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Abstract— A deterministic microscopic car-following model
considering delayed reactions of human drivers is studied from
systems perspective for chain stability of a configuration of
vehicles arranged on a single lane cruising at constant velocity
without changing lanes. Two different driving strategies accom-
panied by two different delay models are incorporated in this
microscopic model. Arising analytical derivations from chain
stability analysis help compare the effects of these strategies
to and characterization of the traffic flow in the parameter
space defining the delays and the coefficients representing the
aggressiveness of the drivers. Illustrative examples are provided.

Index Terms— traffic dynamics, discrete delay, distributed
delay, slinky effects, stability.

I. INTRODUCTION AND PROBLEM STATEMENT

According to a recent research note published by National
Highway Traffic Safety Administration (NHTSA) [27], mo-
tor vehicle crashes were the leading cause for death in the
US in 2002 for the ages between 3 and 33. This can only be
seen as one of the many reasons why traffic behavior is a re-
search focus since 1930s, [12]. As a consequence, numerous
mathematical models have been developed, [6], [23], [7], [5],
[28], [29], which characterize, according to their degree of
detail, the traffic behavior considering single/multiple lanes,
on/off ramps, traffic lights, roundabouts, etc.

Since the framework/ideas deployed to obtain mathemat-
ical models is too broad, we will focus on a particular sub-
class which is widely preferred [5], [12], [21], [20], [29]
when studying traffic behavior: we consider a deterministic
microscopic follow-the-leader type model in which drivers
cruise at a constant velocity on a single-lane without chang-
ing lanes. Although this selection may simplify the model, it
facilitates the understanding of the dynamics arising among
the interaction of the vehicles under given driver behavior.
Furthermore, such models enable linear and non-linear an-
alytical development towards qualitative characterization of
traffic flow [5], [7], [12], [14], [29] as well as multi-agent
consensus/flocking problems [9], [19], [15], [22]. Besides
the simplifications, however, the two crucial analysis that are
needed to be performed on these models may become mathe-
matically quite challenging. These analysis are (i) asymptotic
stability (AS) [7], [5], [21], [20], [29] and (ii) chain stability
(CS) [14], [17]. While stability will indicate exponential
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TABLE I

SOME EXAMPLES OF DELAY MEASURE. DELAYED REACTION OF HUMAN

DRIVERS IN RESPONSE TO VARIOUS STIMULI

Measure of constant time delay, τ [sec] Reference

0.496 [4]
0.73 [18]
0.7 [8]
1.16 [30]
1.13 [1]

0.75 - 1.0 [7]
0.70, 1.25 [10]

1.1 [29]

decay of the response of the system states (velocity and
position of vehicles) in time against impulsive perturbations;
chain stability corresponds to attenuation of the periodic
excitations among consecutive vehicles.

It is clear that the instability precludes any further analysis,
thus chain stability is studied in the parameter space assuring
asymptotic stability of the dynamics. When amplifications
(attenuations) occur in frequency response, we will call
the dynamics with (free of) ‘slinky effects’. Clearly neither
instability nor slinky effects are desirable for the traffic
dynamics; and they should be carefully studied.

Presence of human drivers is still inevitable in traffic. As
the central control decision-makers, human drivers close the
feedback control loop in the traffic flow, human-in-the-loop
dynamics [16]. Drivers can do multi-tasking and have rapid
learning skills and anticipation capabilities, however their
reactions are not instantaneous [5], [6], [7], [10], thus they
add delays in decision-making and actuation, Table I. Delays
mainly originate due to the time needed to receive a stimulus,
become conscious, make decision and command actuation to
the vehicle.

Delay in closed loop dynamics is a well-known source of
poor performance (low damping) and robustness, and even
instability, [17], [11]. In many cases, however, analyzing
asymptotic stability and chain stability become non-trivial
in presence of delays. Furthermore, since human behavior is
not perfectly understood, it is still of question how to model
the delayed reactions of the drivers. For instance, even for the
case when delay τ is assumed constant, different numerical
choices are possible, Table I. Consequently, delay modeling
is another crucial component when studying traffic flow. In
this paper, we deploy two different models inspired by the
literature and authors’ recent work: (a) discrete delay model,
(b) distributed delay model. Discrete delay assumes that a
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decision made at time t is based on the stimulus received at
time t − τ . On the other hand, drivers utilize their memory
when they drive, [25], thus they receive stimuli continuously
distributed over the history, prompting the need to model the
received stimuli using distributed delays.

