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Abstract— A risk minimization problem is considered in a
continuous-time Markovian regime-switching financial model
modulated by a continuous-time, finite-state Markov chain. We
interpret the states of the chain as different market regimes.
A convex risk measure is used as a measure of risk and an
optimal portfolio is determined by minimizing the convex risk
measure of the terminal wealth. We explore the state of the art
of the stochastic differential game to formulate the problem
as a Markovian regime-switching version of a two-player, zero-
sum stochastic differential game. A verification theorem for
the Hamilton-Jacobi-Bellman (HJB) solution of the game is
provided.

I. INTRODUCTION

Risk management is an important issue in the modern
banking and finance industries. Some recent financial crises,
including the Asian financial crisis, the collapse of Long-
Term Capital Management (LTCM), the turmoil at Barings
and Orange Country, raise the concern of regulators about the
risk taking activities of banks and financial institutions and
their practice of risk management. Recently, Value at Risk
(VaR) has emerged as a standard and popular tool for risk
measurement and management. VaR tells us the extreme loss
of a portfolio over a fixed time period at a certain probability
(confidence) level. [1] develops a theoretical approach for
developing measures of risk. They present a set of four
desirable properties for measures of risk and introduce the
class of coherent risk measures. They point out that VaR does
not, in general, satisfy one of the four properties, namely,
the subadditivity property. This motivates the quest for some
theoretically consistent risk measures. [11] argues that the risk
of a portfolio might increase nonlinearly with the portfolio’s
size due to the liquidity risk. They relax the subadditive and
positive homogeneous properties and replace them with the
convex property. They introduce the class of convex risk
measures, which include the class of coherent risk measures.
[7] (see Chapter 15 therein) provides a comprehensive account
of coherent risk measures and convex risk measures.

In the past two decades or so, applications of regime-
switching models in finance have received much attention.
However, relatively little attention has been paid to the use
of regime-switching models for quantitative risk management
until recently. It is important to take the regime-switching
effect into account in long-term financial risk management,
such as managing the risk of pension funds, since there might
be structural changes in the economic fundamentals over a
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long time period. Some recent works concerning the regime-
switching effect on quantitative risk measurement include [8],
[9], and others. However, these works mainly concern certain
aspects of quantitative risk measurement and do not focus on
risk management and control issues.

In this note, we explore the state of the art of a stochastic
differential game for minimizing portfolio risk under a
continuous-time Markovian regime-switching financial model.
Stochastic differential games are an important topic in the
interplay between mathematics and economics. Some early
works on the mathematical theory of stochastic differential
games include [3], [4], and others. Some recent works on
stochastic differential games and their applications include
[19], [15], [18], [13], [14], and others. Here, we suppose that
an investor invests in a money market account and a stock
whose price process follows a Markovian regime-switching
geometric Brownian motion (GBM). The interest rate of the
money market account, the drift and the volatility of the stock
are modulated by a continuous-time, finite-state Markov chain.
The states of the chain are interpreted as different market
regimes. We adopt a convex risk measure introduced by
[11] as a measure of risk, and our goal is to minimize the
convex risk measure of the terminal wealth of the investor.
Following the plan of [15], we formulate the problem as a
Markovian regime-switching stochastic differential game with
two players, namely, the investor and the market. We introduce
a product of two density processes, one for the Brownian
motion and one for the Markov chain process, to generate a
family of real-world probability measures in the representation
of the convex risk measure. So, the market has two control
variables, namely, the market price of risk for the change of
measures related to the Brownian motion and the Q-matrix of
the Markov chain. We provide a verification theorem for the
Markovian regime-switching HJB equation to the solution of
the game corresponding to the risk minimization problem.

This note is based on part of [10]. We state results which
will be published later in [10] without proofs.

