Z(ω⌈ i
ℓ
⌉) − Z(ηi)| for i = 1 . . . ℓn.

6) Calculate Wd(P̂1,n, P̂2,ℓn) = 1
n

∑n

i=1 |Z(ω⌈ i
ℓ
⌉) −

Z(ηi)|.
The complexity of this algorithm is O(ℓn log ℓn), as

the rate determining step is the sorting of the outcomes

{η1, . . . ηℓn}. Since generating the samples {ω1, . . . ωn} and

{η1, . . . ηℓn} involves either performing a significant number

of experiments or running the SSA a large number of times,

the complexity of approximating a Wasserstein pseudometric

from empirical probability measures is much less than the

complexity of generating the data used to construct those

measures.

V. BOOTSTRAP CONFIDENCE INTERVALS

The values of Wasserstein pseudometrics Wd(P̂1,n, P̂2,ℓn)
computed according to Algorithm WP are approximations

of the true Wasserstein pseudometrics Wd(P1,P2). Because

this approximation is not exact, we need to determine a

confidence interval CI that satisfies

Pr (Wd(P1,P2) ∈ CI) ≥ α,

where α the desired coverage probability. Without requiring

additional structure on the random variable Z, it is difficult

to determine any parameters of the Wasserstein estimator

Wd(P̂1,n, P̂2,ℓn), such as its variance, that can be used

to calculate CI . Furthermore, the underlying probability

distributions P1 and P2 are either unknown or extremely

difficult to characterize, and taking additional samples from

these distributions is computationally expensive. A standard

technique for estimating confidence intervals when there is

little knowledge of the underlying probability distributions

is the resampling technique bootstrapping [14].
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Bootstrap estimates P̂1,BOOT of P1 are generated from

P̂1,n. With replacement, n independent samples are taken

from P̂1,n and the bootstrap probability distribution on

(Ω,F) is defined analogously to Equation 7 by

P̂1,BOOT (Z−1(B)) ,
|{ω : Z(ω) ∈ B}|

n
,

for all B ∈ B(R). Many bootstrap estimates of the proba-

bility distribution can be taken quickly, as resampling from

P̂1,n is much faster than taking new samples from either the

SSA or from experiment.

A simple bootstrapping technique for estimating a con-

fidence interval is the bootstrap percentile method [15]

presented in the following algorithm.

Algorithm BP: Bootstrap Percentile

Input n samples {ω1, . . . ωn} generated according to P1.

Input ℓn samples {η1, . . . ηℓn} generated according to P2.

1) For i = 1 . . . m

a) Let {ω1,BOOT , . . . , ωn,BOOT } be n independent

samples, chosen with replacement, from the set

{ω1, . . . ωn}.

b) Let {η1,BOOT , . . . , ηℓn,BOOT } be ℓn indepen-

dent samples, chosen with replacement, from the

set {η1, . . . ηℓn}.

c) Let W (i) = WP ({ω1,BOOT , . . . , ωn,BOOT },
{η1,BOOT , . . . , ηℓn,BOOT }).

2) Sort the list W (i) and let X(i) denote the sorted list.

3) Let CI = (X(⌊(1 − α/2)m⌋),X(⌈(1 + α/2)m⌉)) be

the α-confidence interval.

The confidence interval generated by this algorithm is the

centered confidence interval that lies between the 1 − α/2
and 1 + α/2 percentiles. One-sided confidence intervals

for Wasserstein pseudometrics (0,X(⌈αm⌉)) and(X(⌊(1 −
α)m⌋),∞) can also be constructed by modifying the last

step of the algorithm.

If more knowledge of the random variable Z or the

underlying probability distributions P1 and P2 is available,

more advanced bootstrapping techniques may improve on the

performance of this algorithm [14].

VI. EMPIRICAL MODEL REDUCTION

Suppose we have a stochastic process that defines a prob-

ability measure P1 on (Ω,F). If this process is difficult to

analyze, we seek a reduced model that captures the properties

of interest of the process but is easier to interpret.

Suppose the structure of the reduced model is known

except for an unknown parameter vector k of length p. If

our reduced model is a reaction network, these parameters

may be unknown rate propensities; if it is a CTMP, these

parameters may be transitions rates that are elements of the

Q matrix. The reduced model defines a probability measure

that depends on k; we denote this measure by P2(k).
In order to find the reduced model that most closely

matches the original process, we use a Wasserstein pseudo-

metric as a criterion for optimization. We choose a reporter

random variable Z that captures the behavior of the system

that we want to preserve under model reduction. Different

choices of Z result in different criteria for optimization and

thus different reduced models.

The model reduction problem is then

arg min
k

Wd (P1,P2(k)) .

It is not practical to determine exact values of the perfor-

mance criterion Wd(P1,P2(k)); however, we can approx-

imate the performance criterion for a given k by using

Algorithm WP. Because Algorithm WP uses random samples

from P1 and P2(k) as inputs, our measurements of the

performance criterion are stochastic and thus we frame this

problem as a stochastic optimization problem.

The optimal values of k can be approximated through

the use of the stochastic gradient descent algorithm [16].