To our best knowledge, a complete analytical study con-
sidering various delay models and driving strategies with
interconnection of AS and CS within the framework of traffic
research has not been pursued in the open literature and we
form our main objective along this line. Our aim is to develop
analytical tools by using time delay systems approach to
analyze chain stability of a deterministic microscopic traf-
fic flow model. We adapt the two delay models for the
driver behavior along with two different driving strategies
utilized by these drivers. In brief, this paper combines the
chain stability with asymptotic stability results in order to
characterize the traffic behavior. It is of particular interest to
derive simple analytical conditions in the parameter space of
delay and driver aggressiveness coefficients, and to compare
different driving strategies. We believe that research in this
direction has impacts on understanding human behavior
and its interconnection with AS/CS, studying automated car
following control and semi-active driver assistance systems.

Notation. The notations are standard. Set of positive and
negative real numbers are denoted by R+ and R−, respec-
tively. C+ and C− represent the open right and left half of
complex plane, respectively, whereas the imaginary axis is
denoted by jR, where j =

√−1. We use s for the Laplace
variable.

The remaining part of the paper is organized as follows:
In Section II, mathematical modeling of traffic flow and
delays are presented. Section III presents the approach for
the analysis of chain stability and the analytical tools are
derived. Illustrative examples are given in Section IV. Section
V concludes the paper.

II. MATHEMATICAL MODELING

A. Traffic flow modeling without delays

We consider a single-lane continuous-time deterministic
microscopic car following model, in which a chain of
vehicles travel at a constant velocity, the so-called quasi
steady-state, without changing lanes, [6], [23], [12]. For more
elaborate models, see the survey [12] and Intelligent Driver
Model (IDM) in [29].

Strategy 1. Drivers create their decisions based on relative
velocity between two consecutive vehicles. This suggests
that the velocity difference is weighted αk > 0 for decision
making. Assuming vehicle dynamics as a double integrator,
we have

ẍk(t) = αk(ẋk+1(t) − ẋk(t)), (1)

where xk is the velocity of the kth vehicle, and the weighting
αk can be seen as proportional control gain or a measure
of driver aggressiveness, see also Table II. We note that
mathematical models similar to (1) also arise in traffic

TABLE II

NUMERICAL VALUES OF AGGRESSIVENESS COEFFICIENTS αk AND μk

DEPLOYED IN THE LITERATURE

αk μk Reference

3.0 2.0, 2.8 [5]
2.0 2.0 [7]

0.85 [13]
1.0 [14]

[0, 2] [21]
0.37 [31]

research [4], [5], [6], [12] and multi-agent consensus/flocking
problems [9], [19], [15], [22].

Strategy 2. Drivers create their decisions based on the
combination of relative position and relative velocity feed-
back. This strategy suggests that the velocity and position
difference are used in decision making with the weighting
factors αk > 0 and μk > 0. Assuming again vehicle
dynamics as a double integrator, we have

ẍk(t) = αk(xk+1(t) − xk(t)) + μk(ẋk+1(t) − ẋk(t)), (2)

where similar arguments hold as in Strategy 1. Feedback of
relative velocity and position can be seen as a proportional-
derivative control to achieve consensus of xk(t) → xk+1(t)
and ẋk(t) → ẋk+1(t) on the double integrator vehicle
dynamics. The controller gains αk and μk are measures of
drivers’ aggressiveness, Table II. See [5], [7], [12], [14], [29]
for mathematical models similar to (2) arising in traffic flow
and consensus/flocking of multi-agents [9], [19], [15], [22].

Remark 1: The governing dynamics for both Strategy 1
and Strategy 2 will exhibit a rigid body motion. Thus we
expect to see, in Laplace domain, an s = 0 pole of the
velocity dynamics of each vehicle. This pole at s = 0 does
not play any role on the asymptotic stability, [25], thus when
appropriate we will disregard it in the analysis. Such an
approach can be seen as a way of analyzing AS and CS
around constant velocity of the vehicles.