II. ASSET PRICE DYNAMICS

We consider a continuous-time financial model consisting
of two primitive assets, namely, a money market account and a
stock. These assets are assumed to be tradable continuously on
a fixed time horizon T := [0, T ], where T ∈ (0,∞). We fix
a complete probability space (Ω,F ,P), where P represents
a reference probability measure from which a family of
absolutely continuous real-world probability measures are
generated.
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Now, we introduce a continuous-time, finite-state Markov
chain to describe the evolution of market regimes over time.
Let X := {X(t)}t∈T denote a continuous-time, finite-state
Markov chain on (Ω,F ,P) with a finite state space S :=
{s1, s2 . . . , sN}. The states of the chain represent different
market regimes. Without loss of generality, we identify the
state space of the chain to be a finite set of unit vectors E :=
{e1, e2, . . . , eN}, where ei ∈ <N and the jth component of
ei is the Kronecker delta δij , for each i, j = 1, 2, . . . , N . E
is called the canonical state space of X.

Let A(t) = [aij(t)]i,j=1,2,...,N , t ∈ T , denote a family
of generators, or rate matrices, of the chain X under P .
Here, aij(t) represents the instantaneous intensity of the
transition of the chain X from state i to state j at time
t. Note that for each t ∈ T , aij(t) ≥ 0, for i 6= j and∑N

i=1 aij(t) = 1, so aii(t) ≤ 0. We assume that aij(t) > 0,
for each i, j = 1, 2, . . . , N and each t ∈ T . For any such
matrix A(t), write a(t) := (a11(t), . . . , aii(t), . . . , aNN (t))∗

and A0(t) := A(t)−diag(a(t)), where diag(y) is a diagonal
matrix with the diagional elements given by the vector
y. These notations are adopted in [2]. With the canonical
representation of the state space of the chain, [6] provides
the following semimartingale decomposition for X:

X(t) = X(0) +
∫ t

0

A(u)X(u)du + M(t) ,

where {M(t)}t∈T is an <N -valued martingale with respect
to the filtration generated by X under P .

Let y′ denote the transpose of a vector or a matrix y. 〈·, ·〉
is the scalar product in <N . The instantaneous market interest
rate r(t) of the money market account B is determined by
the Markov chain as:

r(t) = 〈r, X(t)〉 ,

where r := (r1, r2, . . . , rN )′ ∈ <N with ri > 0 for each
i = 1, 2, . . . , N .
Then, the evolution of the balance of the money market
account follows:

B(t) = exp
( ∫ t

0

r(u)du

)
, B(0) = 1 .

The chain X determines the appreciation rate µ(t) and the
volatility σ(t) of the stock, respectively, as:

µ(t) = 〈µ, X(t)〉 ,

and

σ(t) = 〈σ, X(t)〉 ,

where µ := (µ1, µ2, . . . , µN )′ ∈ <N and σ :=
(σ1, σ2, . . . , σN )′ ∈ <N with µi > ri and σi > 0, for each
i = 1, 2, . . . , N .

Let W := {W (t)}t∈T denote a standard Brownian motion
on (Ω,F ,P) with respect to the P-augmentation of its own
natural filtration. We suppose that W and X are stochastically
independent. The evolution of the price process of the stock
follows a Markovian regime-switching GBM:

dS(t) = µ(t)S(t)dt + σ(t)S(t)dW (t) , S(0) = s > 0 .

Now, we specify the information structure of our model. Let
FX and FS denote the right-continuous, complete filtrations
generated by the values of the Markov chain and the stock
price process, respectively. Write, for each t ∈ T , G(t) :=
FX(t)∨FS(t), the enlarged σ-field generated by FX(t) and
FS(t).

In the sequel, we describe the evolution of the wealth
process of an investor who allocates his/her wealth between
the money market account and the stock. Let π(t) denote
the proportion of the total wealth invested in the stock at
time t ∈ T . Then, 1 − π(t) represents the proportion of
the total wealth invested in the money market account at
time t. We suppose that π := {π(t)}t∈T is G-adapted and
cadlag (i.e. right continuous with left limit, RCLL). We further
assume that π is self-financing, (i.e. there is no income or
consumption), and that∫ T

0

π2(t)dt < ∞ , P-a.s.

Write A for the set of all such processes π. We call A the
set of admissible portfolio processes.