The stochastic gradient descent algorithm is initialized with

an initial estimate k0 of the optimal parameters and gain

sequences 〈a0, a1, . . . 〉 and 〈c0, c1, . . . 〉. Each iteration of

the algorithm updates the estimate of the optimal parameters

according to the equation

kn+1 = kn − anĝn(kn),

where ĝn(kn) is an estimate of the gradient of the Wasser-

stein pseudometric at kn. This estimate can be made using

the finite difference method, yielding

ĝn(kn) =
1

2cn

×







Wd(P1,P2(kn + cnξ1)) − Wd(P1,P2(kn − cnξ1))
...

Wd(P1,P2(kn + cnξp)) − Wd(P1,P2(kn − cnξp))






,

where ξi is a p-dimensional vector with 1 in the ith position

and 0 in all other positions.

An alternative approach is to use the α-confidence in-

terval as a performance criterion and find k that mini-

mizes the upper bound of the one-sided confidence interval

(0,X(⌈αm⌉)). This optimization problem is

arg min
k

{

inf
U

Pr (Wd (P1,P2(k)) < U) ≥ α
}

.

Stochastic estimates of this criterion can be made using

Algorithm BP, and this problem can also be solved by the

stochastic gradient descent method.

VII. EXAMPLE: GENE EXPRESSION

A. Comparing Two Existing Models

Figure 4(a) is the reaction network model of gene expres-

sion found in [17]. In this model, RNA polymerase binds

to a promoter (D) creating a complex (C) that in turn pro-

duces a transcribing polymerase (T). From the transcribing

polymerase, unbound messenger RNA strands (mRu) are

produced. The mRNA can bind to either a degradasome

(mC1) or a ribosome (mC2). If the mRNA strand binds to a

ribosome, it produces a transcribing complex (mT) and then

a protein (P). The mRNA strand is preserved until it binds

to a degradasome which consumes the mRNA. In contrast to
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Fig. 4. (a) Gene expression model from [17]. (b) Histogram showing the
values of Z(ω) for 45000 stochastic simulations ω of the reaction network
in (a).

[17], we assume the rates are fixed throughout the process

and do not vary with changes in cell size.

Suppose the output of this reaction network is the protein

number, which could be estimated if the protein were, for

example, fluorescent. We define a reporter random variable

Z(ω) = ω(1440), the number of proteins present in the

system at t = 1440 seconds. This time is the time at which

cell division first occurs in the model proposed in [17] and

is a reasonable value for the length of the cell cycle in E.

coli. Using the SSA, we generated n = 45000 samples from

the reaction network and computed the value Z(ω) for each

sample. The distribution of the data is shown in Figure 4(b).

A reduced model of gene expression, shown in Figure

5(a) is also considered in [17]. The translation process has

been simplified. The transcribing polymerase T produces an

mRNA strand (mR) that either decays or produces a protein

(P). The complexes containing ribosomes and degradasomes

are abstracted away in this model. Again using the SSA, we

generated n = 45000 samples from this reaction network

and computed Z(η) for each sample; the distribution of the

data for this reduced system is shown in Figure 5(b).

Using Algorithm WP, we approximated a Wasserstein

pseudometric between the P1, the probability measure gen-

erated by the full model, and P2, the probability measure

generated by the reduced model. The value of this approxi-
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∅
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Fig. 5. (a) Reduced gene expression model from [17]. (b) Histogram
showing the values of Z(η) of 45000 stochastic simulations η of the reaction
network in (a).

mation is

Wd(P̂1,n, P̂2,n) = 5.44 proteins.

As the average protein number is the full system is

EP̂1,n
(ω) = 1080.2, the error introduced by the reduced

model is ε = 5.44/1080.2, or ε = 0.50%.

A 95% confidence interval for Wd(P1,P2) was estimated

using the bootstrap percentile method. 5000 estimates of

Wd(P1,P2) were taken by resampling from the probability

measures P̂1,n and P̂2,n. The 95% confidence interval was

estimated to be (3.63, 7.50). Thus there is approximately a

97.5% probability that the difference between the full model

and the reduced model is ε < 7.50/1080.2 = 0.69%. These

numbers demonstrate a close agreement between the full and

reduced models.

B. Finding Optimal Parameters for a Model

The simple model in Figure 1(a) can, with an appropriate

choice of parameters, also serve as a reduced model for the

reaction network in Figure 4(a). Following [17], we assumed

that the protein decay rate k3 = 6.42 × 10−5 s−1 and that

k2 = 15k−1.

Under these constraints, we performed a stochastic gra-

dient descent to approximate the values of k1 and k2 to

minimize the Wasserstein pseudometric Wd(P1,P3(k1, k2)),
where P3(k1, k2) is the probability measure generated by

the reaction network in Figure 1(a). At each step of the

algorithm, the gradient was estimated using the finite dif-

ference method. The optimal values for the parameters are

approximately

k∗
1 = .0554, k∗

2 = .17,
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Fig. 6. Sensitivity of the Wasserstein pseudometric

Wd(P̂1,n, P̂3,n(k1, k2)) to change in transcription parameter k1.
The translation parameter is held constant at k2 = .17.

and the Wasserstein pseudometric between the full model

and the optimized reduced model is approximately

Wd(P̂1,n, P̂3,n(k∗
1 , k∗

2)) = 1.08 proteins.