B. Delay modeling

1) Discrete delay model: One of the widely preferred
delay model representing the delayed reactions of human
drivers is ‘discrete delay’, τ > 0, which assumes that an
action of a human driver at time t is based on what is
experienced at time t − τ , [5], [7], [21], [20], [28], [29].
As a starting point, we shall follow the same assumption in
this paper. For the case with slowly time varying delays, see
for instance [24].

2) Distributed delay model: Motivated by authors’ recent
work, a different delay modeling can be seen attractive.
It suggests that stimulus is received continuously over the
history and it is retained in human memory and utilized for
decision-making. Such an argument requires the implemen-
tation of distributed delays which can be seen as a continuous
collection of discrete delays. Following these arguments, we
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utilize a uniform distribution f(τ) with which the memory
of drivers is modeled,

f(τ) =
{

1/δ if h < τ < h + δ
0 otherwise , (3)

where δ > 0 is the memory size and h ≥ 0 is the dead-
time after which information in the memory can be utilized
for a control action. Such a model is quite satisfactory
for representing an average of the information available in
the short-term memory as well as for introducing some
heterogeneity among the drivers, [2], [3], [25]. Borrowing the
entire asymptotic stability (AS) from authors’ recent work
[25], we will study chain stability perspective and present it
along with AS results.

III. MAIN RESULTS: SLINKY EFFECTS WITH DELAYS

We wish to shortly explain chain stability and slinky ef-
fects. Assume that all vehicles are traveling at a constant ve-
locity ϑ0 and the velocity of vehicle k+1 in (1) exhibits some
periodic perturbations such that ẋk+1(t) = ϑ0+vk+1 sin(ωt)
where vk+1 is the amplitude and ω is the frequency of this
periodic function. Since the governing dynamics is linear,
we shall remove the constant velocity, ϑ0, behavior of the
vehicles and only consider the periodic perturbations. In this
case, the response of the following vehicle (kth vehicle) in
steady state (thus independent of ϑ0) will also be a periodic
function in the form of ẋk(t) = vk sin(ωt + φk) where
vk is the amplitude of the periodic oscillations observed
in the velocity of the kth vehicle and φk is the relative
phase angle between ẋk(t) and ẋk+1(t). Both vk and φk are
frequency dependent. Slinky effects occur if the amplitudes
of the velocity of the kth vehicle become larger compared
to that of (k + 1)st vehicle. In other words, if ∃ω ∈ R for
which F (ω) = vk(ω)/vk+1(ω) > 1 holds, then slinky effects
occur. This indicates that perturbations upstream of the chain
of vehicles will amplify from one vehicle to another, causing
severe oscillation amplitudes. If such an undesired situation
is avoided for ∀k ∈ [1, n], and ∀ω ∈ R, then it will indicate
chain stability.

The general idea of studying if slinky effects occur or not
is to first obtain the transfer function between the two vehi-
cles. For instance, without delays, Eq.(1) will yield a transfer
function in Laplace domain, h(s) = Xk(s)

Xk+1(s)
= αks

s2+αks ,
where Xk+1(s) and Xk(s) are the Laplace transforms of
xk+1(t) and xk(t), respectively. Using the transfer function,
one can obtain F (ω) = |h(jω)| or alternatively M(ω) =
F (ω)2 = |h(jω)|2 in order to avoid square root sign. By a
frequency (ω) sweeping test, one can analyze if ∃ω ∈ R for
which M(ω) > 1 or not. As stated earlier, if M(ω∗) > 1 (<
1), this will indicate amplification (attenuation) of periodic
perturbations at frequency ω∗.

When delays are present in the dynamics, the analysis will
become more complicated, as we shall see below. Further-
more, due to presence of delays, the dynamics will become
more prone to exhibit slinky effects, which may not exist
when delays are ignored. Following a similar idea, we will

first obtain M(ω) function with delays and derive analytical
conditions with which chain stability can be characterized.