Let V (t) := V π(t) denote the total wealth of the portfolio
π at time t. Then, the evolution of the wealth process V :=
{V (t)}t∈T is governed by:

dV (t) = V (t){[r(t) + π(t)(µ(t)− r(t))]dt

+π(t)σ(t)dW (t)}
V (0) = v > 0 .

Our goal is to find the portfolio π which minimizes the risk
of the terminal wealth. Here, we use a convex risk measure
introduced in [11] as a measure of risk.

III. RISK MINIMIZATION

In this section, we first describe the notion of convex risk
measures. Then, we present the risk minimization problem of
an investor with wealth process described in the last section
and formulate the problem as a Markovian regime-switching
version of a two-player, zero-sum stochastic differential game.

The concept of a convex risk measure provides a generaliza-
tion of a coherent risk measure as introduced in [1]. Suppose
S denote the space of all lower-bounded, G(T )-measurable
random variables. A convex risk measure ρ is a functional
ρ : S → < such that it satisfies the following three properties:

1) If X ∈ S and β ∈ <, then

ρ(X + β) = ρ(X)− β .

2) For any X, Y ∈ S, if X(ω) ≤ Y (ω), for all ω ∈ Ω,
then ρ(X) ≥ ρ(Y ).

3) For any X, Y ∈ S and λ ∈ (0, 1),

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) .

The first, second and third properties are the translation
invariance, monotonicity and convexity, respectively.

[11] provides an elegant representation for convex risk
measures. One can generate any convex risk measure from this
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representation by a suitable choice of a family of probability
measures. Let Ma denote a family of probability measures
Q which are absolutely continuous with respect to P . That is,
if P(A) = 0, then Q(A) = 0, for any A ∈ F and Q ∈Ma.
Define a function η : Ma → < such that η(Q) < ∞, for all
Q ∈Ma. Then, [11] provides the following representation
of a convex risk measure ρ(X) of X ∈ S:

ρ(X) = sup
Q∈Ma

{EQ[−X]− η(Q)} ,

for some family Ma and some function η.
Here, EQ[·] represents expectation under Q. The function
η(·) is called a “penalty” function, (see [11]).

Following [12] and [15], we choose the penalty function
η(Q) to be the relative entropy of Q with respect to P . That
is,

η(Q) := I(Q,P) = E

[
dQ
dP

ln
(

dQ
dP

)]
,

where E[·] denotes expectation under P .
Now, we generate a family Ma of equivalent real-world

probability measures by a product of two density processes,
one for the Brownian motion W and one for the Markov
chain X.

Define a Markovian regime-switching process θ(t) as:

θ(t) = 〈θ, X(t)〉 ,

where θ := (θ1, θ2, . . . , θN )′ ∈ <N with θ(N) :=
max1≤i≤N θi < ∞. Write Θ for the space of all such
processes.
Consider a G-adapted process Λθ := {Λθ(t)}t∈T

Λθ(t)

:= exp
(
−

∫ t

0

θ(s)dW (s)− 1
2

∫ t

0

θ2(s)ds

)
.

Then, by Itô’s differentiation rule,

dΛθ(t) = −Λθ(t)θ(t)dW (t) , Λθ(0) = 1 .

So, Λθ is a (G,P)-local-martingale.
Note that

E

[
exp

(
1
2

∫ T

0

θ2(t)dt

)]
≤ exp

(
1
2
θ2
(N)T

)
< ∞ .

So, the Novikov condition is satisfied. Hence, Λθ is a (G,P)-
martingale, and

E[Λθ(T )] = 1 .

Suppose C(t) := {cij(t)}i,j=1,2,...,N is a second family
of generators, or rate matrices, of the chain X such that for
each i, j = 1, 2, . . . , N ,

cij(t) = 〈cij , X(t)〉 ,

where cij := (c1
ij , c

2
ij , . . . , c

N
ij )′ ∈ <N with ck

ij ≥ 0, for i 6= j

and
∑N

i=1 ck
ij = 0, so ck

ii < 0, for each k = 1, 2, . . . , N .