The difference between the optimized reduced model and

the full model is 1.08/1080.2 = 0.10%. Thus, not only

does the reaction network in Figure 1 have fewer species and

reactions than the model in Figure 5(a), it is also a closer

approximation to the model in Figure 4(a) with respect to

the Wasserstein pseudometric Wd.

The optimal value of this Wasserstein pseudometric is

very sensitive to changes in k1, as shown in Figure 6.

A 10% change in the value of k1 increases the value

of Wd(P̂1,n, P̂3,n(k1, k2)) to approximately 100, or causes

approximately a 10% error. This example illustrates the diffi-

culty in finding reduced models by hand, as small changes in

the parameter k1 quickly reduce the accuracy of the reduced

model.

VIII. DISCUSSION

In this paper, we propose the use of Wasserstein pseudo-

metrics as criteria for comparing the behaviors of stochastic

processes. With only a limited number of assumptions,

efficient algorithms were developed to determine Wasserstein

pseudometrics between processes and apply these results

to find reduced models of gene expression. There are no

restrictions on the types of stochastic processes under con-

sideration and on the reporter random variable used to derive

the pseudometric between trajectories.

In the future, we will extend these results to general

Wasserstein pseudometrics that are defined with respect

to trajectory pseudodistances not of the form d(ω, η) =
|Z(ω) − Z(η)|. We also plan to study the rates of conver-

gence of Algorithms WP and BP and developing further

theoretical justifications for the use of bootstrapping and

stochastic gradient descent. We are in the process of applying

these results to other examples in systems biology and to

several other areas of engineering interest, including nuclear

power generation and robotics. By investigating these exam-

ples, we intend to extend the framework proposed in this

paper beyond model reduction and study such problems as

control synthesis and approximate verification in stochastic

processes.

REFERENCES

[1] J. Mettetal and A. van Oudenaarden, “Necessary noise,” Science, vol.
317, no. 5837, pp. 463–464, July 2007.

[2] D. Gillespie, “Exact stochastic simulation of coupled chemical reac-
tions,” J. of Phys. Chem., vol. 81, pp. 2340–2360, 1977.

[3] B. Munsky and M. Khammash, “The finite state projection algorithm
for the solution of the chemical master equation,” J. Chemical Physics,
vol. 124, no. 044104, 2006.

[4] R. Dudley, Real Analysis and Probability. Cambridge University
Press, 2002.

[5] A. Gibbs and F. Su, “On choosing and bounding probability metrics,”
Intl. Stat. Review, vol. 70, no. 3, pp. 419–435, 2002.

[6] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden, “Metrics
for labelled Markov processes,” J. Theoretical Computer Science, vol.
318, pp. 323–354, June 2004.

[7] F. van Bruegel and J. Worrell, “Approximating and computing be-
havioural distances in probabilistic transition systems,” J. Theoretical

Computer Science, vol. 360, pp. 373–385, 2006.
[8] S. Mitra and N. Lynch, “Proving approximate implementations for

probabilistic I/O automata,” Electron. Notes Theor. Comput. Sci., vol.
174, no. 8, pp. 71–93, 2007.

[9] A. Girard and G. J. Pappas, “Approximate bisimulation relations for
constrained linear systems,” Automatica, vol. 43, no. 8, pp. 1307–1317,
2007.

[10] S. Vallender, “Calculation of the Wasserstein distance between proba-
bility distributions on the line,” Theory of Prob. and its Applications,
vol. 18, no. 4, pp. 784–786, 1974.

[11] D. McQuarrie, “Stochastic approach to chemical kinetics,” J. Applied

Probability, vol. 4, pp. 413–478, 1967.
[12] L. Breiman, Probability. SIAM, 1992.
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APPENDIX

A. Justification of the Use of Dominated Convergence The-

orem in Theorem 2

The integrand on the right hand side of Equation 11 is the

limit as n → ∞ of
∣

∣

∣
FP̂1,n,Z

(z) − FP1,Z(z)
∣

∣

∣
=
∣

∣

∣
P̂1,n(Z > z) − P1(Z > z)

∣

∣

∣

≤ P̂1,n(Z > z) + P1(Z > z)

≤ P̂1,n(|Z| > z) + P1(|Z| > z),

where the last inequality follows because Z ≤ |Z|. Because

|Z| is a non-negative random variable,
∫ ∞

−∞
P1(|Z| > z) = EP1

|Z| ,

which is finite by assumption. Similarly,
∫∞
−∞ P̂1,n(|Z| >

z) = EP̂1,n
|Z|. By the strong law of large numbers EP̂1,n

|Z|
converges to EP1

|Z| almost surely, which indicates that

EP̂1,n
|Z| is finite for all n. The supremum over all n of

P̂1,n(|Z| > z) + P1(|Z| > z) is therefore an integrable

dominating function for

∣

∣

∣
FP̂1,n,Z

(z) − FP1,Z(z)
∣

∣

∣
, and thus

the use of dominated convergence in Theorem 2 is justified.
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