A. Case 1. Strategy 1 with discrete delay

Let us consider that decisions made by the drivers (right
hand side of (1)) are based on what was experienced earlier.
For this, the dynamics needs to be re-written considering
delays: we assume that it takes τk and τk+1 amount of time
for the driver k to anticipate the velocity of his vehicle
and the preceding one, respectively. In order to maintain
the formulation general, we state that τk and τk+1 are not
necessarily identical. This modifies (1) as

ẍk(t) = αk(ẋk+1(t − τk+1) − ẋk(t − τk)), (4)

from which we obtain the transfer function h(s, τk, τk+1)
after canceling out s = 0 as per Remark 1,

h(s, τk, τk+1) =
αke−τk+1ss

s2 + αke−τkss
. (5)

When delays are zero, |h(jω, τk, τk+1)| ≤ 1 holds for
∀ω ∈ R, but with delays different behavior is expected. The
function M(ω) = |h(jω, τk, τk+1)|2 becomes

M(ω) =
α2

k

α2
k + ω2 − 2ωαk sin(βk)

, (6)

where βk = τkω 	= 0. We now seek conditions in the
parameter space of τk versus αk for which M(ω) > 1,
∃ω ∈ R. Such a case is possible only when

0 < ω < 2αk sin(τkω) (7)

holds. Consequently, for slinky effects it is necessary that
2αk sin(τkω) > 0, which is satisfied when 0 < ω < π/τk.

Let us re-write the inequality (7) as

1
2αkτk

<
sin(τkω)

τkω
(8)

Notice that, right hand side of the above inequality is always
upper bounded by 1. Thus, it is necessary and sufficient that
αkτk > 1/2 holds such that the case M(ω) > 1, ∃ω ∈ R

is possible. The boundary of this condition depicts nothing
but a hyperbola on the first quadrant of τk versus αk plane,
above which ‘slinky effects’ are present, Fig 1. It is critical to
state that slinky effects do not claim anything on the stability
of the dynamics, which should be separately analyzed. Since
this is not within the scope of this paper, we give the stability
condition in the following:

Stability condition of (4), [17]. Dynamics governed by
the delay differential equation in (4) is stable if and only if
τkαk < π

2 .

The boundary of the stability condition interestingly turns
out to be another hyperbola, which is π times larger than
the one found for slinky effects. Parametric combination of
(τk,αk) above and below this hyperbola indicates instability
and stability, respectively, while any (τk,αk) pair on the
hyperbola will create a harmonically oscillating (marginally
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stable) dynamics. Figure 1 summarizes the above calcula-
tions and discussions, on which three regions are indicated
based on the slinky effects and the asymptotic stability of
(4). Finally, one can also derive a conservative lower bound
ω where the inequality (7) is always violated for ω > ω.
This bound can be easily computed as ω = 2αk.

Unstable

Stable with 
slinky effects k

Stable free of 
slinky effects 

k

Fig. 1. Characterization of traffic flow dynamics in (4) with respect to
stability and slinky effects in delay versus driver aggressiveness.

B. Case 2. Strategy 2 with discrete delay

In this case, it is assumed that decisions of the drivers
are not only based on the relative velocity, but also on the
headway (relative position). Thus, the governing dynamics
with this driving strategy along with delays will be in the
following form

ẍk(t) = μk(xk+1(t − τk+1) − xk(t − τk)) (9)

+αk(ẋk+1(t − τk+1) − ẋk(t − τk))

Similar to the previous case, we wish to analyze in the
frequency domain ω the function M(ω), which is found as

M(ω) =
ρ(ω)

ω4 − 2ω3αk sin(βk) − 2ω2μk cos(βk) + ρ(ω)
,

(10)
where ρ(ω) = μ2

k + ω2α2
k and βk = τkω 	= 0. For chain

stability, we need M(ω) < 1 for ∀ω ∈ R. Let us investigate
if this can be assured by some parametric choice of αk, μk

and τk. If M(ω) < 1, then g(ω) = ω2 − 2ωαk sin(βk) −
2μk cos(βk) > 0 should hold, for ∀ω ∈ R−{0}. For this, it
is sufficient that Δ = α2

k sin2(βk) + 2μk cos(βk) < 0.

Scenario 1. Given any αk 	= 0 and μk 	= 0, it is sufficient
that βk ∈ (−π/2, 0), (mod 2π), for Δ > 0 to hold. This
leads to two real ω solutions of g(ω) = 0, ω1 and ω2, that
are with opposite signs. Assuming ω1 > 0, dynamics will be
free of slinky effects for any ω larger than ω1, while such
effects will occur for 0 ≤ ω ≤ ω1 only.

Scenario 2. If βk ∈ (π/2, 3π/2), (mod 2π), then (a) Δ >
0 which is similar to Scenario 1; (b) Δ = 0 and dynamics is

free of slinky effects for ∀ω−{ω∗}, where ω∗ = αk sin(βk);
(c) Δ < 0 and dynamics is free of slinky effects for ∀ω.