For each k = 1, 2, . . . , N , write Ck := [ck
ij ]i,j=1,2,...,N .

Then,

C(t) =
N∑

k=1

Ck 〈X(t), ek〉 ,

and so the generator C(t) of the chain X at time t depends
on the current value of the chain.

We wish to introduce a new (real-world) probability
measure under which C is a family of generators of the
chain X. We follow the method in [2]. First, we define some
notations. Let C denote the space of any such family C(t),
t ∈ T . For any two matrices A(t), with aij(t) 6= 0, for
any t ∈ T and i, j = 1, 2, . . . , N , and C(t), write D(t) :=
C(t)/A(t) for the matrix defined by D(t) = [cij(t)/aij(t)],
for each t ∈ T . Write 1 := (1, 1, . . . , 1)′ ∈ <N and I for the
(N ×N)-identity matrix.

Define, for each t ∈ T ,

N(t) :=
∫ t

0

(I− diag(X(u−)))dX(u) .

Here, N := {N(t)}t∈T is a vector of counting processes,
where its component Ni(t) counts the number of times the
chain X jumps to state ei in the time interval [0, t], for each
i = 1, 2, . . . , N . Then, we cite the following result from [2]
without proof.
Lemma 3.1: Let

Ñ(t) := N(t)−
∫ t

0

A0(u)X(u)du , t ∈ T .

Then, Ñ := {Ñ(t)}t∈T is an (FX ,P)-martingale.
Consider a process ΛC := {ΛC(t)}t∈T , C ∈ C, defined

by:

ΛC(t) = 1 +
∫ t

0

ΛC(u−)[D0(u)X(u−)− 1]′

(dN(u)−A0(u)X(u−)du) .

Note that from Lemma 3.1, ΛC is an (FX ,P)-martingale.
Define, for each (θ, C) ∈ Θ × C, a G-adapted process

Λθ,C := {Λθ,C(t)}t∈T as the product of the two density
processes Λθ and ΛC :

Λθ,C(t) := Λθ(t) · ΛC(t) .

Lemma 3.2: Λθ,C is a (G,P)-martingale.
The detail of the proof will be published in [10].

Define, for each (θ, C) ∈ Θ× C, a real-world probability
measure Qθ,C ∼ P on G(T ) as:

dQθ,C

dP
:= Λθ,C(T ) . (1)

Then, we generate a family of Ma of real-world probability
measures as follows:

Ma := Ma(Θ, C) = {Qθ,C |(θ, C) ∈ Θ× C} .

The following result is from [2]. We cite it in the following
lemma without giving the proof.
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Lemma 3.3: Suppose Qθ,C is defined by (1), for each
(θ, C) ∈ Θ× C. Let

ÑC(t) := N(t)−
∫ t

0

C0(u)X(u)du , t ∈ T , C ∈ C .

Then, ÑC := {ÑC(t)}t∈T is an (FX ,Qθ,C)-martingale.
Theorem 3.4: For each (θ, C) ∈ Θ×C, X is a Markov chain
with a family of generators C(t), t ∈ T under Qθ,C .
The result follows from the assumption that W and X are
independent and adapting the proof of Lemma 2.3 in [2] to
the case when the generators are time-dependent.

Let η̄ : Θ× C → < denote a map induced by the penalty
function, or the relative entropy, η : Ma → < as below:

η̄(θ, C) = η(Qθ,C) , for each (θ, C) ∈ Θ× C .