Finally, notice that one can derive a conservative lower
bound ω where g(ω) > 0 is always satisfied for ω > ω. This
lower bound can be found by replacing in a conservative
sense sin(βk) = 1 and cos(βk) = 1 and choosing the positive
ω solution, which is becomes ω = α2

k +
√

α2
k + 2μk.

Remark 2: Recall that βk = τkω and ω ∈ R. Hence, for
any given delay τk, one can choose ω to create any of the
two scenarios listed above. In conclusion, we state that chain
stability is not possible, except slinky effects do not occur
in some intervals of ω and when ω > ω. These properties
distinguish this strategy with respect to Strategy 1.

Stability condition of (9), [17]. We state that stability of
dynamics in (9) should accompany the chain stability anal-
ysis presented above. This system is stable for 0 ≤ τk < τ∗

k

where τ∗
k = 1

ω∗
k
(tan−1(αkω∗

k

μk
)∓2π�), ω∗

k =
√

α2
k+

√
α4

k+4μ2
k

2

and � is a counter guaranteeing the minimum positive τ∗
k .

C. Case 3. Strategy 1 with distributed delay

We implement the memory effects on the governing
dynamics formed by Strategy 1. For this, we utilize the
uniform distribution presented earlier in (3). Consequently,
the generalized dynamics becomes

ẍk(t) = αk

∫ ∞

0

f(τ)(ẋk+1(t − τ) − ẋk(t − τ)) dτ. (11)

In principle, Eq. (11) defines a traffic dynamics in which
drivers perform their decisions based on what they contin-
uously observed in the history during a memory window
with finite size δ 	= 0, and the information in the memory
is retained and used in the decision-making process. Notice
that the choice of a Dirac distribution for f(τ), i.e. δ → 0,
will resume the discrete delay model studied in the previous
subsection.

Similar to previous cases, we first obtain the transfer
function from (11). This can be easily done by noticing that
the right hand side of this equation is a convolution integral.
Canceling s = 0 as per Remark 1, we obtain

Xk(s)
Xk+1(s)

=
αkF (s)

s + αkF (s)
=

αke−hs(1 − e−δs)
δs2 + αke−hs(1 − e−δs)

(12)
which is used to derive M(ω) function,

M(ω) =
χ(ω)

δ2ω4 − 8ω2δαk sin2(δω/2) cos(φ) + χ(ω)
(13)

where χ(ω) = 16α2
k sin4(δω/2), φ = π/2 − δω/2 − hω.

Furthermore, the mean of the uniform distribution is given
by m = h + δω/2, hence φ = π/2 − mω. Recall that we
need M(ω) < 1, ∀ω ∈ R, for chain stability. In the sequel,
we investigate if this can be possible for some parametric
choice defining the uniform memory. For M(ω) < 1, the
following inequality should be satisfied, assuming ω 	= 0,

δ2ω2 − 8δαk sin2(δω/2) sin(mω) > 0 (14)
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Further manipulations yield the following condition

1
2δαk

>

(
sin(δω/2)

δω/2

)2

sin(mω) (15)

Notice that 0 < sin2(x)/x2 < 1, thus the above condition
holds for ∀ω ∈ R if δαk < 1/2. This is obviously a
conservative condition, but it gives a relationship between
the memory size and driver aggressiveness guaranteeing
chain stability without any dependency on the mean delay,
m = h + δ/2 and ultimately the deadtime h. Similar to the
previous case, one can obtain a lower bound ω on ω, such
that the inequality (14) always holds for any ω > ω, and
ultimately the dynamics is free of slinky effects. This lower
bound is given by ω = 2

√
2αk/δ. We conclude this section

by directing interested readers to [25] for asymptotic stability
analysis of (11).

IV. ILLUSTRATIVE EXAMPLES

A. Case 1

Let us illustrate three different frequency response behav-
ior; first one corresponds to stable dynamics free of slinky
effects αk = 0.5, τk = 0.75, second one is stable but exhibits
slinky effects αk = 0.7, τk = 1.0 while the third case is
chosen at the boundary αk = 0.5, τk = 1.0 where stable
dynamics transits from ‘chain stable’ to ‘slinky effects’, i.e.,
τkαk = 1/2. In Fig 2, the frequency response is depicted. As
expected, the choice of (αk τk) comply with the analytical
developments and Fig 1.

k = 1.0 
k = 0.7

 k = 1.0 
k = 0.5

 k = 0.75 
k = 0.5 

Fig. 2. Frequency response plot, M(ω) in Eq.(6) versus ω with τk, αk

chosen from Fig 1.