Write E(θ,C) for expectation under Qθ,C . Then, the convex
risk measure associated with Ma can be written as the one
associated with (Θ, C) as follows:

ρ(X) = sup
(θ,C)∈Θ×C

{E(θ,C)[−X]− η̄(θ, C)} . (2)

Following [15], we define a vector process Z := {Z(t)}t∈T
by

dZ(t) = (dZ0(t), dZ1(t), dZ2(t), dZ3(t), dZ4(t))′

= (dZ0(t), dZπ
1 (t), dZθ

2 (t), dZC
3 (t), dZ4(t))′

= (dZ0(t), dV π(t), dΛθ(t), dΛC(t), dX(t))′ ,

Z(0) = z = (s, z1, z2, z3, z4)′ ,

where under P ,

dZ0(t) = dt ,

Z0(0) = s ∈ T ,

dZ1(t) = Z1(t){[r(t) + (µ(t)− r(t))π(t)]dt

+σ(t)π(t)dW (t)} ,

Z1(0) = z1 > 0 ,

dZ2(t) = −θ(t)Z2(t)dW (t) ,

Z2(0) = z2 > 0 ,

dZ3(t) = Z3(t−)(D0(t)X(t−)− 1)′

(dN(t)−A0(t)X(t−)dt) ,

Z3(0) = z3 > 0 ,

dZ4(t) = A(t)Z4(t)dt + dM(t) ,

Z4(0) = z4 .

Conditional on Z(0) = z, the penalty function, or the relative
entropy, is given by:

ηz(Q) := Ez

[
dQ
dP

ln
(

dQ
dP

)]
,

where Ez[·] represents expectation under P given that the
initial value Z(0) = z. This notation is adopted in [16] and
[15].

So, for each (θ, C) ∈ Θ×C, we define the induced penalty
function η̄z(θ, C) as:

η̄z(θ, C) = ηz(Qθ,C)
= Ez{Zθ

2 (T )ZC
3 (T )[ln(Zθ

2 (T )) + ln(ZC
3 (T ))]} .

Now, conditional on Z(0) = z, the risk-minimizing problem
is then to find the portfolio process π ∈ A in order to
minimize the following conditional version of the convex risk
measure associated with Θ× C:

sup
(θ,C)∈Θ×C

{Ez
(θ,C)[−Zπ

1 (T )]− η̄z(θ, C)} ,

where Ez
(θ,C)[·] denotes expectation under Qθ,C given that

Z(0) = z.
In other words, we need to solve the following problem:

inf
π∈A

sup
(θ,C)∈Θ×C

{Ez
(θ,C)[−Zπ

1 (T )]− η̄z(θ, C)} .

As in [15], we formulate the risk-minimizing problem as a
zero-sum stochastic differential game between the investor and
the market. The investor chooses a portfolio process π ∈ A
so as to maximize the expected value of a monetary utility
function, which is dual to the convex risk measure, of his/her
terminal wealth. The market responds to this portfolio choice
by selecting a real-world probability measure Qθ,C ∈ Ma,
which minimizes the maximal expected utility.

Let U : S → < such that U(X) = −ρ(X), for each
X ∈ S. U(·) represents a monetary utility function and
satisfies the concavity, monotonicity and translation invariance
properties. From the representation of ρ(X) in (2), U(X)
has the following representation:

U(X)
= inf

(θ,C)∈Θ×C
{E(θ,C)[X] + η̄(θ, C)} ,

for each X ∈ S.

Then, conditional on Z(0) = z, the risk-minimizing problem
can be formulated as the zero-sum stochastic differential
game between the investor and the market as:

Φ(z) = inf
(θ,C)∈Θ×C

(
sup
π∈A

Ez
(θ,C)[Z

π
1 (T )] + η̄z(θ, C)

)
= Ez

(θ∗,C∗)[Z
π∗

1 (T )] + η̄z(θ∗, C∗) .

To solve the game, we need to find the value function Φ(z)
and the optimal strategies π∗ ∈ A and (θ∗, C∗) ∈ Θ× C of
the investor and the market, respectively.

IV. SOLUTION TO THE RISK-MINIMIZING
PROBLEM

In this section, we present a vertification theorem for the
Markovian regime-switching HJB solution of the stochas-
tic differential game corresponding to the risk-minimizing
problem.

First, we describe the relationship between the control
process of the game and the information structure. Since
there are only two driving processes for the vector process Z,
namely, the standard Brownian motion W and the Markov
chain X, the vector process Z is adapted to the enlarged
fitration G := {G(t)}t∈T . Z is also a Markovian process with
respect to G. Under mild technical conditions, the Markovian
controls have essentially the same performance as the more
general adapted controls in the classical stochastic optimal
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control theory (see, for example, [16] and [17]). It is also
noted in [5] that the optimal control processes can be taken
to be Markovian when the dynamics of the state processes
are Markovian.

As in [15], we restrict ourselves to consider only Markovian
controls for the risk-minimizing problem. Suppose O :=
(0, T )× (0,∞)× (0,∞)× (0,∞) representing our solvency
region. Let K1 denote the set such that π(t) ∈ K1. To restrict
ourselves to Markovian controls, we assume that

π(t) := π̄(Z(t)) ,

for some functions π̄ : O × E → K1.
Here, we do not distinguish notationally between π and

π̄. So, we can simply identify the control process with
deterministic function π(z), for each z ∈ O × E . This is
called a feedback control.

Note that (θ(t), C(t)) is Markovian with respect to FX ,
and hence, it is also Markovian with respect to G. So, the
control processes (θ(t), C(t), π(t)) are Markovian. They are
also feedback control processes since they depend on the
current value of the state process Z(t).

Consider a process Y := {Y (t)}t∈T defined by:

dY (t) = (D0(t)X(t−)− 1)′dN(t) .

From (2),

dN(t) = (I− diag(X(t−)))dX(t) ,

so

dY (t) = (D0(t)X(t−)− 1)′(I− diag(X(t−)))dX(t) .

Let ∆Y (t) denote the jump of the process Y at time t. Then,

∆Y (t) := Y (t)− Y (t−)
= (D0(t)X(t−)− 1)′(I− diag(X(t−)))∆X(t)
= (D0(t)X(t−)− 1)′

(I− diag(X(t−)))(X(t)−X(t−)) .

By some algebra,

∆Y (t) =
N∑

i,j=1

(dji − 1) 〈X(t), ej〉 〈X(t−), ei〉 .

Define, for each i = 1, 2, . . . , N , the set

Yi := {d1i − 1, d2i − 1, . . . , dNi − 1} .

Consider a random set Y(X(t)) defined by:

Y(X(t)) =
N∑

i=1

Yi 〈X(t), ei〉 , t ∈ T .

Let Y := ∪N
i=1Yi. Then,

Y = {dji − 1|i, j = 1, 2, . . . , N} .

Clearly, Y(X(t)) ⊂ Y , for each t ∈ T .
Given X(t−) = ei (i = 1, 2, . . . , N ), Yi represents the

set of all possible values of the jump ∆Y (t) at time t. The

random set Y(X(t)) represents the set of possible values of
the jump ∆Y (t) conditional on the value of X(t).

Suppose γ denote the random measure which selects the
jump times and sizes of the process Y. Let δa(·) denote the
Dirac measure or the point mass at a ∈ <. Then, for each
K ∈ Y , the random measure is:

γ(t, K;ω)

=
∑

0<u≤t

I{∆Y (u)∈K,∆Y (u) 6=0}

=
∑

0<u≤t

I{∆Y (u) 6=0}δ(u,∆Y (u))((0, t]×K) .

To simplify the notation, we suppress the subscript ω and
write γ(t, K) := γ(t, K;ω).

Let γ(dt, dy) denote the differential form of γ(t, K).
Define, for each i = 1, 2, . . . , N , a probability mass function
ni(·, t) on Yi as:

ni(dji − 1, t) = aji(t) .

Then, the predictable compensator of γ(dt, dy) is:

νX(t−)(dt, dy) =
N∑

i=1

ni(dy, t−) 〈X(t−), ei〉 dt .

Write γ̃(dt, dy) for the compensated version of the random
measure γ(dt, dy). That is,

γ̃(dt, dy) := γ(dt, dy)− νX(t−)(dt, dy) .

Let H denote the space of functions h(·, ·, ·, ·, ·) : T ×(<+)3×
E → < such that for each z4 ∈ E , h(·, ·, ·, ·, x) is C1,2,1(T ×
(<+)3). Write

H(s, z1, z2, z3)
:= (h(s, z1, z2, z3, e1), . . . , h(s, z1, z2, z3, eN ))′ ∈ <N .