B. Case 2

Let us now choose τk = 0.1 and obtain the variation
of M(ω) function with respect to two driver aggressiveness
coefficients αk and μk and frequency domain ω. The coeffi-
cients are chosen in the range of [1, 2.5], while to reduce
the number of variables to depict a 3-dimensional view,
ω-axis is dropped, and instead, maximum of M(ω) along

this axis is computed for each choice of αk and μk. Since
this maximum is the indicator of slinky effects (if greater
than 1), no information is lost in the analysis. Furthermore,
results are presented in logarithmic scale in Fig 3 in order
to obtain a convenient color gradient. Notice that, for chain
stability it is required that log(max(M(ω))) < 0, however,
in the parameter space (αk, μk) chosen, this does not occur.
Next, we perform the stability analysis of the dynamics and
obtain the maximum delay τ∗ below which the dynamics is
stable. This result is then converted to iso-τ∗ contours that
are superposed on top of log(max(M(ω)))-surface. Notice
that iso-τ∗ contours range from 0.7 to 0.385, thus our choice
above, τk = 0.1, does not violate the stability on the chosen
(αk, μk) plane.

log(max(M( ))) = 0.55 log(max(M( ))) = 1.82 

* = 0.385 
* = 0.492

* = 0.456
* = 0.42 

* = 0.527

* = 0.563

* = 0.6 

* = 0.634

* = 0.67 

* = 0.706

log(max(M( ))) = 0.92 log(max(M( )))  = 0.24 

Fig. 3. Frequency response plot (gray sale), log(max(M(ω))) for
τk = 0.1 versus αk and μk , superposed with contours indicating the iso
maximum allowable delay, τ∗ curves.

C. Case 3

Choosing driver aggressiveness αk = 2.0, we follow a
similar methodology as in Case 2, where we compute the
maximum of M(ω) function by frequency sweeping. These
maximum points are mapped on δ and h parameters of the
uniform distribution, while in parallel analyzing the stability
of the dynamics in (h, δ) parameter space, [25]. Results
are depicted in Fig 4, where shaded regions correspond to
asymptotically stable dynamics. These regions are divided
into two, based on max(M(ω)). If max(M(ω)) < 1, we
label those regions as ‘stable, no slinky effects’, whereas
max(M(ω)) ≥ 1 indicates ‘stable, with slinky effects’.
Remaining part of the parameter space is not of interest since
it corresponds to unstable dynamics.

Recall that we derived a conservative condition between
αk and δ. If αkδ < 1/2, it is guaranteed that the dynamics is
free of slinky effects. Consequently, for this case study, δ <
1/4 guarantees slinky free dynamics. This conservative upper
bound can easily be verified with the results obtained from
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the numerical computations, Fig 3. The boundary between
the two gray regions is above the level δ = 1/4.

Remark 3: Notice that for a fixed αk in Case 1, the delay
interval allowable without creating slinky effects is about
31% of the entire stability interval 0 ≤ τk < τ∗

k . While
chain stability is impossible to obtain in Case 2, parameter
space corresponding to chain stability is about 18% of the
entire shaded area for Case 3, Fig 4.

Stable, with slinky effects

Stable, no slinky effects 

Fig. 4. Characterization of slinky effects with respect to h, deadtime and
δ, memory size.

V. CONCLUSIONS

Over a linear deterministic microscopic follow-the-leader
type model, chain stability conditions are analytically derived
for various driving strategies including delayed reactions of
human drivers. It is shown that both delays in the reactions
of human drivers and strategies the drivers choose for
following their leaders become sources of loosing the chain
stability. Particularly, the study is performed in the parameter
space of the delays and the coefficients representing the
aggressiveness of the drivers. Illustrative examples support
the derived analytical results. It is foreseen that research
along the same line has impacts on understanding chain
stability of traffic flow as well as consensus problems in
which inevitable delays contaminate decision-making.
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