Define the Markovian regime-switching generator Lθ,π acting
on a function h ∈ H for a Markov process {Zθ,C,π(t)}t∈T
as:

Lθ,C,π[h(s, z1, z2, z3, z4)]

=
∂h

∂s
+ z1[r(s) + (µ(s)− r(s))π(z)]

∂h

∂z1

+
1
2
θ2(s)z2

2

∂2h

∂z2
2

+
1
2
z2
1π2(z)σ2(t)

∂2h

∂z2
1

−θ(s)π(z)z1z2σ(s)
∂2h

∂z1∂z2

+
∫
Y(x)

(
h(s, z1, z2, z3(1 + y), z4)

−h(s, z1, z2, z3, z4)−
∂h

∂z3
z3y

)
νx(ds, dy)

+ 〈H(s, z1, z2, z3), A(s)x〉 .

Then, we need the following lemma for the development of
a verification theorem of the HJB solution to the stochastic
differential game. This lemma can be proof by using the
generalized Itô’s formula in [5] and conditioning on Z(0) = z
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under P . The detail of the proof will be published in [10]
later.
Lemma 4.1: Let τ < ∞ be a stopping time. Assume further
that h(Z(t)) and Lθ,C,π[h(Z(t))] are bounded on t ∈ [0, τ ].
Then,

E[h(Z(τ))|Z(0) = z]

= h(z) + E

[ ∫ τ

0

Lθ,C,π[h(Z(t))]dt|Z(0) = z

]
.

We now describe the solution of the stochastic differential
game between the investor and the market by the following
verification theorem.
Theorem 4.2: Suppose Ō is the closure of O. Suppose there
exists a function φ such that for each x ∈ E , φ(·, ·, ·, ·, x) ∈
C2(O) ∩ C(Ō) and a Markovian control (θ̂(t), Ĉ(t), π̂(t)) ∈
Θ× C ×A, such that:

1) Lθ,C,π̂[φ(s, z1, z2, z3, x)] ≥ 0, for all (θ, C) ∈ Θ × C
and (s, z1, z2, z3, x) ∈ O × E ,

2) Lθ̂,Ĉ,π[φ(s, z1, z2, z3, x)] ≤ 0, for all π ∈ A and
(s, z1, z2, z3, x) ∈ O × E ,

3) Lθ̂,Ĉ,π̂[φ(s, z1, z2, z3, x)] = 0, for all
(s, z1, z2, z3, x) ∈ O × E ,

4) for all (θ, C, π) ∈ Θ× C ×A,

lim
t→T−

φ(t, Zπ
1 (t), Zθ

2 (t), ZC
3 (t), X(t))

= Zθ
2 (T )ZC

3 (T )[Zπ
1 (T ) + ln(Zθ

2 (T ))
+ ln(ZC

3 (T ))] ,

5) let K denote the set of stopping times τ ≤ T . The
family {φ(Zθ,C,π(τ))}τ∈K is uniformly integrable.

Write, for each z ∈ O × E and (θ, C, π) ∈ Θ× C ×A,

Jθ,C,π(z)
:= Ez

(θ,C){Z
π
1 (T − s)[ln(Zθ

2 (T − s))

+ ln(ZC
3 (T − s))]} .

Then,

φ(z) = Φ(z)

= inf
(θ,C)∈Θ×C

(
sup
π∈A

Jθ,C,π(z)
)

= sup
π∈A

(
inf

(θ,C)∈Θ×C
Jθ,C,π(z)

)
= sup

π∈A
J θ̂,Ĉ,π(z) = inf

(θ,C)∈Θ×C
Jθ,C,π̂(z)

= J θ̂,Ĉ,π̂(z) ,

and (θ̂, Ĉ, π̂) is an optimal Markovian control.
The proof is adapted from the proof of Theorem 3.2 in [15]
and uses Lemma 4.1 here.
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